Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo; generatori controllati

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo; generatori controllati"

Transcript

1 Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo; generatori controllati Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, rema liberali@dti.unimi.it liberali Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 1 Programma parte 2 2. ircuiti in continua. (f)... (g) Resistenze in serie e in parallelo. (h) Generatori in serie e in parallelo. (i) ortocircuito e circuito aperto. (j) Dualità. (k) Uso dei concetti di serie e parallelo per la semplificazione dei circuiti. (l) ollegamenti a stella e a triangolo di resistenze. (m) Generatori dipendenti e indipendenti. (n)... Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 2 1

2 Generatori di tensione in serie V 1 V 2 V= V 1 V 2 La tensione ai capi di una serie di generatori di tensione è la somma delle tensioni Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 3 Generatori di tensione in parallelo V 1 V 2 V= V 1 ; V= V 2 V 1 = V 2 Se la tensione dei due generatori è la stessa abbiamo un identità; altrimenti l ugaglianza è impossibile Non si possono collegare in parallelo generatori di tensioni DIVERSE Quando la batteria dell automobile è scarica, possiamo collegarla in parallelo ad un altra batteria perché tutte hanno la stessa tensione (12 V)! Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 4 2

3 Generatori di corrente in parallelo I 1 I 2 I= I 1 I 2 La corrente nel parallelo di generatori di corrente è la somma delle correnti Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 5 Generatori di corrente in serie I 1 I 2 I=I 1 ; I= I 2 I 1 = I 2 Se la corrente dei due generatori è la stessa abbiamo un identità; altrimenti l ugaglianza è impossibile Non si possono collegare in serie generatori di correnti DIVERSE Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 6 3

4 ortocircuito V = 0 Un generatore di tensione spento ha ai sui capi una tensione nulla: V= 0, I qualsiasi Il cortocircuito è un collegamento tra due nodi effettuato con un generatore di tensione nulla (in pratica, un filo di materiale conduttore). Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 7 ircuito aperto I = 0 Un generatore di corrente spento è percorso da una corrente nulla: I= 0, V qualsiasi Il circuito aperto è un collegamento tra due nodi effettuato con un generatore di corrente nulla (in pratica, è l assenza di collegamento). Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 8 4

5 Dualità Molte coppie di leggi fondamentali che descrivono il comportamento dei circuiti elettrici sono simili. oppie di grandezze, concetti e leggi DULI: corrente tensione generatore di corrente generatore di tensione conduttanza resistenza nodo maglia circuito aperto cortocircuito I= GV V= RI KL KVL parallelo serie stella triangolo capacità induttanza Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 9 Esempio bis Risolvere il circuito, calcolando la tensione e la corrente per ogni bipolo. V 0 = 4.5 V; R 1 = 1.2 kω; R 2 = 1 kω; R 3 = 1.5 kω. R 1 V 0 R 2 R 3 Questo circuito è già stato risolto nella lezione precedente scrivendo un sistema di 7 equazioni, ma l uso intelligente dei concetti di serie e parallelo aiuta a semplificare i calcoli! Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 10 5

6 Esempio bis (1/3) R 1 V 0 R 23 Sostituisco le due resistenze R 2 e R 3 con una resistenza data dal parallelo delle due: R 23 = R 2R 3 R 2 R 3 = R 2 //R 3 Il simbolo// indica il parallelo di due resistenze. R 23 = 1 kω 1.5 kω = 0.6 kω 1 kω1.5 kω Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 11 Esempio bis (2/3) V 0 I R 123 Sostituisco le due resistenze R 1 e R 23 con una resistenza data dalla serie delle due: R 123 = R 1 R 23 = 1.2 kω0.6 kω=1.8 kω questo punto, il calcolo della corrente I è immediato: I= V 0 = 4.5 V = 2.5 m R kω Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 12 6

7 Esempio bis (3/3) V 1 V 0 R 1 I I R23 La corrente I è anche la corrente nella resistenza R 1, quindi si può calcolare la tensione V 1 : V 1 = R 1 I= 1.2 kω 2.5 m=3 V questo punto si calcola la tensione ai capi del parallelo di resistenze R 23 usando la KVL: V 2 = V 3 = V 0 V 1 = 1.5 V. Infine si trovano le correnti in R 2, in R 3 e nel generatore. Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 13 Stella e triangolo (1/11) R ab R R R R ac R bc OLLEGMENTO STELL (o a Y) OLLEGMENTO TRINGOLO (o a ) In generale, non sono riconducibili a serie e parallelo. È possibile trasformare un collegamento a stella in uno equivalente a triangolo, e viceversa. Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 14 7

8 Stella e triangolo (2/11) I 1 I I R R V 1 I V 2 R pplichiamo il generatore di tensione V 1 tra i nodi e, e il generatore di tensione V 2 tra i nodi e. KL al nodo centrale: I = I I. KL al nodo : I 1 = I. KVL alla maglia più a sinistra: V 1 R I R I = 0. KVL alla maglia più a destra: V 2 R I R I = 0. Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 15 Stella e triangolo (3/11) I 1 I I R R V 1 I V 2 R Risolvendo, si ricava la corrente I 1 : I 1 = V 2 R R R R R R R V 1 R R R R R R R R Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 16 8

9 Stella e triangolo (4/11) I ab R ab I 1 I ac V 1 R ac R bc V 2 ome per il collegamento a stella, applichiamo il generatore di tensione V 1 tra i nodi e, il generatore di tensione V 2 tra i nodi e, e ricaviamo la corrente I 1 : I 1 = I ac I ab = V 1 V ( 1 V = V 2 V 1 1 ) R ac R ab R ab R ac R ab Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 17 Stella e triangolo (5/11) I collegamenti a stella e a triangolo sono equivalenti se la corrente I 1 è la stessa nei due casi. onfrontando le equazioni: R R R I 1 = V 2 V 1 R R R R R R R R R R R R ( 1 1 I 1 = V 2 V 1 1 ) R ab R ac R ab abbiamo le equivalenze: R ab = R R R R R R R R ac = R R R R R R R Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 18 9

10 Stella e triangolo (6/11) R ab R R R R ac R bc R ab = R R R R R R R R ac = R R R R R R R R bc = R R R R R R R Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 19 Stella e triangolo (7/11) I ab R ab I ac I bc I 1 V 1 R ac R bc V 2 I 2 pplichiamo il generatore di corrente I 1 tra i nodi e, e il generatore di corrente I 2 tra i nodi e. KL al nodo : I 1 I ab I ac = 0. KL al nodo : I 2 I ab I bc = 0. KVL alla maglia più a sinistra: V 1 = R ac I ac. KVL alla maglia più a destra: V 2 = R bc I bc. KVL alla maglia esterna: V 1 V 2 = R ab I ab. Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p

11 Stella e triangolo (8/11) I ab R ab I ac I bc I 1 V 1 R ac R bc V 2 I 2 Risolvendo, si ricava la tensione V 1 : V 1 = I 2 R ac R bc R ab R ac R bc I 1 RabR ac R ac R bc R ab R ac R bc Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 21 Stella e triangolo (9/11) I I R R I 1 I R V 1 V 2 I 2 ome per il collegamento a triangolo, applichiamo il generatore di corrente I 1 tra i nodi e, il generatore di corrente I 2 tra i nodi e, e ricaviamo la tensione V 1 : V 1 = R (I 1 I 2 ) R I 1 = I 2 R I 1 (R R ) Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p

12 Stella e triangolo (10/11) onfrontando le equazioni: R ac R bc V 1 = I 2 I RabR ac R ac R bc 1 R ab R ac R bc R ab R ac R bc V 1 = I 2 R I 1 (R R ) abbiamo le equivalenze: R = R = R ac R bc R ab R ac R bc R ab R ac R ab R ac R bc Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 23 Stella e triangolo (11/11) R ab R R R ac R bc R R = R = R = R ab R ac R ab R ac R bc R ab R bc R ab R ac R bc R ac R bc R ab R ac R bc Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p

13 Generatori dipendenti (1/6) I generatori di tensione e di corrente visti finora sono generatori indipendenti: generano grandezze elettriche costanti, indipendentemente da qualsiasi altra grandezza presente nel circuito. Un generatore dipendente (o generatore controllato) è un elemento che genera una grandezza elettrica (tensione o corrente) il cui valore è funzione di un altra grandezza elettrica (tensione o corrente) presente nel circuito. Esistono 4 tipi di generatori dipendenti: sono doppi bipoli, cioè hanno una coppia di terminali di ingresso per la variabile di controllo e una coppia di terminali di uscita per la grandezza generata. Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 25 Generatori dipendenti (2/6) generatore di tensione controllato in tensione VVS: voltagecontrolled voltage source generatore di corrente controllato in corrente S: currentcontrolled current source generatore di corrente controllato in tensione VS: voltagecontrolled current source generatore di tensione controllato in corrente VS: currentcontrolled voltage source Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p

14 Generatori dipendenti (3/6) Generatore di tensione controllato in tensione VVS: voltagecontrolled voltage source V i V o = E V i ll ingresso non assorbe corrente (circuito aperto) E è il guadagno di tensione (adimensionale): E= V o /V i Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 27 Generatori dipendenti (4/6) Generatore di corrente controllato in corrente S: currentcontrolled current source I i I o = F I i ll ingresso non c è caduta di tensione (cortocircuito) F è il guadagno di corrente (adimensionale): F= I o /I i Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p

15 Generatori dipendenti (5/6) Generatore di corrente controllato in tensione VS: voltagecontrolled current source V i I o = G V i ll ingresso non assorbe corrente (circuito aperto) G è dimensionalmente una conduttanza: G=I o /V i TRNSONDUTTNZ (in siemens) Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p. 29 Generatori dipendenti (6/6) Generatore di di tensione controllato in corrente VS: currentcontrolled voltage source I i V o = H I i ll ingresso non c è caduta di tensione (cortocircuito) H è dimensionalmente una resistenza: H= V o /I i TRNSRESISTENZ (in ohm) Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p

16 Esercizio V 0 = 9 V, R 1 = 100Ω, R 2 = 3.9 kω, R 3 = 250Ω, F= 10. alcolare V. R 2 R 3 V 0 F I I i o = F I i V R 1 Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo;generatori controllati p

Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti

Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:

Dettagli

Appunti di Elettronica I Lezione 4 Stella e triangolo; generatori controllati; generatore equivalente; principio di sovrapposizione degli effetti

Appunti di Elettronica I Lezione 4 Stella e triangolo; generatori controllati; generatore equivalente; principio di sovrapposizione degli effetti ppunti di Elettronica I Lezione 4 Stella e triangolo; generatori controllati; generatore equivalente; principio di sovrapposizione degli effetti Valentino Liberali Dipartimento di Tecnologie dell Informazione

Dettagli

Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo

Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 603 Crema email:

Dettagli

Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff

Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff alentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Bipoli lineari;

Dettagli

Elettronica I Bipoli lineari; legge di Ohm; caratteristica tensione-corrente; nodi e maglie di un circuito

Elettronica I Bipoli lineari; legge di Ohm; caratteristica tensione-corrente; nodi e maglie di un circuito Elettronica Bipoli lineari; legge di Ohm; caratteristica tensionecorrente; nodi e maglie di un circuito alentino Liberali Dipartimento di Tecnologie dell nformazione Università di Milano, 603 Crema email:

Dettagli

Elettronica I Risposta dei circuiti RC e RL nel dominio del tempo; derivatore e integratore p. 2

Elettronica I Risposta dei circuiti RC e RL nel dominio del tempo; derivatore e integratore p. 2 Elettronica I isposta dei circuiti e L nel dominio del tempo; derivatore e integratore Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 613 rema e-mail: liberali@i.unimi.it

Dettagli

Elettronica I Amplificatore operazionale ideale; retroazione; stabilità

Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte c Partitori di tensione e di corrente Partitore di tensione: si fa riferimento ad una tensione nota che alimenta una

Dettagli

Appunti di Elettronica I Lezione 2 Bipoli lineari; legge di Ohm; caratteristica tensione-corrente; nodi e maglie di un circuito

Appunti di Elettronica I Lezione 2 Bipoli lineari; legge di Ohm; caratteristica tensione-corrente; nodi e maglie di un circuito Appunti di Elettronica Lezione Bipoli lineari; legge di Ohm; caratteristica tensionecorrente; nodi e maglie di un circuito alentino Liberali Dipartimento di Tecnologie dell nformazione Università di Milano,

Dettagli

Circuiti con due generatori di tensione esercizio n. 2 principi di Kirchhoff

Circuiti con due generatori di tensione esercizio n. 2 principi di Kirchhoff ircuiti con due generatori di tensione esercizio n. alcolare le correnti che circolano nel circuito sotto riportato utilizzando i principi di Kirchhoff, la potenza erogata (o eventualmente assorbita) dai

Dettagli

Soluzione di circuiti RC ed RL del primo ordine

Soluzione di circuiti RC ed RL del primo ordine Principi di ingegneria elettrica Lezione 11 a parte 2 Soluzione di circuiti RC ed RL del primo ordine Metodo sistematico Costante di tempo Rappresentazione del transitorio Metodo sistematico per ricavare

Dettagli

Teoria dei Circuiti Esercitazione di Laboratorio Due-porte e circuiti equivalenti di Thevenin e Norton

Teoria dei Circuiti Esercitazione di Laboratorio Due-porte e circuiti equivalenti di Thevenin e Norton Teoria dei Circuiti Esercitazione di Laboratorio Due-porte e circuiti equivalenti di Thevenin e Norton Esercizio 1? Si determini tramite misure la descrizione del due porte tramite matrice resistenza o

Dettagli

1. Serie, parallelo e partitori. ES Calcolare la

1. Serie, parallelo e partitori. ES Calcolare la Maffucci: ircuiti in regime stazionario ver-00 Serie, parallelo e partitori S - alcolare la vista ai morsetti - e quella vista ai morsetti -D S alcolare la resistenza uivalente vista ai capi del generatore

Dettagli

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica Fisica Componenti elementari

Dettagli

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I ELETTOTECNICA (0 CFU) CS INGEGNEIA MATEMATICA I prova in itinere 20 Novembre 2009 SOLUZIONI - - D. (punti 4 ) ) Spiegare cosa si intende per DUALITA nello studio dei circuiti elettrici. 2) Scrivere per

Dettagli

Passività e relazioni costitutive

Passività e relazioni costitutive 1 Cosa c è nell unità 1/3 Passività e relazioni costitutive Potenza entrante Passività Relazioni costitutive Bipoli ideali Resistore ideale Generatori di tensione Generatori ideali di corrente Principio

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 1)

Esercizi sulle reti elettriche in corrente continua (parte 1) Esercizi sulle reti elettriche in corrente continua (parte ) Esercizio : eterminare la resistenza equivalente della rete in figura tra i terminali e (supponendo e isolati) e la conduttanza equivalente

Dettagli

Esame di Teoria dei Circuiti 25 Febbraio 2011 (Soluzione)

Esame di Teoria dei Circuiti 25 Febbraio 2011 (Soluzione) Esame di Teoria dei Circuiti 25 Febbraio 20 Soluzione) Esercizio I I R R I R2 R 2 V 3 I 3 V V 2 αi R βi R2 V I Con riferimento al circuito di figura si assumano i seguenti valori: R = kω, R 2 = kω, = 2

Dettagli

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione)

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esercizio 1 3 3 γv 5 r 1 2 2 4 V 5 3 V 1 β 4 4 1 5 V 2 α 3 4 Con riferimento al circuito di figura si assumano i seguenti valori: 1 = 2 = 3 = 3

Dettagli

Elettronica Amplificatore operazionale ideale; retroazione; stabilità

Elettronica Amplificatore operazionale ideale; retroazione; stabilità Elettronica Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Amplificatore operazionale

Dettagli

Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni

Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni Definizioni e breve richiamo alle principali leggi dei circuiti elettrici Risolvere un circuito elettrico significa determinare i

Dettagli

Introduzione e richiami Simulatore PSPICE Tipi di amplificatori e loro parametri. Amplificatori Operazionali e reazione negativa

Introduzione e richiami Simulatore PSPICE Tipi di amplificatori e loro parametri. Amplificatori Operazionali e reazione negativa Amplificatori e doppi bipoli Amplificatori e doppi bipoli ntroduzione e richiami Simulatore PSPCE Tipi di amplificatori e loro parametri Amplificatori AC e differenziali Amplificatori Operazionali reali

Dettagli

IL TEOREMA DI THEVENIN

IL TEOREMA DI THEVENIN IL TEOREMA DI THEVENIN Il teorema di Thevenin si usa per trovare più agevolmente una grandezza (corrente o tensione) in una rete elettrica. Enunciato: una rete elettrica vista a una coppia qualsiasi di

Dettagli

Esercizio. Risolvere poi lo stesso quesito utilizzando la legge di Kirchhoff alle maglie.

Esercizio. Risolvere poi lo stesso quesito utilizzando la legge di Kirchhoff alle maglie. Esercizio Classe ª Elettronici Materia Elettrotecnica Argomento Reti elettriche Nel circuito di figura, utilizzando il teorema di Thevenin attraverso riduzioni successive, determinare la tensione ai capi

Dettagli

Elettronica II Modello per piccoli segnali del diodo a giunzione p. 2

Elettronica II Modello per piccoli segnali del diodo a giunzione p. 2 Elettronica II Modello per piccoli segnali del diodo a giunzione Valentino Liberali ipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

RETI LINEARI R 3 I 3 R 2 I 4

RETI LINEARI R 3 I 3 R 2 I 4 RETI LINERI 1 Leggi di Kirchoff. Metodo delle correnti di maglia R 1 R 3 I 1 I 3 E 1 J 1 J 2 J 3 I 2 I 4 R 4 I 5 R 5 I 6 R 6 J 4 R 7 Il calcolo delle correnti e delle differenze di potenziale in un circuito

Dettagli

CIRCUITI ELETTRICI. Le grandezze fondamentali nei circuiti elettrici sono:

CIRCUITI ELETTRICI. Le grandezze fondamentali nei circuiti elettrici sono: CIRCUITI ELETTRICI Riccardo Scannaliato 4H 2015/16 Le grandezze fondamentali nei circuiti elettrici sono: La corrente elettrica: la quantità di carica che attraversa una sezione S di conduttore in un secondo.

Dettagli

Paragrafo 7.2.3: Potenza trifase

Paragrafo 7.2.3: Potenza trifase Paragrafo 7.2.3: Potenza trifase Problema 7.1 Ampiezza della tensione di fase di un sistema trifase bilanciato, 220 V efficace. L espressione di ciascuna fase in entrambe le coordinate rettangolari e polari.

Dettagli

Università degli studi di Bergamo Facoltà di Ingegneria

Università degli studi di Bergamo Facoltà di Ingegneria Università degli studi di ergamo Facoltà di Ingegneria Corso di elettrotecnica Soluzione tema d esame del 16 giugno 1998 Esercizio n 1 Data la rete in figura determinare le correnti I 1,I 2,I,I 5 e la

Dettagli

Esercizi aggiuntivi Unità A2

Esercizi aggiuntivi Unità A2 Esercizi aggiuntivi Unità A2 Esercizi svolti Esercizio 1 A2 ircuiti in corrente alternata monofase 1 Un circuito serie, con 60 Ω e 30 mh, è alimentato con tensione V 50 V e assorbe la corrente 0,4 A. alcolare:

Dettagli

Reti elettriche: definizioni

Reti elettriche: definizioni TEORIA DEI CIRCUITI Reti elettriche: definizioni La teoria dei circuiti è basata sul concetto di modello. Si analizza un sistema fisico complesso in termini di interconnessione di elementi idealizzati.

Dettagli

G. Rizzoni, Elettrotecnica - Principi e applicazioni Soluzioni ai problemi, Capitolo 3

G. Rizzoni, Elettrotecnica - Principi e applicazioni Soluzioni ai problemi, Capitolo 3 CAPITOLO 3 Analisi delle reti resistive Paragrafi da 3.2 a 3.4: Analisi ai nodi e alle maglie Problema 3.1 Correnti di maglia: Correnti di lato in Fissa una direzione per la corrente in R 1 (ad esempio

Dettagli

Esercizio svolto 1 Dati: R 1

Esercizio svolto 1 Dati: R 1 Esercizio svolto = 4 = = I G = 4A = Determinare la corrente I e le potenze rispettivamente erogate dal generatore Ig e dal generatore αi. Per trovare la grandezza pilota uso la sovrapposizione degli effetti.

Dettagli

Liberamente tratto da Prima Legge di Ohm

Liberamente tratto da  Prima Legge di Ohm Liberamente tratto da www.openfisica.com Prima Legge di Ohm Agli estremi di due componenti elettrici di un circuito (che si possono chiamare conduttore X ed Y) è applicata una differenza di potenziale

Dettagli

PROGRAMMA di ELETTRONICA ed ELETTROTECNICA & SCHEDE OPERATIVE PER ALLIEVI CON SOSPENSIONE DI GIUDIZIO. Classe TERZA AE A.S.

PROGRAMMA di ELETTRONICA ed ELETTROTECNICA & SCHEDE OPERATIVE PER ALLIEVI CON SOSPENSIONE DI GIUDIZIO. Classe TERZA AE A.S. PROGRMM di ELETTRONIC ed ELETTROTECNIC & SCHEDE OPERTIVE PER LLIEVI CON SOSPENSIONE DI GIUDIZIO Classe TERZ E.S. 2015/2016 Per il ripasso degli argomenti teorici e lo svolgimento degli esercizi utilizzare

Dettagli

COLLEGAMENTO SERIE E PARALLELO DI BIPOLI (Resistenze)

COLLEGAMENTO SERIE E PARALLELO DI BIPOLI (Resistenze) COLLEGAMENTO SERIE E PARALLELO DI BIPOLI (Resistenze) Per realizzare un circuito elettrico è necessario collegare tra loro più bipoli. Il tipo di collegamento che si effettua dipende dalle esigenze e dagli

Dettagli

Generatore di fem. r + R. ε 2 W R = I 2 R = (r + R) 2 R

Generatore di fem. r + R. ε 2 W R = I 2 R = (r + R) 2 R Generatore di em Dispositivo capace di mantenere un d.d.p. costante ai capi di un conduttore percorso da corrente. em come lavoro svolto sull unità di carica si misura in Volt Lavoro può essere di diversa

Dettagli

Collegamento di resistenze

Collegamento di resistenze Collegamento di resistenze Resistenze in serie Vogliamo calcolare la resistenza elettrica del circuito ottenuto collegando tra loro più resistenze in serie. Colleghiamo a una pila di forza elettromotrice

Dettagli

Regola del partitore di tensione

Regola del partitore di tensione Regola del partitore di tensione Se conosciamo la tensione ai capi di una serie di resistenze e i valori delle resistenze stesse, è possibile calcolare la caduta di tensione ai capi di ciascuna R resistenza,

Dettagli

Resistenza equivalente

Resistenza equivalente Le uivalenze esistenza uivalente è la resistenza uivalente di un bipolo se possiede la stessa relazione tensione-corrente ai terminali esistori in serie esistori in parallelo Trasformazione stella triangolo

Dettagli

Collegamento generatori di tensione. Collegamento parallelo. Sia dato il sistema di figura 1: Fig. 1 -

Collegamento generatori di tensione. Collegamento parallelo. Sia dato il sistema di figura 1: Fig. 1 - Collegamento generatori di tensione Collegamento parallelo Sia dato il sistema di figura : Fig. - vogliamo trovare il bipolo equivalente al parallelo dei tre generatori di tensione, il bipolo, cioè, che

Dettagli

Circuiti in corrente continua

Circuiti in corrente continua Domanda Le lampadine mostrate in figura sono le stesse. Con quali collegamenti si ha maggiore luce? Circuiti in corrente continua Ingegneria Energetica Docente: Angelo Carbone Circuito 1 Circuito 2 La

Dettagli

Campi Elettromagnetici e Circuiti I Metodi di analisi

Campi Elettromagnetici e Circuiti I Metodi di analisi Facoltà di Ingegneria Università degli studi di Pavia Corso di Laurea Triennale in Ingegneria Elettronica e Informatica Campi Elettromagnetici e Circuiti I Metodi di analisi Campi Elettromagnetici e Circuiti

Dettagli

LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE

LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE Partitore di tensione 2 legge kirkoff Partitore di corrente 1 legge kirkoff Principio di sovrapposizione degli effetti Legge di Thevenin Legge di

Dettagli

5.12 Applicazioni ed esercizi

5.12 Applicazioni ed esercizi 138 5.12 pplicazioni ed esercizi pplicazione 1 1. Trovare il numero dei nodi e dei rami nel circuito in figura. 1 2 3 H 4 C D E 8 G 7 F 6 5 punti 1 e 2 costituiscono un unico nodo; lo stesso per i punti

Dettagli

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria Schede di Elettrotecnica Corso di Elettrotecnica - Cod. 900 N Diploma Universitario Teledidattico in ngegneria nformatica ed utomatica olo Tecnologico di lessandria cura di Luca FES Scheda N Circuiti in

Dettagli

ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1

ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ESERCIZIO 1 Dopo aver risolto il circuito lineare tempo-invariante mostrato Fig. 1.1, calcolare la potenza erogata/assorbita da ogni componente. Fig. 1.1

Dettagli

7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari

7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari 7 Esercizi e complementi di Elettrotecnica per allievi non elettrici Circuiti elementari Gli esercizi proposti in questa sezione hanno lo scopo di introdurre l allievo ad alcune tecniche, semplici e fondamentali,

Dettagli

VERIFICA DELLE PROPRIETÀ E DELLE CARATTERISTICHE DEL CIRCUITO APERTO E DEL CORTO CIRCUITO

VERIFICA DELLE PROPRIETÀ E DELLE CARATTERISTICHE DEL CIRCUITO APERTO E DEL CORTO CIRCUITO VEFCA DELLE POPETÀ E DELLE CAATTESTCHE DEL CCUTO APETO E DEL COTO CCUTO Le caratteristiche di un circuito aperto sono: A. Tensione massima: V ca Max B. Corrente nulla: ca 0 C. Tutti i bipoli passivi che

Dettagli

Piano di Recupero del debito. di STA (Scienze e Tecnologie Applicate) Primo Biennio

Piano di Recupero del debito. di STA (Scienze e Tecnologie Applicate) Primo Biennio Liceo Scientifico Istituto Tecnico Industriale ISTITUTO DI ISTRUZIONE SUPERIORE ALDO MORO Via Gallo Pecca n.4/6 10086 RIVAROLO CANAVESE Tel. 0124/45.45.11 - Fax 0124/45.45.45 Cod. Fisc. 85502120018 E-mail:

Dettagli

Impedenze ed Ammettenze 1/5

Impedenze ed Ammettenze 1/5 Impedenze ed Ammettenze 1/5 V=Z I. Rappresentazione alternativa I=Y V Z ed Y sono numeri complessi Bipolo di impedenza Z = R+ j X Resistenza Reattanza Conduttanza 1 Y = = G+ jb Z Suscettanza Lezione 2

Dettagli

Cosa c è nell unità. Introduzione, Elettromagnetismo ed Elettrotecnica. Grandezze elettriche su un multipolo e leggi di Kirchhoff

Cosa c è nell unità. Introduzione, Elettromagnetismo ed Elettrotecnica. Grandezze elettriche su un multipolo e leggi di Kirchhoff 1 2 Introduzione, Elettromagnetismo ed Elettrotecnica Cosa c è nell unità Grandezze elettriche su un multipolo e leggi di Kirchhoff 3 Bipoli ideali e circuiti elementari 4 Elettromagnetismo ed Elettrotecnica

Dettagli

Esercizi: circuiti dinamici con generatori costanti

Esercizi: circuiti dinamici con generatori costanti ezione Esercizi: circuiti dinamici con generatori costanti ezione n. Esercizi: circuiti dinamici con generatori costanti. Esercizi con circuiti del I ordine in transitorio con generatori costanti. ircuiti..

Dettagli

I generatori controllati nella risoluzione dei circuiti elettrici

I generatori controllati nella risoluzione dei circuiti elettrici UNERSTA' DEGL STUD D MESSNA Dipartimento di ngegneria Contrada Di Dio, 98166 illaggio S. Agata Messina generatori controllati nella risoluzione dei circuiti elettrici Anno Accademico 2016-2017 dott. ing.

Dettagli

DOPPI BIPOLI Stefano Usai

DOPPI BIPOLI Stefano Usai DOPP BPOL Si definisce doppio bipolo una rete di resistori, comunque complessa, accessibile da due coppie di morsetti. Se per ogni coppia di morsetti si verifica che la corrente entrante da un morsetto

Dettagli

Elettrodinamica. 1. La corrente elettrica continua 2. I circuiti elettrici. Prof Giovanni Ianne

Elettrodinamica. 1. La corrente elettrica continua 2. I circuiti elettrici. Prof Giovanni Ianne Elettrodinamica 1. La corrente elettrica continua 2. I circuiti elettrici Prof. Giovanni Ianne 1 La corrente elettrica Si chiama corrente elettrica un moto ordinato di cariche elettriche. La lampada ad

Dettagli

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica 7.09.0 Problema L interruttore indicato nel circuito in figura commuta nell istante t 0 dalla posizione AA alla posizione BB. Determinare le espressioni delle tensioni v (t) ev (t) per ogni istante di

Dettagli

0 : costante dielettrica nel vuoto

0 : costante dielettrica nel vuoto 0 : costante dielettrica nel vuoto Φ Flusso del campo elettrico E dφ E E da EdAcosθ Se la superficie è chiusa (superficie gaussiana) il flusso si calcola come integrale chiuso: Φ E dφ E E da v EdAcosθ

Dettagli

Circuiti con due generatori di tensione esercizio n. 3 metodo dei potenziali di nodo

Circuiti con due generatori di tensione esercizio n. 3 metodo dei potenziali di nodo alcolare le correnti che circolano nel circuito sotto riportato utilizzando il metodo dei potenziali di nodo, la potenza erogata (o eventualmente assorbita) dai generatori di tensione ed e quella assorbita

Dettagli

Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici

Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Dr. Carlo Petrarca Dipartimento di Ingegneria Elettrica Università di Napoli FEDERICO II 1 Lezione

Dettagli

Esercitazioni di Elettrotecnica

Esercitazioni di Elettrotecnica Esercitazioni di Elettrotecnica a cura dell Ing ntonio Maffucci Parte II: ircuiti in regime sinusoidale /3 Esercitazioni di Elettrotecnica /3 Maffucci ESEIZIONE N7: Fasori ed impedenze ESEIZIO 7 Esprimere

Dettagli

Esercizi svolti Esperimentazioni di Fisica 2 A.A. 2009-2010 Elena Pettinelli

Esercizi svolti Esperimentazioni di Fisica 2 A.A. 2009-2010 Elena Pettinelli Esercizi svolti Esperimentazioni di Fisica A.A. 009-00 Elena Pettinelli Principio di sovrapposizione: l principio di sovrapposizione afferma che la risposta di un circuito dovuta a più sorgenti può essere

Dettagli

CIRCUITI IN CORRENTE CONTINUA

CIRCUITI IN CORRENTE CONTINUA IUITI IN ONT ONTINUA Un induttanza e tre resistenze 2 J J 2 L Il circuito sta funzionando da t = con l interruttore aperto. Al tempo t = 0 l interruttore viene chiuso. alcolare le correnti. Per t 0 circola

Dettagli

Contenuti dell unità + C A0 L

Contenuti dell unità + C A0 L 1 ontenuti dell unità Questa unità considera problemi di transitorio in reti: 1) contenenti un solo elemento reattivo (1 condensatore oppure 1 induttore) a) alimentate da generatori costanti in presenza

Dettagli

IL CIRCUITO ELETTRICO RESISTENZE IN PARALLELO

IL CIRCUITO ELETTRICO RESISTENZE IN PARALLELO Laboratorio di.... Scheda n. 4 Livello: Medio A.S.... Classe. NOME..... DATA... Prof.... IL CIRCUITO ELETTRICO RESISTENZE IN PARALLELO R1 R2 Conoscenze - Conoscere le grandezze elettriche che caratterizzano

Dettagli

Tipi di amplificatori e loro parametri

Tipi di amplificatori e loro parametri Amplificatori e doppi bipoli Amplificatori e doppi bipoli Introduzione e richiami Simulatore PSPICE Amplificatori Operazionali e reazione negativa Amplificatori AC e differenziali Amplificatori Operazionali

Dettagli

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte b Bipoli elettrici - potenza entrante Tensione e corrente su di un bipolo si possono misurare secondo la convenzione

Dettagli

CIRCUITI IN REGIME SINUSOIDALE

CIRCUITI IN REGIME SINUSOIDALE IUITI IN EGIME SINUSOIDALE 9.1. Nel circuito della figura il voltaggio alternato è V = V 0 cost con = 314 rad/s, V 0 = 311 V, L = 0.9 H, = 6.96 F. Se il fattore di potenza del circuito è pari a 0.98, la

Dettagli

Esercizi svolti. Elettrotecnica

Esercizi svolti. Elettrotecnica Esercizi svolti di Elettrotecnica a cura del prof. Vincenzo Tucci NOVEMBE 00 NOTA SUL METODO PE LA DEGLI ESECIZI La soluzione degli esercizi è un momento della fase di apprendimento nel quale l allievo

Dettagli

= 300mA. Applicando la legge di Ohm su R4 si calcola facilmente V4: V4 = R4

= 300mA. Applicando la legge di Ohm su R4 si calcola facilmente V4: V4 = R4 AI SEZIONE DI GENOVA orso di teoria per la patente di radioamatore, di Giulio Maselli IZASP Soluzioni degli Esercizi su resistenze, condensatori, induttanze e reattanze ) a) Le tre resistenze sono collegate

Dettagli

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma la risultante istante

Dettagli

Il problema del carico

Il problema del carico Il problema del carico Si consideri un circuito composto (per il momento) da sole resistenze e generatori di tensione. Si immagini di collegare tra due punti A e B del circuito una resistenza c che chiameremo

Dettagli

Elettronica I Generatore equivalente; massimo trasferimento di potenza; sovrapposizione degli effetti

Elettronica I Generatore equivalente; massimo trasferimento di potenza; sovrapposizione degli effetti Elettronica I Generatore equivalente; massimo trasferimento di potenza; sovrapposizione degli effetti Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema email:

Dettagli

1.1 Assenza di generatori di corrente ideali.

1.1 Assenza di generatori di corrente ideali. ANALISI AGLI ANELLI Questa dispensa presenta un metodo alternativo a quello presentato nel libro Circuiti Elettrici di C.K. Alexander, M.N.O.Sadiku - seconda edizione - traduzione a cura del Prof. P.Gubian

Dettagli

Analisi di Reti in Regime Stazionario

Analisi di Reti in Regime Stazionario nalisi di eti in egime Stazionario ata una rete con l elementi bipolari, identifico un sistema di l tensioni e l correnti descrittive (ad ex, usando la.u.). l incognite Le l incognite devono soddisfare:

Dettagli

Lezione PSPICE n.2. Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici

Lezione PSPICE n.2. Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Università degli Studi di Napoli Federico II CdL Ing. Elettrica Corso di Laboratorio di Circuiti Elettrici Lezione PSPICE n.2 Dr. Carlo Petrarca Dipartimento di Ingegneria Elettrica Università di Napoli

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA LA CORRENTE ELETTRICA Giuseppe Frangiamore con la collaborazione di Antonino Palumbo Definizione di corrente elettrica La corrente elettrica è un qualsiasi moto ordinato di cariche elettriche, definita

Dettagli

Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS

Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica

Dettagli

Indice. 0.1 Prefazione...

Indice. 0.1 Prefazione... 0.1 Prefazione............................ xi 1 GRANDEZZE ELETTRICHE 1 1.1 Tensione elettrica - Voltmetro................. 1 1.1.1 Esempio n. 1...................... 3 1.1.2 Esempio n. 2......................

Dettagli

Competenze di ambito Prerequisiti Abilità / Capacità Conoscenze Livelli di competenza

Competenze di ambito Prerequisiti Abilità / Capacità Conoscenze Livelli di competenza Docente: LASEN SERGIO Classe: 3MAT Materia: Tecnologie Elettrico Elettroniche, dell Automazione e Applicazioni MODULO 1 - CIRCUITI E RETI ELETTRICHE IN CORRENTE CONTINUA Saper effettuare connessioni logiche

Dettagli

Principi di ingegneria elettrica. Reti in regime sinusoidale. Lezione 13 a. Impedenza Ammettenza

Principi di ingegneria elettrica. Reti in regime sinusoidale. Lezione 13 a. Impedenza Ammettenza Principi di ingegneria elettrica Lezione 3 a Reti in regime sinusoidale mpedenza Ammettenza Legge di Ohm simbolica n un circuito lineare comprendente anche elementi dinamici (induttori e condensatori)

Dettagli

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte f Variabili di stato In un dato istante di tempo, l energia immagazzinata nell elemento reattivo (condensatore od induttore)

Dettagli

per la matrice R, e: I 1 = G 11 V 1 + G 12 V 2, I 2 = G 21 V 1 + G 22 V 2,

per la matrice R, e: I 1 = G 11 V 1 + G 12 V 2, I 2 = G 21 V 1 + G 22 V 2, 100 Luciano De Menna Corso di Elettrotecnica Il caso N = 2 è particolarmente interessante tanto da meritare un nome speciale: doppio bipolo I parametri indipendenti saranno tre: R 11, R 22 ed R 12 =R 21

Dettagli

I.T.I.S. TRASFORMATA DI LAPLACE DIAGRAMMI DI BODE

I.T.I.S. TRASFORMATA DI LAPLACE DIAGRAMMI DI BODE I.T.I.S. APPUNTI DI ELETTRONICA TRASFORMATA DI LAPLACE E DIAGRAMMI DI BODE PREMESSA Per lo studio dei sistemi di controllo si utilizzano modelli matematici dinamici lineari. L analisi o il progetto di

Dettagli

R u = R i. (48) e la potenza elettrica assorbita dal trasformatore ideale è uguale a zero) vale. R u /n 2 R i ( 1+ R u /n 2 R i ) 2 (49) R u.

R u = R i. (48) e la potenza elettrica assorbita dal trasformatore ideale è uguale a zero) vale. R u /n 2 R i ( 1+ R u /n 2 R i ) 2 (49) R u. 319 R u = R i. (48) Il generatore di tensione E in serie con il resistore di resistenza R i potrebbe rappresentare, ad esempio, il circuito equivalente secondo Thévenin (con tensione a vuoto E e resistenza

Dettagli

LICEO SCIENTIFICO CAVOUR COMPITO DI FISICA PER LA CLASSE 5D Durata della prova 1 ora

LICEO SCIENTIFICO CAVOUR COMPITO DI FISICA PER LA CLASSE 5D Durata della prova 1 ora LICEO SCIENTIFICO CAVOUR COMPITO DI FISICA PER LA CLASSE 5D Durata della prova 1 ora 1)Nel circuito rappresentato in figura la pila fornisce una differenza di potenziale di 12 V e le tre resistenze hanno

Dettagli

LEGGE GENERALE DI OHM

LEGGE GENERALE DI OHM LEGGE GENERALE DI OHM Prendiamo ad esempio il seguente circuito elettrico: La corrente fluisce,anche se ci sono più generatori con azione discorde,in un solo verso che si suppone noto (se non è noto si

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzione e modellistica dei sistemi Modellistica dei sistemi dinamici elettrici Elementi fondamentali Rappresentazione in variabili di stato Esempi di rappresentazione in variabili di stato Modellistica

Dettagli

INTENSITÀ DI CORRENTE E LEGGI DI OHM

INTENSITÀ DI CORRENTE E LEGGI DI OHM QUESITI 1 INTENSITÀ DI CORRENTE E LEGGI DI OHM 1. (Da Veterinaria 2014) Un filo di alluminio ha una sezione di 1,0 x 10-6 m 2. Il filo è lungo 16,0 cm ed ha una resistenza pari a 4,0 x 10-3 Ω. Qual è la

Dettagli

Figura 1 Figura 2. Dati : f = 45 Hz, V c = 350 V, R = 22 Ω, L 1 = 16 mh, L 2 = 13 mh.

Figura 1 Figura 2. Dati : f = 45 Hz, V c = 350 V, R = 22 Ω, L 1 = 16 mh, L 2 = 13 mh. 1 2 3 I U 1 2 Un utilizzatore trifase (U) è costituito da tre impedenze uguali, ciascuna delle quali è mostrata nella figura 2, collegate a WUDQJO ed è alimentato da una linea trifase caratterizzata da

Dettagli

Unità 5. La corrente elettrica continua

Unità 5. La corrente elettrica continua Unità 5 La corrente elettrica continua 1. L'intensità della corrente elettrica Si chiama corrente elettrica un moto ordinato di cariche elettriche. In un filo metallico (come il filamento di una lampadina)

Dettagli

Teoria dei circuiti reazionati

Teoria dei circuiti reazionati Teoria dei circuiti reazionati Differenze tra lo schema di reazione ideale e il circuito con retroazione: Ogni blocco dello schema a blocchi ha una direzione e un trasferimento che non dipende dai blocchi

Dettagli

PROGRAMMA DI SCIENZE E TECNOLOGIE APPLICATE 2015/2016 Classe 2ª Sez. C Tecnologico

PROGRAMMA DI SCIENZE E TECNOLOGIE APPLICATE 2015/2016 Classe 2ª Sez. C Tecnologico ISTITUTO TECNICO STATALE MARCHI FORTI Viale Guglielmo Marconi n 16-51017 PESCIA (PT) - ITALIA PROGRAMMA DI SCIENZE E TECNOLOGIE APPLICATE 2015/2016 Classe 2ª Sez. C Tecnologico Docente PARROTTA GIOVANNI

Dettagli

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma senza una differenza

Dettagli

La legge di Ohm, polarizzazione.

La legge di Ohm, polarizzazione. La legge di Ohm, polarizzazione. In elettronica una delle prime e più basilari cose che serve fare è provocare una caduta di tensione, di voltaggio per intenderci; ovvero serve ridurre la quantità di corrente

Dettagli

PROGRAMMA PREVENTIVO

PROGRAMMA PREVENTIVO ISTITUTO PROFESSIONALE INDUSTRIA, ARTIGIANATO " L.B. ALBERTI " Via Tambroni, n. 24 47923 RIMINI Tel 0541/393827 Fax 0541/394367 E-mail segreteria@albertirimini.it PROGRAMMA PREVENTIVO TECNOLOGIE ELETTRICHE,

Dettagli

Lezione 39: la legge di Ohm e i circuiti elettrici

Lezione 39: la legge di Ohm e i circuiti elettrici Lezione 39 - pag.1 Lezione 39: la legge di Ohm e i circuiti elettrici 39.1. Il circuito elementare Nella scorsa lezione abbiamo rappresentato in modo più o meno realistico alcuni circuiti elettrici particolarmente

Dettagli

asciugacapelli uguali sono connessi in parallelo, la loro resistenza equivalente è = R + 1 $

asciugacapelli uguali sono connessi in parallelo, la loro resistenza equivalente è = R + 1 $ Capitolo Circuiti elettrici Domande. La resistenza di un filo conduttore è L / A: due fili di resistività diversa e stessa lunghezza possono avere la stessa resistenza, purché le loro sezioni siano scelte

Dettagli