Metodi iterativi per sistemi lineari

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Metodi iterativi per sistemi lineari"

Transcript

1 Generare una successione di vettori Metodi iterativi per sistemi lineari convergente alla soluzione del sistema Convergenza in norma Costruzione di un metodo iterativo Per una qualche norma vettoriale Si dimostra che si ha convergenza in norma se e solo se si ha convergenza per componenti. Se M è non singolare si ha il sistema equivalente 1

2 Relazione di ricorrenza Analisi di convergenza Se è la soluzione del sistema allora Cercare condizioni su G ( su M) per avere convergenza alla soluzione Errore di troncamento al passo k A partire da un qualunque Residuo al passo k Si ha convergenza quando Si dimostra che è verificata se e solo se dove Condizione sufficiente Raggio spettrale 2

3 Criteri d arresto Si deve stabilire un criterio soddisfatto il quale si può arrestare il procedimento ottenendo un approssimazione della soluzione di sufficiente accuratezza. Il criterio ideale sarebbe Si osserva che Criteri d arresto per un valore piccolo di ma la soluzione esatta non è nota. Criteri d arresto Criteri d arresto Vale la relazione Se piccolo. è piccola e anche è piccola, allora l errore è se la matrice A non è troppo malcondizionata si può usare il seguente criterio d arresto 3

4 Formula generale di un metodo iterativo Metodi di decomposizione Cercare una decomposizione di A La scelta ideale per M sarebbe Ovviamente non è una scelta pratica Scegliere M che assomigli ad A ma abbia una struttura che permetta di calcolarne facilmente l inversa Si sceglie la matrice M nonsingolare come un pezzo di A di cui sia facile calcolare l inversa. Decomposizione di A Metodo di Jacobi (in forma matriciale) Matrice di Jacobi 4

5 Metodo di Jacobi (per componenti) Esempio Interpretazione geometrica 5

6 Metodo di Gauss-Seidel (in forma matriciale) Metodo di Gauss-Seidel (per componenti) Occorre risolvere un sistema triangolare inferiore ad ogni passo Matrice di Gauss-Seidel Algoritmo di sostituzione in avanti Esempio 6

7 Interpretazione geometrica Osservazione Fallimento dei metodi. (Es. Gauss- Seidel Trovare condizioni su A tali da garantire la convergenza dei metodi Condizioni sufficienti per la convergenza A strettamente diagonale dominante per righe o per colonne. A irriducibilmente diagonale dominante per righe o per colonne. Definizione Grafo associato ad una matrice di ordine n: è costituitito da n nodi e da archi orientati che collegano il nodo i al nodo j se Esempio

8 Definizioni Un grafo orientato si dice strettamente connesso se per ogni i, j esiste un cammino orientato (successione di archi consecutivi) che li connette. Una matrice A si dice irriducibile se il grafo associato ad A è strettamente connesso. Esempi 1 2 Partendo dal nodo 2 non si riesce ad arrivare al nodo 1: la matrice è riducibile Tutti i nodi sono connessi: la matrice è irriducibile. Definizione Una matrice A si dice irriducibilmente diagonale dominante per righe o per colonne se è irriducibile e diagonale dominante con almeno una riga o una colonna per cui vale la disuguaglianza in senso stretto. Esempio E irriducibile e diagonale dominante con la disuguaglianza in senso stretto per la seconda riga. E irriducibilmente diagonale dominante Proprietà Per le matrici irriducibilmente diagonali dominanti i metodi di Jacobi e Gauss- Seidel convergono. Se una matrice è irriducibilmente diagonale dominante, allora è non singolare. Esistono versioni accelerate del metodo di Gauss-Seidel che dipendono da un parametro Metodo SOR (Successive Over Relaxation) 8

9 Osservazioni generali La complessità di un metodo iterativo è di un prodotto matricevettore per ogni passo. La convergenza può essere lenta. Si usano quando non è richiesta molta accuratezza nella soluzione (p. es. metodi inesatti). Conclusioni I metodi diretti comportano solo prodotti matrice-vettore. Sono convenienti quando La matrice è sparsa o ha una struttura che potrebbe venire distrutta da una fattorizzazione La matrice è densa e di grandi dimensioni e non è disponibile esplicitamente in memoria ma è nota come operatore per i prodotti matricevettore 9

Osservazione. Convergenza dei metodi di Gauss-Seidel e di Jacobi. Condizioni sufficienti per la convergenza. Definizione

Osservazione. Convergenza dei metodi di Gauss-Seidel e di Jacobi. Condizioni sufficienti per la convergenza. Definizione Osservazione Convergenza dei metodi di Gauss-Seidel e di Jacobi Fallimento dei metodi. (Es. Gauss- Seidel Condizioni sufficienti; teoremi di localizzazione degli autovalori; dimostrazione di convergenza

Dettagli

8 Metodi iterativi per la risoluzione di sistemi lineari

8 Metodi iterativi per la risoluzione di sistemi lineari 8 Metodi iterativi per la risoluzione di sistemi lineari È dato il sistema lineare Ax = b con A R n n e x, b R n, con deta 0 Si vogliono individuare dei metodi per determinarne su calcolatore la soluzione,

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

Motivazioni. Sistemi lineari. Obiettivo. Il problema

Motivazioni. Sistemi lineari. Obiettivo. Il problema Motivazioni Sistemi lineari Metodo di eliminazione di Gauss Molti problemi si possono rappresentare mediante un sistema lineare La soluzione di un sistema lineare costituisce un sottoproblema di moltissime

Dettagli

Motivazione: Come si fa? Matrici simmetriche. Fattorizzazioni di matrici speciali

Motivazione: Come si fa? Matrici simmetriche. Fattorizzazioni di matrici speciali Motivazione: Fattorizzazioni di matrici speciali Diminuire la complessità computazionale = evitare operazioni inutili = risparmiare tempo di calcolo Diminuire l occupazione di memoria Come si fa? Si tiene

Dettagli

1. Martedì 27/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Martedì 27/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Chimica e Meccanica 6 CFU - A.A. 2016/2017 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 15 dicembre 2016 1. Martedì 27/09/2016,

Dettagli

Un sistema lineare si rappresenta in generale come

Un sistema lineare si rappresenta in generale come SISTEMI LINEARI Un sistema lineare si rappresenta in generale come n j=1 a ij x j = b i i = 1, 2,..., m o anche AX = B. La soluzione esiste se e solo se B appartiene allo spazio lineare generato dalle

Dettagli

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A =

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A = Esercitazione di Calcolo Numerico 1 27 Maggio 29 1. Calcolare la fattorizzazione P A = LU della matrice 1 2 3 A = 2 3 3, ed utilizzarla per risolvere il sistema lineare Ax = b, con b = (1, 2,, 16) T. 2.

Dettagli

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Nota Bene: Gli esercizi di questa raccolta sono solo degli esempi. Non sono stati svolti né verificati e servono unicamente da spunto

Dettagli

Metodi iterativi SISTEMI LINEARI. Metodi Iterativi. Metodo di rilassamento successivo e metodi del gradiente

Metodi iterativi SISTEMI LINEARI. Metodi Iterativi. Metodo di rilassamento successivo e metodi del gradiente Metodi iterativi Metodo di rilassamento successivo e metodi del gradiente Metodi iterativi Metodi iterativi 1 Il metodo di rilassamento successivo Condizioni per la convergenza 2 Metodi del Metodo della

Dettagli

NORMA DI UN VETTORE. Una NORMA VETTORIALE su R n è una funzione. : R n R +

NORMA DI UN VETTORE. Una NORMA VETTORIALE su R n è una funzione. : R n R + NORMA DI UN VETTORE Una NORMA VETTORIALE su R n è una funzione. : R n R + {0}, che associa ad ogni vettore x R n di componenti x i, i = 1,..., n, uno scalare in modo che valgano le seguenti proprietà:

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

Metodi iterativi per sistemi lineari

Metodi iterativi per sistemi lineari Metodi iterativi per sistemi lineari Mirano a costruire la soluzione x di un sistema lineare come limite di una successione di vettori Per matrici piene di ordine n il costo computazionale è dell ordine

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 Sia data la matrice A A(α) = Esercizio α 2 2α 2 2, α R.) determinare per quali valori del parametro reale α é verificata la condizione necessaria e sufficiente di convergenza per il metodo di Jacobi;.2)

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari 4 maggio Nota: gli esercizi più impegnativi sono contrassegnati dal simbolo ( ) Esercizio Siano 3 6 8 6 4 3 3 ) determinare

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 8 - METODI ITERATIVI PER I SISTEMI LINEARI Norme Una norma in R n è una funzione. : R n R tale che x 0 x R n ; x = 0 x = 0; αx = α x ; x

Dettagli

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di Problema Cercare la soluzione di Equazioni non lineari dove Se è soluzione dell equazione, cioè allora si dice RADICE o ZERO della funzione Metodo grafico Graficamente si tratta di individuare l intersezione

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Studi in Matematica- A.A Corso di ANALISI NUMERICA 1: Esempi di esercizi svolti

Facoltà di Scienze MM.FF.NN. Corso di Studi in Matematica- A.A Corso di ANALISI NUMERICA 1: Esempi di esercizi svolti Facoltà di Scienze MM.FF.NN. Corso di Studi in Matematica- A.A. - Corso di ANALISI NUMERICA : Esempi di esercizi svolti ) Determinare se il problema del calcolo delle radici reali dell equazione x x+c

Dettagli

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare:

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare: Esercizi sui metodi diretti per la risoluzione di sistemi lineari 1. Data la matrice 1 0 2 1 3 1 5 2 1 determinare la sua fattorizzazione P LR. Risolvere il sistema Ax = b con b = (3, 5, 6) T mediante

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 L esame consiste di 4 domande aperte e 10 esercizi a risposta multipla. Per gli esercizi ci sono

Dettagli

Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A =

Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A = Esercitazione di Calcolo Numerico 22 Aprile 29. Determinare la fattorizzazione LU della matrice a A = 3a 2 a 2a a a 2 ed utilizzarla per calcolare il det(a). 2. Calcolare il determinante della matrice

Dettagli

1 Il polinomio minimo.

1 Il polinomio minimo. Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene

Dettagli

Matrici di permutazione

Matrici di permutazione Matrici di permutazione Si dice matrice di permutazione elementare una matrice ottenuta dall identità scambiando due righe i e j o due colonne i e j. P ij =...... P ij ha come effetto di scambiare le righe

Dettagli

Metodi computazionali per i Minimi Quadrati

Metodi computazionali per i Minimi Quadrati Metodi computazionali per i Minimi Quadrati Come introdotto in precedenza si considera la matrice. A causa di mal condizionamenti ed errori di inversione, si possono avere casi in cui il e quindi S sarebbe

Dettagli

Esercitazione 6: Metodi iterativi per sistemi lineari.

Esercitazione 6: Metodi iterativi per sistemi lineari. Esercitazione 6: Metodi iterativi per sistemi lineari. Richiami di Teoria Iterazione di Jacobi e Gauss Seidel. I metodi iterativi sono basati sul calcolo della soluzione x del sistema lineare Ax = b come

Dettagli

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A. 5-6 Corso di CALCOLO NUMERICO / ANALISI NUMERICA : Esempi di esercizi svolti in aula 5//5 ) Dato un triangolo, siano a, b le lunghezze di

Dettagli

Progetto Matlab N 2. Calcolo Numerico 6 CFU. Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014

Progetto Matlab N 2. Calcolo Numerico 6 CFU. Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014 Progetto Matlab N 2 Calcolo Numerico 6 CFU Corso di Laurea in Ingegneria delle Comunicazioni 31/05/2014 Procedimento 1. Scrivere una function che implementi il prodotto matrice-vettore AX con A matrice

Dettagli

Esercizi svolti. delle matrici

Esercizi svolti. delle matrici Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa

Dettagli

Autovalori e autovettori

Autovalori e autovettori Capitolo 3 Autovalori e autovettori 3. Richiami di teoria Prerequisiti: nozioni elementari di algebra lineare, numeri complessi. Sia A R n n. Un numero λ per cui esiste un vettore x 0 tale che valga la

Dettagli

RICHIAMI PER IL CORSO DI ANALISI NUMERICA

RICHIAMI PER IL CORSO DI ANALISI NUMERICA RICHIAMI PER IL CORSO DI ANALISI NUMERICA Anno accademico 211 212 1 RICHIAMI: PRECISIONE FINITA (USO DI UN COMPUTER) IN UN COMPUTER UNA QUALUNQUE INFORMAZIONE VIENE RAPPRESENTATA COME UNA SEQUENZA FINITA

Dettagli

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007 ESERCIZI DI MATEMATICA DISCRETA ANNO 6/7 //7 () Ridurre la seguente matrice ad una a scala ridotta utilizzando il metodo di Gauss-Jordan. Soluzione. () Determinare quante e quali sono le matrici a scala

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

Gestione della produzione e della supply chain Logistica distributiva

Gestione della produzione e della supply chain Logistica distributiva Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Convergenza dell algoritmo Se non

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

Esercitazione 5: Sistemi a risoluzione immediata.

Esercitazione 5: Sistemi a risoluzione immediata. Esercitazione 5: Sistemi a risoluzione immediata. Ipotesi: Supponiamo le matrici non singolari. Nota: Per verificare che si ha risolto correttamente il sistema lineare Ax = b basta calcolare la norma del

Dettagli

Applicazioni eliminazione di Gauss

Applicazioni eliminazione di Gauss Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare

Dettagli

APPUNTI DI MODELLI NUMERICI PER I CAMPI

APPUNTI DI MODELLI NUMERICI PER I CAMPI APPUNTI DI MODELLI NUMERICI PER I CAMPI Giovanni Miano UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II POLO DELLE SCIENZE E DELLE TECNOLOGIE FACOLTÀ DI INGEGNERIA Indice 1. Richiami sui problemi di campo

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sui metodi per la soluzione di sistemi di equazioni non lineari Sistemi di equazioni non lineari Un sistema di equazioni

Dettagli

Ripasso di Calcolo Scientifico: Giulio Del Corso

Ripasso di Calcolo Scientifico: Giulio Del Corso Ripasso di Calcolo Scientifico: Giulio Del Corso Queste dispense sono tratte dalle lezioni del Prof. Gemignani e del Prof. Bini del corso di Calcolo Scientifico (2014/2015) dell università di Pisa. Non

Dettagli

Esercitazione 4: Vettori e Matrici

Esercitazione 4: Vettori e Matrici Esercitazione 4: Vettori e Matrici Richiami di teoria: Norme di vettore Principali norme di vettore:. x = n i= x i 2. x 2 = n i= x i 2 3. x = max i n x i Ad esempio dato il vettore x = (, 2, 3, 4) abbiamo.

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Autovalori ed Autovettori di una matrice Siano Se A = (a i,j ) i,j=1,...,n R n n, 0 x = (x i ) i=1,...,n R n λ R Ax = λx (1) allora λ è detto autovalore di

Dettagli

Inversa di una matrice

Inversa di una matrice Geometria Lingotto. LeLing: La matrice inversa. Ārgomenti svolti: Inversa di una matrice. Unicita e calcolo della inversa. La inversa di una matrice. Il gruppo delle matrici invertibili. Ēsercizi consigliati:

Dettagli

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m LEZIONE 4 41 Equazioni matriciali Negli Esempi 336 e 337 si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = B 2,, AX p = B p aventi la stessa matrice incompleta A Tale tipo di problema si presenta

Dettagli

Metodi numerici per la risoluzione di Sistemi Lineari

Metodi numerici per la risoluzione di Sistemi Lineari Metodi numerici per la risoluzione di Sistemi Lineari Dipartimento di Matematica tel. 011 0907503 stefano.berrone@polito.it http://calvino.polito.it/~sberrone Laboratorio di modellazione e progettazione

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

Autovalori ed autovettori di una matrice

Autovalori ed autovettori di una matrice Autovalori ed autovettori di una matrice Lucia Gastaldi DICATAM http://www.ing.unibs.it/gastaldi/ Indice 1 Definizioni di autovalori ed autovettori Autovalori ed autovettori 2 Metodo delle potenze 3 Calcolo

Dettagli

Capitolo 1. Esercizi a.a Esercizi. Esercizio 1.1 Dimostrare che il metodo iterativo

Capitolo 1. Esercizi a.a Esercizi. Esercizio 1.1 Dimostrare che il metodo iterativo Capitolo Esercizi a.a. 206-7 Esercizi Esercizio. Dimostrare che il metodo iterativo x k+ = Φ(x k ), k = 0,,..., se convergente a x, deve verificare la condizione di consistenza x = Φ(x ). Ovvero, la soluzione

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

A.A Prof. R. Morandi

A.A Prof. R. Morandi Svolgimento di alcuni esercizi del corso di Calcolo Numerico A.A. - Prof. R. Morandi Versione in aggiornamento ( gennaio ): ogni segnalazione di imprecisioni è gradita Aritmetica Finita Esercizio : Assegnati

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Introduzione ai grafi

Introduzione ai grafi TFA A048 Anno Accademico 2012-13 Outline Cenni storici sui grafi Nozioni introduttive: cammini, connessione, alberi, cicli Cammini di costo minimo Origini storiche La nascita della teoria dei grafi risale

Dettagli

Matrici elementari e fattorizzazioni

Matrici elementari e fattorizzazioni Matrici elementari e fattorizzazioni Dario A Bini, Università di Pisa 19 ottobre 2015 Sommario Questo modulo didattico introduce ed analizza la classe delle matrici elementari Tale classe verrà usata per

Dettagli

Università Politecnica delle Marche - Facoltà di Ingegneria Ing. Informatica e Automatica - Ing. Logistica e Produzione

Università Politecnica delle Marche - Facoltà di Ingegneria Ing. Informatica e Automatica - Ing. Logistica e Produzione ANALISI NUMERICA - Primo Parziale - TEMA A PARTE I. Si chiede allo studente di trattare i seguenti argomenti nel modo più completo possibile. 1. Propagazione degli errori nel caso di operazioni elementari

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI 1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito

Dettagli

3x 2 = 6. 3x 2 x 3 = 6

3x 2 = 6. 3x 2 x 3 = 6 Facoltà di Scienze Statistiche, Algebra Lineare 1 A, GParmeggiani LEZIONE 7 Sistemi lineari Scrittura matriciale di un sistema lineare Def 1 Un sistema di m equazioni ed n incognite x 1, x 2, x n, si dice

Dettagli

3.6 Metodi basati sui piani di taglio

3.6 Metodi basati sui piani di taglio 3.6 Metodi basati sui piani di taglio Problema generale di Programmazione Lineare Intera (PLI) con A matrice m n e b vettore n 1 razionali min{ c t x : x X = {x Z n + : Ax b} } Sappiamo che esiste una

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

Corso di Analisi Numerica - AN1. Parte 3: metodi iterativi per sistemi lineari ed. equazioni nonlineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 3: metodi iterativi per sistemi lineari ed. equazioni nonlineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 3: metodi iterativi per sistemi lineari ed equazioni nonlineari Roberto Ferretti Filosofia generale dei metodi iterativi Metodi iterativi per Sistemi Lineari Convergenza

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa Esercizi sul problema dell assegnamento Richiami di Teoria Ricordiamo che, dato un grafo G=(N,A),

Dettagli

1 Definizione di sistema lineare omogeneo.

1 Definizione di sistema lineare omogeneo. Geometria Lingotto. LeLing1: Sistemi lineari omogenei. Ārgomenti svolti: Definizione di sistema lineare omogeneo. La matrice associata. Concetto di soluzione. Sistemi equivalenti. Operazioni elementari

Dettagli

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni ANALISI NUMERICA - Primo Parziale - TEMA A (Prof. A.M.Perdon)

Dettagli

Matematica Discreta e Algebra Lineare (per Informatica)

Matematica Discreta e Algebra Lineare (per Informatica) Matematica Discreta e Algebra Lineare (per Informatica) Docente: Alessandro Berarducci Anno accademico 2016-2017, versione 14 Marzo 2017 Tipiche domande d esame La seguente lista di domande non intende

Dettagli

Calcolo Numerico per Ingegneria. Corso estivo di Bressanone. Prof. L. Bergamaschi SOLUZIONE DELLA PROVA SCRITTA del

Calcolo Numerico per Ingegneria. Corso estivo di Bressanone. Prof. L. Bergamaschi SOLUZIONE DELLA PROVA SCRITTA del Calcolo Numerico per Ingegneria. Corso estivo di Bressanone. Prof. L. Bergamaschi SOLUZIONE DELLA PROVA SCRITTA del 9.8.2. Data l equazione x x = (a) Mostrare che essa ammette una e una sola soluzione

Dettagli

Prendiamo in considerazione la matrice tridiagonale

Prendiamo in considerazione la matrice tridiagonale Questi esercizi sono il completamento di quelli sui sistemi lineari già a disposizione. Ogni esercizio proposto può fare riferimento a qualcuno di questi. In ogni caso sono riportati tutti i dati essenziali

Dettagli

Quale delle seguenti rappresentazioni del numero reale è in virgola mobile normalizzata?

Quale delle seguenti rappresentazioni del numero reale è in virgola mobile normalizzata? Quale delle seguenti istruzioni MATLAB esegue il calcolo del raggio spettrale di una matrice quadrata A? a. max(eig(abs(a))) b. max(abs(eig(a))) c. abs(max(eig(a))) d. max(abs(eig(a *A))) Il raggio spettrale

Dettagli

Applicazione della TSVD allo studio di una colonna di distillazione

Applicazione della TSVD allo studio di una colonna di distillazione UNIVERSITÀ DEGLI STUDI DI CAGLIARI SCUOLA DI DOTTORATO IN INGEGNERIA INDUSTRIALE Tesina di Metodi Iterativi per la Risoluzione di Sistemi Lineari e Non Lineari Applicazione della TSVD allo studio di una

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

Modelli Matematici e Calcolo Numerico

Modelli Matematici e Calcolo Numerico Modelli Matematici e Calcolo Numerico Calcolo Numerico Massimiliano Martinelli martinelli@imati.cnr.it Università di Pavia Facoltà di Ingegneria 20-27 Ottobre 2011 Introduzione La matrice del sistema non

Dettagli

Problemi, istanze, soluzioni

Problemi, istanze, soluzioni lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 7 - CALCOLO NUMERICO CON MATRICI Richiami teorici Operazioni fondamentali Siano A = {a ij } e B = {b ij }, i = 1,..., m, j = 1,..., n due

Dettagli

Decomposizione LU di una matrice quadrata

Decomposizione LU di una matrice quadrata Appendice al Cap. 5 Decomposizione LU di una matrice quadrata Una qualunque matrice quadrata M = {m ij } di ordine N, reale, invertibile, i cui minori principali siano tutti non nulli, si può sempre decomporre

Dettagli

Sistemi lineari. Lucia Gastaldi. DICATAM - Sez. di Matematica,

Sistemi lineari. Lucia Gastaldi. DICATAM - Sez. di Matematica, Sistemi lineari Lucia Gastaldi DICATAM - Sez. di Matematica, http://www.ing.unibs.it/gastaldi/ Indice 1 Risoluzione di sistemi lineari Risoluzione di sistemi lineari in Matlab Metodi di risoluzione Fattorizzazione

Dettagli

LeLing9: Prodotto tra matrici.

LeLing9: Prodotto tra matrici. Geometria Lingotto LeLing9: Prodotto tra matrici Ārgomenti svolti: Prodotto tra matrici Dimostrazione del teorema del rango L algebra delle matrici quadrate: Il prodotto tra matrici non e commutativo Rotazioni

Dettagli

1 Il metodo dei tagli di Gomory

1 Il metodo dei tagli di Gomory Il metodo dei tagli di Gomory Esercizio Sia dato il problema min(x x ) x + x (P 0 ) x + x x, x 0, interi. Calcolare la soluzione ottima applicando il metodo dei tagli di Gomory. Risoluzione Per applicare

Dettagli

1. Un sistema di m equazioni lineari in n incognite x 1,... x n aventi tutte termine noto nullo A =...

1. Un sistema di m equazioni lineari in n incognite x 1,... x n aventi tutte termine noto nullo A =... Algebra/ Algebra Lineare, 230207 1 Un sistema di m equazioni lineari in n incognite x 1, x n aventi tutte termine noto nullo a i1 x 1 + a i2 x 2 + + a in x n = 0, i = 1,, m si dice omogeneo; ponendo x

Dettagli

A.A. 2014/2015 Corso di Algebra Lineare

A.A. 2014/2015 Corso di Algebra Lineare A.A. 2014/2015 Corso di Algebra Lineare Stampato integrale delle lezioni Massimo Gobbino Indice Lezione 01: Vettori geometrici nel piano cartesiano. Operazioni tra vettori: somma, prodotto per un numero,

Dettagli

Matematica II,

Matematica II, Matematica II 181111 1 Matrici a scala Data una riga R = [a 1 a 2 a n ] di numeri reali non tutti nulli il primo elemento non nullo di R si dice pivot di R Cosi il pivot di R compare come j mo elemento

Dettagli

Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Il Metodo di Newton, o delle Tangenti 6 Novembre 2016 Indice 1 Metodo di Newton, o delle tangenti 2 1.1

Dettagli

Anno 4 Matrice inversa

Anno 4 Matrice inversa Anno 4 Matrice inversa 1 Introduzione In questa lezione parleremo della matrice inversa di una matrice quadrata: definizione metodo per individuarla Al termine della lezione sarai in grado di: descrivere

Dettagli

Teorema di Thevenin generalizzato

Teorema di Thevenin generalizzato Teorema di Thevenin generalizzato Si considerino due reti elettriche lineari, A e B, aventi rispettivamente N A e N B nodi interni. Esse si interfacciano attraverso n (n 3) fili di collegamento, in cui

Dettagli

ha come obiettivo quello di costruire a partire da A una matrice U, m n, che abbia il

ha come obiettivo quello di costruire a partire da A una matrice U, m n, che abbia il Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G.Parmeggiani LEZIONE 6 Eliminazione di Gauss con scambi di righe Sia A O una matrice m n. Abbiamo illustrato nella Lezione 5 un algoritmo che ha come

Dettagli

La soluzione approssimata consiste nella soluzione di un problema pi u facile che approssima quello dato. Nella tecnica di rilassamento l'approssimazi

La soluzione approssimata consiste nella soluzione di un problema pi u facile che approssima quello dato. Nella tecnica di rilassamento l'approssimazi Tecniche di soluzione di sistemi di equazioni non-lineari Le tecniche di rilassamento riguardano principalmente la soluzione per via numerica di sistemi di equazioni. Risultano particolarmente semplici

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano Capitolo 3: Ottimizzazione non vincolata parte III E. Amaldi DEI, Politecnico di Milano 3.4 Metodi di ricerca unidimensionale In genere si cerca una soluzione approssimata α k di min g(α) = f(x k +αd k

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema

Dettagli

RISOLUZIONE DI SISTEMI LINEARI

RISOLUZIONE DI SISTEMI LINEARI RISOLUZIONE DI SISTEMI LINEARI Algebra lineare numerica 1 La risoluzione di un sistema lineare è il nucleo principale del processo di risoluzione di circa il 70% di tutti i problemi reali Per la risoluzione

Dettagli

Esercizi di Programmazione Lineare - Dualità

Esercizi di Programmazione Lineare - Dualità Esercizi di Programmazione Lineare - Dualità Esercizio n1 Dato il seguente problema 3 + 3 2 2 + a scriverne il duale; b risolvere il duale (anche geometricamente indicando cosa da esso si può dedurre sul

Dettagli

Calcolo Numerico Informatica Manolo Venturin A.A. 2010 2011 Guida all esame

Calcolo Numerico Informatica Manolo Venturin A.A. 2010 2011 Guida all esame Calcolo Numerico Informatica Manolo Venturin A.A. 2010 2011 Guida all esame Testo aggiornato al 23 maggio 2011. L esame consiste in una prova scritta della durata di 2 ore. Tale prova è composta da tre/-

Dettagli

x 1 x 2 x 3 x 5 La base iniziale è B 0 = I e risulta x B 0 = , x N 0 = Iterazione 0. Calcolo dei costi ridotti. γ 0 = c N 0 (N 0 ) T c B 0 =

x 1 x 2 x 3 x 5 La base iniziale è B 0 = I e risulta x B 0 = , x N 0 = Iterazione 0. Calcolo dei costi ridotti. γ 0 = c N 0 (N 0 ) T c B 0 = 56 IL METODO DEL SIMPLESSO 7.4 IL METODO DEL SIMPLESSO In questo paragrafo sono riportati alcuni esercizi risolti sul metodo del simplesso. Alcuni sono risolti utilizzando la procedura di pivot per determinare,

Dettagli

Il determinante. Calcolo del determinante di matrici particolari. matrici di ordine 2: sia. a11 a A = allora

Il determinante. Calcolo del determinante di matrici particolari. matrici di ordine 2: sia. a11 a A = allora Calcolo del determinante di matrici particolari matrici di ordine 2: sia allora Esempio. [ ] a11 a A = 12, a 21 a 22 det A = a 11 a 22 a 21 a 12. Calcolare il determinante di [ ] 1 2 A =. 3 4 matrici di

Dettagli

INTRODUZIONE A MATLAB

INTRODUZIONE A MATLAB INTRODUZIONE A MATLAB M.R. Russo Università degli Studi di Padova Dipartimento di Matematica Pura ed Applicata A.A. 2008/2009 INDICE Sistemi lineari Casi particolari Eliminazione di Gauss Fattorizzazione

Dettagli

A. Quarteroni R. Sacco R Saleri MATEMATICA NUMERICA. Springer

A. Quarteroni R. Sacco R Saleri MATEMATICA NUMERICA. Springer A. Quarteroni R. Sacco R Saleri MATEMATICA NUMERICA Springer Prefazione XIII 1. Elementi di analisi delle matrici 1 1.1 Spazi vettoriali 1 1.2 Matrici y 3 1.3 Operazioni su matrici ' 4 1.3.1 Inversa di

Dettagli

Sistemi sovradeterminati

Sistemi sovradeterminati Sistemi sovradeterminati Sia A una matrice m n ove m > n sia b R m trovare una soluzione del sistema sovradeterminato Ax = b significa cercare di esprimere un vettore di R m come combinazione lineare di

Dettagli

Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico

Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico Esercizio 1 Si consideri il sistema lineare Ax = b con 4 3 2 1 3 4 3 2 A = 2 3 4 3,b = 1 2 3 4 1 1 1 1. (1) 1. Prima di risolvere

Dettagli

Corso di Laurea in Ingegneria Gestionale Anno Accademico 2013/2014 Calcolo Numerico - Prova teorica

Corso di Laurea in Ingegneria Gestionale Anno Accademico 2013/2014 Calcolo Numerico - Prova teorica Nome ANGELICI CARLO MARIA Fermo, 3 ottobre 2014 1. Metodo di Eulero implicito (descrizione, ordine, regione di stabilità). 2. Metodo di Newton-Raphson (descrizione del metodo, interpretazione geometrica)

Dettagli