Cinematica rotazionale. 28 febbraio 2009 PIACENTINO - PREITE (Fisica per Scienze Motorie)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Cinematica rotazionale. 28 febbraio 2009 PIACENTINO - PREITE (Fisica per Scienze Motorie)"

Transcript

1 Cinemti rotzionle 8 febbrio 009 PIACENTINO - PEITE (Fisi per Sienze Motorie) 1

2 Moto Cirolre Uniforme Un oggetto he si muove su un ironferenz on un veloità ostntev, ompie unmotoirolreuniforme. Il modulo dell veloità rest ostnte, m l direzione mbi ontinumente. Un mbimento nell direzione dell veloità ostituise un' elerzione proprio ome ostituise un'elerzione un mbimento nel modulo dell veloità. v t Il orpo he segue un triettori irolre veloità ostnte è quindi soggetto d un' elerzione rivolt verso il entro del erhio, himt elerzione entripet. Quest elerzione srà ugule d: vt r 8 febbrio 009 PIACENTINO - PEITE (Fisi per Sienze Motorie)

3 Moto Cirolre Uniforme ω v t L veloità può nhe essere espress in termini di veloità ngolre he si esprime in rdinti l seondo, definendo osì l veloità tngenzile e l elerzione entripet, rispettivmente, ome L elerzione entripet dipende d V t ed d r in qunto più grnde è l veloità V t e più rpidmente mbi l direzione dell veloità, quindi l' elerzione ument. Più è grnde il rggio, e meno rpidmente l veloità mbi direzione e quindi l' elerzione diminuise. rd se [ ] ω 8 febbrio 009 PIACENTINO - PEITE (Fisi per Sienze Motorie) v t v r ( ωr) t ω r e ω r r

4 Moto Cirolre Uniformemente Aelerto Se il moto è elerto ostntemente ed è irolre si prl di moto irolre uniformemente elerto. Questo è molto simile quello rettilineo uniformemente elerto, on l sol differenz he invee di elerzione e veloità si prl di elerzione ngolre e veloità ngolre. dω α & ω dt L'elerzione ngolre è definit ome l rpidità di vrizione dell veloità ngolre. dvt d( ωr) dω tn r dt dt dt rα Prlndo di elerzione ngolre è utile definire nhe l'elerzione tngenzile d non onfondere on l' elerzione entripet r. 8 febbrio 009 PIACENTINO - PEITE (Fisi per Sienze Motorie) 4

5 Le equzioni inemtihe onfronto linere Moto uniformemente elerto v v 0 + t ω ω + αt 0 ngolre x + 1 t 1 t x 0 + v 0 t θ θ ω t + α v v 0 + ( x x0) ω ω α( θ θ ) 8 febbrio 009 PIACENTINO - PEITE (Fisi per Sienze Motorie) 5

6 Un problem di inemti rotzionle θ s P Un punto mterile P si muove lungo un triettori irolre di entro O e rggio seguendo l legge orri: s θ 1 t o Dove 1m/se è l su elerzione tngenzile. Si determini nel punto θ il vlore dell elerzione ngolre ed il modulo dell elerzione omplessiv. rd 8 febbrio 009 PIACENTINO - PEITE (Fisi per Sienze Motorie) 6

7 o θ Un problem di inemti rotzionle s P Dll legge orri si h Si trtt di un moto irolre uniformemente elerto l ui veloità tngenzile è determinbile ome: 1 d t v t s & dt t E quindi l espressione v t dell veloità ngolre è ω v t t 1 t θ quindi l ngolo θ rd srà rggiunto ll istnte t θ pertnto 8 febbrio 009 PIACENTINO - PEITE (Fisi per Sienze Motorie) 7

8 Un problem di inemti rotzionle pertnto il erto vlore di veloità ngolre è ω rd se Per l elerzione totle, bisogn riordre he il moto è irolre ed elerto. E llor l elerzione è l somm vettorile di un elerzione entripet e di un elerzione tngenzile. Quindi r r r n + t t n P Pertnto, per il modulo di, si vrà + t n 8 febbrio 009 PIACENTINO - PEITE (Fisi per Sienze Motorie) 8

9 Un problem di inemti rotzionle A questo punto riordndo he mentre per l omponente entripet d( t) t v& t dt n vt he lolt ll istnte t prim determinto vle si ottiene n + ( ) m se ( t) 8 febbrio 009 PIACENTINO - PEITE (Fisi per Sienze Motorie) 9

Soluzione del problema Un generatore IDEALE

Soluzione del problema Un generatore IDEALE Esmi di Mturità Lieo Sientiio 11 mrzo 15 Soluzione del problem Un genertore IDEALE y A R B L O d Prim di ollegre l resistenz R tr i due poli A e B, nel iruito non irol orrente; l brrett è soggett ll sol

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quinto appello, 3 luglio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quinto appello, 3 luglio 2017 Testi 1 nlisi Mtemti I per Ingegneri Gestionle,.. 6-7 Sritto el quinto ppello, 3 luglio 7 Testi Prim prte, gruppo.. Dire per quli R l funzione f() := sin( 3 ) + 3 è resente su tutto R.. Disporre le seguenti funzioni

Dettagli

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto.

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto. Trigonometri prte esy mtemti Elin pgin TRIANGOLO RETTANGOLO Considerimo i tringoli rettngoli OPQ e OP ' Q A γ C Essi sono simili per ui Q P : QP OP : OP Essendo Q ' P ' QP sin OP OP ottenimo : sen : e

Dettagli

Note sul moto circolare uniforme.

Note sul moto circolare uniforme. Note sul moto circolre uniforme. Muro Sit e-mil: murosit@tisclinet.it Versione proisori, ottobre 2012. Indice 1 Il moto circolre uniforme in sintesi. 1 2 L ide di Hmilton 2 3 Esercizi 5 3.1 Risposte.......................................

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

operazioni con vettori

operazioni con vettori omposizione e somposizione + = operzioni on vettori = + = + Se un vettore può essere dto dll omposizione di due o più vettori, questi vettori omponenti possono essere selti lungo direzioni ortogonli fr

Dettagli

1 Integrali doppi di funzioni a scala su rettangoli

1 Integrali doppi di funzioni a scala su rettangoli INEGRALI DOPPI L prim motivzione per lo studio degli integrli di funzioni di due vribili è il lolo di volumi, in nlogi on l pplizione degli integrli di funzioni di un vribile l lolo di ree. L proedur di

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante Prof.. Di Muro Moto rettilineo uniformemente ccelerto ( m.r.u.. ) Il moto rettilineo uniformemente ccelerto è un moto che iene su un rett con ccelerzione costnte. Dll definizione di ccelerzione t t t t

Dettagli

Moto in due dimensioni

Moto in due dimensioni INGEGNERIA GESTIONALE corso di Fisic Generle Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moto in due dimensioni Spostmento e velocità Posizione e spostmento L posizione di un punto mterile nel pino è

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

U.D.1:ripetizione. U.D.1: piano cartesiano. U.D.2 :La retta. U. D.3 : I sistemi. U.D.1: Le equazioni fratte U.D.1:Disequazioni di primo grado

U.D.1:ripetizione. U.D.1: piano cartesiano. U.D.2 :La retta. U. D.3 : I sistemi. U.D.1: Le equazioni fratte U.D.1:Disequazioni di primo grado U.D.1:ripetizione U.D.1: pino rtesino U.D.2 :L rett U. D.3 : I sistemi U.D.1: Le equzioni frtte U.D.1:Disequzioni di primo grdo Istituzione Solsti MARGHERITA DI SAVOIA Anno Solstio 2014/15 CLASSE II B

Dettagli

4 ; messo in forma = 2. 4 Le tangenti saranno: = x + 8. La circonferenza (Paolo Urbani prima stesura settembre 2002 aggiornamento novembre 2013)

4 ; messo in forma = 2. 4 Le tangenti saranno: = x + 8. La circonferenza (Paolo Urbani prima stesura settembre 2002 aggiornamento novembre 2013) Fsio iproprio di rette prllele r: ipliit risult q r si h: q ; esso in for. onsiderndo he ( ;) q ( q) q e 8 q q q q 6q 6 q ± 6 q 8; q Le tngenti srnno: 8, ; L ironferenz (Polo Urni pri stesur settere ggiornento

Dettagli

La Cinematica Un punto materiale si muove lungo una circonferenza di raggio 20 cm con frequenza di 5,0 Hz.

La Cinematica Un punto materiale si muove lungo una circonferenza di raggio 20 cm con frequenza di 5,0 Hz. Un punto mterile si muove luno un circonferenz di rio cm con frequenz di 5, Hz. Clcolre l velocità tnenzile ed il numero di iri compiuti in s. R L velocità tnenzile l clcolimo ttrverso l su definizione:

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it)

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it) Rooti industrile Motori mgneti permnenti Prof. Polo Roo (polo.roo@polimi.it) Generzione di oppi L legge di Lorentz i die he un ri elettri q in moto on veloità v in un mpo mgnetio di intensità B è soggett

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ellisse. Dre l definizione di ellisse ome luogo di punti. L ellisse è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d due punti fissi

Dettagli

Moto circolare uniformemente accelerato

Moto circolare uniformemente accelerato Moto circolre uniforeente ccelerto el M.C.U.A. il vettore velocità non h più il odulo cotnte, è preente invece un ccelerzione dett ccelerzione tngenzile che i ntiene cotnte. Ripenndo ll circonferenz tglit

Dettagli

COLPO D ARIETE: MANOVRE DI CHIUSURA

COLPO D ARIETE: MANOVRE DI CHIUSURA Università degli studi di Rom Tor Vergt Corso di Idrulic. Prof. P. Smmrco COLPO D ARIETE: MANOVRE DI CHIUSURA Appunti integrtivi l testo E. Mrchi, A. Rubtt - Meccnic dei Fluidi dlle lezioni del prof. P.

Dettagli

Sistemi a Radiofrequenza II. Guide Monomodali

Sistemi a Radiofrequenza II. Guide Monomodali Eserizio. Ordinre le frequenze di tglio dei modi di un guid rettngolre on b, qundo: b / < b < b / Soluzione: L ostnte riti è ugule per modi TE e TM: K Frequenz Criti: f K V f m V n f π b Tglio dei modi:

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

Compitino di Fisica II del 14/6/2006

Compitino di Fisica II del 14/6/2006 Compitino di Fisic II del 14/6/2006 Ingegneri Elettronic Un solenoide ssimilbile d un solenoide infinito è percorso d un corrente I(t) = I 0 +kt con k > 0. Se il solenoide h un lunghezz H, rggio, numero

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

5. Funzioni elementari trascendenti

5. Funzioni elementari trascendenti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 5. Funzioni elementri trscendenti A. A. 2013-2014 1 FUNZIONI ESPONENZIALI Le più semplici funzioni esponenzili sono le funzioni f: R R definite

Dettagli

Geometria. Domande introduttive

Geometria. Domande introduttive PT, 695 noio Geometri si di mtemti per l MPT 3 Tringoli L pdronnz delle rtteristihe e delle proprietà dei tringoli è fondmentle per pire il pitolo dell trigonometri, uno dei pitoli di geometri non trttto

Dettagli

Un carrello del supermercato viene lanciato con velocità iniziale

Un carrello del supermercato viene lanciato con velocità iniziale Esempio 44 Un utomobile procede lungo l utostrd ll velocità costnte di m/s, ed inizi d ccelerre in vnti di m/s.5 proprio nell istnte in cui super un cmion fermo in un re di sost. In quel preciso momento

Dettagli

Soluzione. Studiamo la funzione. Dominio: la funzione è definita in tutto R; Intersezione asse ascisse: ( x)

Soluzione. Studiamo la funzione. Dominio: la funzione è definita in tutto R; Intersezione asse ascisse: ( x) Sessione ordinri LS_ORD Soluzione di De Ros Niol Soluzione Studimo l unzione Dominio: l unzione è deinit in tutto R; ; Intersezione sse sisse: Intersezioni sse delle ordinte: y ; Prità o disprità: l unzione

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit 0) L definizione di equzione di seondo grdo d un inognit 0) L risoluzione delle equzioni di

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccrdo il:rchiucchi@unite.it Medicin Veterinri: CFU 5 (corso

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo:

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo: FUNZIONI MATEMATICHE Le relzioni mtemtihe utilizzte per desrivere fenomeni nturli, in iologi ome in ltre sienze, possono ovvimente essere le più svrite. Per lo più si trtt di equzioni lineri, qudrtihe,

Dettagli

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che, CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un

Dettagli

a b c Triangolo rettangolo In un triangolo rettangolo : un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto al cateto.

a b c Triangolo rettangolo In un triangolo rettangolo : un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto al cateto. Tringolo rettngolo In un tringolo rettngolo : un teto è ugule l prodotto dell ipotenus per il seno dell ngolo opposto l teto. = sen = sen un teto è ugule l prodotto dell ipotenus per il oseno dell ngolo

Dettagli

La luna. di Diego Alberto

La luna. di Diego Alberto L lun di Diego Alberto Un mondo sempre più luntico L ide di fondo è quell di descrivere e vlutre l evoluione dell percentule pprente di Lun illumint giorno per giorno: essendo pprossimbile d un sfer, l

Dettagli

RUOTE DENTATE ELLITTICHE ELLIPTICAL GEARS

RUOTE DENTATE ELLITTICHE ELLIPTICAL GEARS Istituto Tenio Industrile Aldini Vlerini CLASSE 5C MECCANICA A.S. 001/00 Are di progetto: RUOTE DENTATE ELLITTICHE ELLIPTICAL GEARS Istituto Tenio Industrile Aldini Vlerini Bologn Are progetto ruote dentte

Dettagli

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano Geometri nliti +l pino rtesino Le funzioni rett, prol, iperole Le trsformzioni sul pino rtesino SEZ. P +l pino rtesino Osserv le oorinte ei seguenti punti: (, 0), (, ), C(, +), D + +, E(+, 9)., Che os

Dettagli

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: www.selli87.ltervist.org EQUAZIONI DI II GRADO. DEFINIZIONI Si die equzione di seondo grdo nell

Dettagli

Algebra Relazionale. Operazioni nel Modello Relazionale

Algebra Relazionale. Operazioni nel Modello Relazionale lger Relzionle lger Relzionle Operzioni nel Moello Relzionle Le operzioni sulle relzioni possono essere espresse in ue ormlismi i se: lger relzionle: le interrogzioni (query) sono espresse pplino opertori

Dettagli

Liceo Scientifico Statale Leonardo da Vinci Via Possidonea Reggio Calabria Anno Scolastico 2008/2009 Classe III Sezione G

Liceo Scientifico Statale Leonardo da Vinci Via Possidonea Reggio Calabria Anno Scolastico 2008/2009 Classe III Sezione G Liceo Scientifico Sttle Leonrdo d Vinci Vi Possidone 14 8915 Reggio Clbri Anno Scolstico 008/009 Clsse III Sezione G Dirigente scolstico: Preside Prof. ss Vincenzin Mzzuc Professore coordintore del progetto:

Dettagli

Esercitazione Dicembre 2014

Esercitazione Dicembre 2014 Esercitzione 10 17 Dicembre 2014 Esercizio 1 Un economi chius è crtterizzt di seguenti dti: A = 400 M = 250 γ = 1.5 (moltiplictore dell politic fiscle) β = 0.8 moltiplictore dell politic monetri z = 0.25

Dettagli

c β Figura F2.1 Angoli e lati in un triangolo rettangolo.

c β Figura F2.1 Angoli e lati in un triangolo rettangolo. F. Trigonometri F. Risoluzione dei tringoli rettngoli Risolvere un tringolo rettngolo signifi trovre tutti i suoi lti e tutti i suoi ngoli. Un ngolo lo si onose già ed è l ngolo retto. Le inognite sono

Dettagli

1 Integrali Doppi e Cambiamento nell Ordine di Integrazione

1 Integrali Doppi e Cambiamento nell Ordine di Integrazione 1 Integrli Doppi e Cmbimento nell Ordine di Integrzione Introduimo il onetto di Integrle Doppio in modo ssolutmente non rigoroso. Considerimo il seguente gr o y d b x Supponimo di dividere il rettngolo

Dettagli

m kg M. 2.5 kg

m kg M. 2.5 kg 4.1 Due blocchi di mss m = 720 g e M = 2.5 kg sono posti uno sull'ltro e sono in moto sopr un pino orizzontle, scbro. L mssim forz che può essere pplict sul blocco superiore ffinchè i blocchi si muovno

Dettagli

Analisi di stabilità

Analisi di stabilità Anlisi di stilità Stilità intern modi propri degli stti utovlori di A Stilità estern modi propri dell usit poli dell fdt.-. Stilità : se tutti i modi propri rimngono limitti per ogni t. Stilità : se tutti

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

Misura degli archi e degli angoli

Misura degli archi e degli angoli Misur degli rhi e degli ngoli. Si definise ome positivo il verso ntiorrio di perorrenz di un ironferenz; ome negtivo il verso orrio.. Fissto su un ironferenz un punto A ome origine e un punto B ome estremo

Dettagli

N.B.: E consentito, se ritenuto opportuno, mantenere il numero dei bulloni indicato nel disegno e le dimensioni delle squadrette.

N.B.: E consentito, se ritenuto opportuno, mantenere il numero dei bulloni indicato nel disegno e le dimensioni delle squadrette. ESONERO DI TECNICA DELLE COSTRUZIONI DEL 6/0/007 Esercizio n Si dt un trve di cciio HEA 600 sull qule ppoggi, con un vincolo cernier, un trve secondri del tipo IPE. Sull trve secondri è pplicto un crico

Dettagli

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013 Appunti di Algebr Linere Mppe Lineri 0 mggio 203 Indie Ripsso di Teori 2. Cos è un mpp linere.................................. 2.2 Aluni ftti importnti................................... 3 2 Eserizi 4

Dettagli

Calcolo Vettoriale. Fisica I - Lezione 01. Cristiano Guidorzi Dipartimento di Fisica Universitá di Ferrara

Calcolo Vettoriale. Fisica I - Lezione 01. Cristiano Guidorzi Dipartimento di Fisica Universitá di Ferrara Fisic I - Leione 01 Cristino Guidori Diprtimento di Fisic Universitá di Ferrr guidori@fe.infn.it http://www.fe.infn.it/ guidori/ 21 Novembre 2002 Fisic I - A.A. 2002-2003 Leione 01 Definiioni e Notioni

Dettagli

Tiraggio. Moto dei p.d.c.

Tiraggio. Moto dei p.d.c. Uniersità deli studi di Bolon..E.M. irtiento di neneri delle Costruzioni Menihe, Nuleri, eronutihe e di Metlluri irio re. Ott. 008 Moto dei.d.. R ( z z ) 0 Moto inoriibile on sbio terio Cdute di ressione

Dettagli

Unità logico-aritmetica (ALU) Architetture dei Calcolatori (Lettere. Blocchi di base per costruire l ALUl. Passi per costruire l ALUl

Unità logico-aritmetica (ALU) Architetture dei Calcolatori (Lettere. Blocchi di base per costruire l ALUl. Passi per costruire l ALUl Unità logio-ritmeti (ALU) Arhitetture dei Cloltori (Lettere A-I) Unit Logio-Aritmeti (ALU) Prof. Frneso Lo Presti E l prte del proessore he svolge le operzioni ritmetio- logihe Rete omintori Operzioni

Dettagli

APPUNTI DI GEOMETRIA ANALITICA

APPUNTI DI GEOMETRIA ANALITICA Prof. Luigi Ci 1 nno solstio 13-14 PPUNTI DI GEOMETRI NLITIC Rett orientt Un rett r si die orientt qundo: 1. È fissto un punto di riferimento, detto origine;. Dei due possiili versi in ui un punto si può

Dettagli

Strumenti Matematici per la Fisica

Strumenti Matematici per la Fisica Strumenti Mtemtici per l Fisic Strumenti Mtemtici per l Fisic Approssimzioni Notzione scientific (o esponenzile) Ordine di Grndezz Sistem Metrico Decimle Equivlenze Proporzioni e Percentuli Relzioni fr

Dettagli

Esercizio (tratto dal Problema 2.8 del Mazzoldi 2)

Esercizio (tratto dal Problema 2.8 del Mazzoldi 2) 1 Esercizio (tratto dal Problema.8 del Mazzoldi ) Una particella si muove lungo una circonferenza di raggio R 50 cm. Inizialmente parte dalla posizione A (θ 0) con velocità angolare nulla e si muove di

Dettagli

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali Problemi di Fisic Moti unidimensionli Moti nel pino. Moti unidimensionli Problem N. Rppresentre grficmente le seguenti leggi del moto rettilineo uniforme e commentrle: ) S 0 -t ) S 5t 3) S -0 + 3t 4) S

Dettagli

Teorema della Divergenza (di Gauss)

Teorema della Divergenza (di Gauss) eorem dell ivergenz (di Guss) i un dominio tridimensionle regolre, l cui frontier è un superficie chius orientt con cmpo normle unitrionˆ uscente d. e F(,,z) F (,,z) i F (,,z) j F (,,z) k è un cmpo vettorile

Dettagli

Appunti di Matematica Computazionale Lezione 1. Equazioni non lineari. Consideriamo il problema della determinazione delle radici dell equazione

Appunti di Matematica Computazionale Lezione 1. Equazioni non lineari. Consideriamo il problema della determinazione delle radici dell equazione Appunti di Mtemti Computzionle Lezione Equzioni non lineri Considerimo il prolem dell determinzione delle rdii dell equzione dove è un funzione definit in [,]. Teorem: Zeri di unzioni Continue Si un funzione

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

FUNZIONI SENO & COSENO TANGENTE & COTANGENTE

FUNZIONI SENO & COSENO TANGENTE & COTANGENTE FUNZINI SEN & SEN TNGENTE & TNGENTE DEFINIZINE DI SEN E SEN onsiderndo l ngolo =, trimo un erhio di rggio qulunque R = = e on entro sul vertie dell ngolo. Le intersezioni del erhio on le semirette dell

Dettagli

Geometria solida Rette e piani nello spazio + poliedri + solidi di rotazione

Geometria solida Rette e piani nello spazio + poliedri + solidi di rotazione Geometri solid ette e pini nello spzio + poliedri + solidi di rotzione ette e pini nello spzio tilisi se le seguenti ffermzioni sono vere o flse. EZ. d e e tre rette nello spzio sono tr loro prllele, llor

Dettagli

Circonferenza e cerchio La circonferenza e il cerchio Poligoni inscritti e circoscritti a una circonferenza

Circonferenza e cerchio La circonferenza e il cerchio Poligoni inscritti e circoscritti a una circonferenza ironferenz e erhio L ironferenz e il erhio Poligoni insritti e irosritti un ironferenz L ironferenz e il erhio Stilisi se le seguenti ffermzioni sono vere o flse. SEZ. M e f g h Il rpporto tr l lunghezz

Dettagli

Unità logico-aritmetica (ALU) Unità logico-aritmetica. Passi per costruire l ALU. Blocchi di base per costruire l ALU

Unità logico-aritmetica (ALU) Unità logico-aritmetica. Passi per costruire l ALU. Blocchi di base per costruire l ALU Unità logio-ritmeti (ALU) Unità logio-ritmeti Arhitetture dei Cloltori (lettere A-I) E l prte del proessore he svolge le operzioni ritmetio-logihe Potenz di lolo del proessore Insieme di iruiti omintori

Dettagli

a > 1 y = 1 x = 1 La funzione esponenziale La funzione y = a x è chiamata funzione esponenziale di x dove a è la base della funzione.

a > 1 y = 1 x = 1 La funzione esponenziale La funzione y = a x è chiamata funzione esponenziale di x dove a è la base della funzione. L funzione esponenzile L funzione = è chimt funzione esponenzile di dove è l bse dell funzione. > 0; Condizioni di vlidità: < < ; > 0 Se > l funzione è monoton crescente > = = = o L funzione esponenzile

Dettagli

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO)

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO) Le equzioni di seondo grdo Appunti delle lezioni di Armndo Pisni A.S. 3- Lieo Clssio Dnte Alighieri (GO) Not Questi ppunti sono d intendere ome guid llo studio e ome rissunto di qunto illustrto durnte

Dettagli

HFKN. Il sistema a cremagliere. Tecnologia di punta:

HFKN. Il sistema a cremagliere. Tecnologia di punta: Tenologi di punt: Il sistem remgliere FK File ingrssggio nhe su mhine vertili grzie i 3 ingrsstori montti rdilmente Grnde foro entrle per un utilizzo ompleto del pssggio rr dell mhin Il rendimento elevto

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Prim Suol..........................................................................................................................................

Dettagli

Lezioni sull analisi di gusci sottili assialsimmetrici

Lezioni sull analisi di gusci sottili assialsimmetrici Lezioni sull nlisi di gusi sottili ssilsimmetrii Gusi sottili: ori bidimensionli l ui suerfiie medi non è in m si svilu nello szio, on rihi liti si gienti sul ino medio he ortogonli d esso. 1/ Corso di

Dettagli

d coulomb d volt b trasformatore d alternatore b amperometro d reostato

d coulomb d volt b trasformatore d alternatore b amperometro d reostato ppunti 7 TEST DI VERIFICA 1 Unità i misur ell ri elettri: henry weer volt oulom 2 Unità i misur ell pità elettri: oulom henry fr volt 3 Gener orrente lternt: umultore resistenz 4 Misur l tensione: resistometro

Dettagli

MATEMATIKA OLASZ NYELVEN

MATEMATIKA OLASZ NYELVEN Mtemtik olsz nyelven középszint 061 É RETTSÉGI VIZSGA 007. október 5. MATEMATIKA OLASZ NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Indiczioni

Dettagli

Integrali impropri ( ) f x dx. c f x dx. Nel primo caso diciamo che l integrale improprio (o integrale generalizzato)

Integrali impropri ( ) f x dx. c f x dx. Nel primo caso diciamo che l integrale improprio (o integrale generalizzato) Integrli impropri. Introduzione Abbimo introdotto il onetto di integrle onsiderndo unzioni ontinue (o ontinue trtti) in un intervllo limitto. Quest restrizione viene or rimoss onsiderndo dpprim unzioni

Dettagli

Grafici elementari 1 - geometria analitica

Grafici elementari 1 - geometria analitica Grfii elementri - geometri nliti Un equzione rppresent un funzione se è possiile metterl in form espliit (rivre l y) ottenendo un sol espressione. Un urv rppresent un funzione se, preso un qulsisi punto

Dettagli

Angolo polare, versori radiale e trasverso

Angolo polare, versori radiale e trasverso Angolo polare, versori radiale e trasverso Desideriamo descrivere il moto di un corpo puntiforme che ruota su una circonferenza attorno ad un asse fisso. Nella figura l asse di rotazione coincide con l

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

3. Modellistica dei sistemi dinamici a tempo continuo

3. Modellistica dei sistemi dinamici a tempo continuo Fondenti di Autotic 3. Modellistic dei sistei dinici tepo continuo Esercizio 1 (es. 10 del Te d ese del 18-9-2002) Si consideri il siste dinico elettrico riportto in figur, i cui coponenti ssuono i seguenti

Dettagli

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1 Prolemi e rppresentzione di prolemi di geometri dello spzio - ludio ered ferio 00 pg. onvenzioni di disegno e di rppresentzione Nel corso dell trttzione si dotternno le seguenti convenzioni simoliche:

Dettagli

Corso di Laurea in Fisica Anno Accademico

Corso di Laurea in Fisica Anno Accademico Corso di Lure in Fisic Anno Accdemico 203-204 Compito di Fisic 2 (09/04/204) Un corrente superficile j = jẑ scorre lungo uno strto cilindrico di lunghe infinit, spessore trscurbile e rggio. L intensità

Dettagli

C A 10 [HA] C 0 > 100 K

C A 10 [HA] C 0 > 100 K Soluzioni Tmpone Le soluzioni tmpone sono soluzioni in cui sono presenti un cido debole e l su bse coniugt sotto form di sle molto solubile. Hnno l crtteristic di mntenere il ph qusi costnte nche se d

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Anlisi e Geometri Esercizi sugli integrli Integrli propri. Clcolre i seguenti integrli immediti: I = I = I 5 = ln e e d I = e + e + 6e + e d I = rtg ln ( + ln ) d I 6 = e e + d d rtg + ( + ) ( + ( + )

Dettagli

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α Trigonometri I In quest prim prte dell trigonometri denimo le funzioni trigonometriche seno, coseno e tngente e le loro funzioni inverse. Vedremo nche come utilizzrle nell risoluzione dei tringoli. Comincimo

Dettagli

31. L IPERBOLE NEL PIANO CARTESIANO

31. L IPERBOLE NEL PIANO CARTESIANO 31. L IPERBOLE NEL PIANO CARTESIANO DEFINIZIONE DI IPERBOLE 11 Si die iperole il luogo dei punti del pino per i quli è ostnte l differenz delle distnze d due punti fissi, detti fuohi : PF PF = ostnte 1

Dettagli

Un classico modello dinamico dell interazione tra domanda e offerta è

Un classico modello dinamico dell interazione tra domanda e offerta è Appendice A Alcuni modelli per l ingegneri gestionle A.1 Il modello rgntel Un clssico modello dinmico dell interzione tr domnd e offert è descitto d un equzione lle differenze del primo ordine. Il funzionmento

Dettagli

POTENZA 2 5 =2*2*2*2*2 PROPRIETA PRODOTTO DI POTENZE DI UGUALE BASE 3 2 *3 7 =3 2+7 =3 9 ANGOLO ANGOLI CLASSIFICAZIONI. 2 è la BASE 5 è l ESPONENTE

POTENZA 2 5 =2*2*2*2*2 PROPRIETA PRODOTTO DI POTENZE DI UGUALE BASE 3 2 *3 7 =3 2+7 =3 9 ANGOLO ANGOLI CLASSIFICAZIONI. 2 è la BASE 5 è l ESPONENTE POTENZ 2 5 =2*2*2*2*2 2 è la SE 5 è l ESPONENTE PROPRIET PRODOTTO DI POTENZE DI UGULE SE 3 2 *3 7 =3 2+7 =3 9 QUOZIENTE DI POTENZE DI UGULE SE 3 12 :3 7 =3 12-7 =3 5 POTENZ DI POTENZ (3 2 ) 7 =3 2*7 =3

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe terza. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe terza. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse terz Suol..........................................................................................................................................

Dettagli

rispetto alla direzione iniziale. Ricordando i valori della carica e della massa dell elettrone, e = C e m e = kg, si calcoli:

rispetto alla direzione iniziale. Ricordando i valori della carica e della massa dell elettrone, e = C e m e = kg, si calcoli: Esme scritto di Elettromgnetismo del 15 Luglio 2011 -.. 2010-2011 proff. S. Gigu, F. Lcv, F. Ricci Elettromgnetismo 10 o 12 crediti: esercizi 1,3,4 tempo 3 h e 30 min; Elettromgnetismo 5 crediti: esercizio

Dettagli

Capitolo 6. Integrali. Dal Coroll. 1 di Cap. 5.1 segue che g 1

Capitolo 6. Integrali. Dal Coroll. 1 di Cap. 5.1 segue che g 1 Cpitolo 6 Integrli 6.. Primitive di un funzione ontinu Si = f() un funzione ontinu definit su un intervllo I. Chimeremo primitiv di f ogni funzione = g() ontinu su I e derivile internmente d I, tle he

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE

PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE Nel pino di lvoro sono indicte con i numeri d 1 5 le competenze di bse che ciscun unit' didttic concorre sviluppre, secondo l legend riportt di seguito.

Dettagli

I vettori. Grandezze scalari e grandezze vettoriali

I vettori. Grandezze scalari e grandezze vettoriali I vetto Gndee sl e gndee vettol Vettoe: ente mtemto tteto d te qunttà modulo deone veso I vetto sono pplt n un punto (esste un numeo nfnto d vetto equpollent, oé on modulo, deone e veso ugul, m pplt n

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico Second prov mturit 06 soluzione secondo problem di mtemtic scientifico Skuol.net June, 06 Primo Problem Le tre funzioni proposte sono f () ( ) k f () 6 + 9k + f () cos( π k ). Punto Affinche l funzione

Dettagli

Il problema delle scorte tomo G

Il problema delle scorte tomo G Il prolem delle scorte tomo G Esercizi corretti: esercizio pg 6; esercizio 3 pg. 59 N. 5 PAG 389; N. 6 PAG. 389; N. 7 PAG 389; N. 8 PAG. 389; N 9 PAG. 390; N. 30 pg 390, N. 3 pg. 390, N. 33 pg. 390. Per

Dettagli