MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI"

Transcript

1 MATEMATICA FINANZIARIA Pro. Andre Berrd VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5

2 PROGETTO ECONOMICO-FINANZIARIO Un progetto economco-nnzro è un successone d cptl, d qulss segno, prevst certe scdenze n n _ t t t t t n t n Progetto d: nvestmento nnzmento msto Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5

3 Obettvo Indvdure un ndctore sntetco che msur l utltà d un progetto dl punto d vst nnzro e che permett d conrontre pù progett lterntv esprmendo un preerenz tr d ess SCELTA TRA PROGETTI Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5

4 IPOTESI GENERALI S ssume che progett consdert sno: Complet, ovvero tr loro omogene e conrontbl Ammssbl, ovvero eettvmente ttubl Alterntv, ovvero tl d consentre l scelt d uno solo d ess o essere l pù equvlent Indpendent, ovvero tl per cu l ttuzone d uno d ess non nluenz né l ttubltà né gl element propr de progett lterntv Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 3

5 CRITERIO DI SCELTA S denscno due progett A e B: A [ ], t t n t, t,, t,,..., t,..., n B [ ] b, z b z b m z, b, z, b, z,..., b,..., z m e s densc un unzone crtero d scelt che qulc due progett rendendol conrontbl A e B Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 4

6 Tr due progett, s preersce quello che mssmzz l vlore dell unzone Progetto A preerto progetto B A >> B A > B Progetto B preerto progetto A B >> A B > A Progetto A equvlente progetto B A B A B Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 5

7 Relzon trnstve, rlessve e smmetrche A >> B, B >> C A >> C { } A A A B B A A B, B C A C { } A >> B, B C A >> C { } Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 6

8 L unzone crtero d scelt deve possedere lcune propretà mnml: Dent senz mbgutà, ovvero essere pplcble A prtà d scdenze, strettmente crescente rspetto cscuno de cptl A [ ; t], B [ b; t], b A > B { } A prtà d mport, strettmente crescente rspetto ll ntcpzone d uno o pù rcv o ll postcpzone d uno o pù cost A [ ; t], B [ ; z], t z A > B { } Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 7

9 L ordnmento d preerenz non deve mutre per cmbment nell untà d msur de cptl A > B, α > { } α A > αb L ordnmento d preerenz non deve mutre per cmbment nell untà d msur delle scdenze [ ; t] > [ b; t], α > { } [ ; α t] > [ b; αt] Se l vettore de sld tsso nullo d un progetto è mggore o ugule l vettore de sld tsso nullo d un ltro progetto, l prmo progetto deve essere sempre rconoscuto come preerble l secondo { } A [ ; t], B [ b; z], s A s B A > B Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 8

10 Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 9 Il vettore de sld tsso nullo d un progetto è ottenuto ssocndo l vettore delle scdenze l vettore delle cumulte de cptl del progetto ]...,...,,, [ ],...,,, [ n n s s s s s Il vettore de sld l tsso d un progetto è ottenuto ssocndo l vettore delle scdenze l vettore delle cumulte de montnt de cptl del progetto ]......,,...,, [ ],...,,, [ n n n n n r r r r r r s s s s s

11 QUALIFICAZIONE DEI PROGETTI PROGETTI DI INVESTIMENTO PROGETTI DI FINANZIAMENTO PROGETTI MISTI Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5

12 Progetto d nvestmento Un progetto è qulcto d nvestmento n senso stretto se present un unc nversone d segno e l prmo cptle h segno negtvo e qund l ultmo cptle h segno postvo Esempo. n n _ t t t. t t n t n Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5

13 Progetto d nnzmento Un progetto è qulcto d nnzmento n senso stretto se present un unc nversone d segno e l prmo cptle h segno postvo e qund l ultmo cptle h segno negtvo Esempo.. n n _ t t t. t. t n t n Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5

14 Progetto msto Un progetto è qulcto msto n senso stretto se present pù d un nversone d segno Esempo.. n n _ t t t. t. t n t n Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 3

15 I crter d scelt ovvero l struttur dell unzone utlzzt per l vlutzone e l scelt de progett economco-nnzr sono molteplc I crter d vlutzone stndrd sono tre: Crtero del vlore ttule Crtero del tsso nterno d rendmento Crtero T.R.M. Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 4

16 CRITERIO DEL VALORE ATTUALE Snonm: Vlore Attule V.A. Vlore Attule Netto V.A.N. Rendmento Economco Attulzzto R.E.A. Questo crtero vlut progett ssegnndo d ognuno d ess un vlore ttule, clcolto secondo un legge d cptlzzzone/ttulzzzone predetermnt V.A. Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 5

17 Dt due progett lterntv A e B : A [ ], t t n t, t,, t,,..., t,..., n B [ ] b, z b z b m z, b, z, b, z,..., b,..., z m s densce come crtero d scelt l unzone VA e s conrontno due progett preerendo quello che mssmzz tle unzone A >> B VA A > VA B Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 6

18 determnnte n dell scelt è l tsso d nteresse utlzzto per clcolre l vlore ttule l scelt tr progett può dpendere dl tsso d nteresse utlzzto * A VA B VA > A >> B o B VA A VA > B >> A l crtero del V.A. non è obettvo Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 7

19 Esempo Sno dt due progett lterntv A e B : A B [, t] [ b, t] t b t, 6, 6, 9,,,3 35, 5, 5, 9,,,3 Il vettore de sld tsso nullo d un progetto non è sempre superore quello del progetto lterntvo, qund non è possble esprmere un preerenz ssolut sull bse d questo crtero s A [, 4,,] s B [ 35,,5,5] Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 8

20 Utlzzndo un tsso d nteresse eettvo 8% per clcolre l vlore ttule de due progett secondo l regme dell nteresse composto, s ottene: VA B 8. > VA A B >> A Se per l clcolo del vlore ttule de due progett s utlzzsse un tsso d nteresse eettvo 3%, s vrebbe l stuzone oppost: VA A 97.7 > VA B 95. A >> B Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 9

21 Posto che, vlutndo progett l tsso d nteresse eettvo 8% preerremmo l progetto B l progetto A, l nostr scelt resterebbe nvrt se vlutssmo con lo stesso tsso d nteresse 8% progett A e B così modct? A B [, t] [ b, t] t b t VA A > VA B, 6, 6, 9,,,,3,4 35, 5, 5,, 9,,,3,4 In questo cso, s vrebbe: A >> B Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5

22 Tsso utlzzto per l clcolo d VA Progetto l cu relzzzone mplc un costo nzle d coprre col rcorso cptl propr e/o d debto Tsso esprme: tsso pssvo per cptl pres prestto oppure tsso per l remunerzone de mezz propr, ovvero costo-opportuntà determnto dl rendmento che srebbe possble consegure d mpegh lterntv Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5

23 Esempo Progett lterntv A e B che rchedono un nnzmento nzle d, sul qule s pgno nteress pssv clcolt l tsso d nteresse eettvo nnuo del %, e ornscono rcv ne successv 3 nn B A [ b, t] [, t] b t t, 9, 9, 5,,,3, 87.55, 35,.34,,,3 VA clcolto per entrmb progett utlzzndo l tsso % Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5

24 VA A > e VA B > Entrmb progett sono n grdo d remunerre l cptle nvestto l tsso eettvo nnuo del % e, n ggunt, consentono d ottenere un gudgno postvo L preerenz per l uno o per l ltro srà determnt dll mssmzzzone dell unzone VA VA B 3.86 > VA A 3.89 B >> A Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 3

25 CRITERIO DEL TASSO INTERNO DI RENDIMENTO Questo crtero vlut progett ssegnndo d ognuno d ess un tsso nterno d rendmento, clcolto secondo un legge d cptlzzzone predetermnt T.I.R. Il tsso nterno d rendmento non è un tsso contrttule ssegnto pror, m è quel tsso nterno che zzer l vlore ttule del progetto Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 4

26 Dt due progett lterntv A e B : A [ ], t t n t, t,, t,,..., t,..., n B [ ] b, z b z b m z, b, z, b, z,..., b,..., z m s densce come crtero d scelt l unzone TIR e s conrontno due progett preerendo quello che mssmzz tle unzone A >> B TIR A > TIR B Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 5

27 Esempo Sno dt due progett lterntv A e B : A B [, t] [ b, t] t b t, 3, 5, 4,,,3 8, 5, 5, 5,,,3 Il vettore de sld tsso nullo d un progetto non è sempre superore quello del progetto lterntvo, qund non è possble esprmere un preerenz ssolut sull bse d questo crtero s A [, 7,,] s B [ 8, 55, 3,] Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 6

28 Il tsso nterno d rendmento è quel tsso che zzer l vlore ttule d entrmb progett. Utlzzndo l regme dell nteresse composto, s ottene: A A A B B B TIR B.6% > TIR A 9.7% B >> A Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 7

29 Se progett sono progett d nvestmento n senso stretto oppure progett d nnzmento n senso stretto unc nversone d segno Esste un soluzone T.I.R. Se progett sono progett mst n senso stretto pù d un nversone d segno Non è grntt l esstenz d un soluzone T.I.R. Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 8

30 Teorem de segn d Crteso Il numero delle rdc postve d un polnomo è ugule, oppure è nerore d un numero pr, l numero d vrzon present nell successone de coecent Condzone sucente nché esst un T.I.R. postvo, unco, per l progetto è che l successone d cptl cmb d segno un sol volt Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 9

31 Esempo Sno dt due progett lterntv mst A e B : A B [, t] [ b, t] t b t, 3,, 9,,,3, 5,, 9,,,3 Il progetto msto A mmette T.I.R. postvo, mentre l progetto msto B non mmette T.I.R. postvo Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 3

32 Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 3 METODO APPROSSIMATO DI GAUSS-NEWTON DELLE TANGENTI PER IL CALCOLO DEL T.I.R. Dll denzone d dervt lm s rcv Nel cso del vlore ttule d un progetto, s h:... n n

33 Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 3 Approssmzone per procedmento tertvo d rcerc del tsso nterno d rendmento

34 Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 33 Procedmento tertvo per l clcolo del T.I.R. S ss un vlore d prtenz S clcolno l unzone e l dervt n corrspondenz d tle vlore n n... n n n... S determn l tsso

35 S clcolno l unzone corrspondenz d tle vlore S determn l tsso e così v e l dervt n S rpete l procedur no che è un errore d pprossmzone rtenuto ccettble per esempo, ε. < ε dove ε In corrspondenz d quel vlore, s vrà Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 34

36 METODO DELL INTERPOLAZIONE LINEARE PER IL CALCOLO DEL T.I.R. Metodo che consste nel trovre vlor pprossmt per l soluzone d un equzone del tpo z qundo è possble clcolre vlor dell unzone stess,,..., n Dent l soluzone tle per cu un ntervllo, ] z, essterà dove < [ < Per determnre questo vlore s sosttusce, nell ntervllo [, ], ll unzone un corrspondente unzone lnere Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 35

37 Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 36 Lnerzzzone dell unzone y y Ponendo z y, s determn l vlore cercto d z

38 Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 37 L lnerzzzone dell unzone ornsce un buon pprossmzone dell soluzone se l derenz tr punt estrem del segmento lnere ], [ è pccol z

39 Nel cso del vlore ttule d un progetto, s h: n... n Determnto un ntervllo, ] tle per cu [ < < s è qund posto y, s clcol l vlore cercto T.I.R. del progetto dll lnerzzzone dell unzone consdert, come segue: Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 38

40 CRITERIO T.R.M. Techroew, Robchec, Montlbno Questo crtero vlut progett ssegnndo d ognuno d ess un sldo nle, clcolto nell potes che ond ssorbt generno nteress pssv d un tsso e che ond lbert vengno mpegt d un tsso y sldo nle s n n ; y n n r ; y... r ; y Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 39

41 Il metodo T.R.M. s pplc come segue:. S scegle un tsso che msur l costo del denro che l progetto ssorbe e un tsso y che msur l rendmento de ond che l progetto erog. S clcol l successone de sld s ; y : s ; y s ; y [ s ; y ] [ s ] ; y y se s s ; ; y y,,...,n Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 4

42 Nell ntervllo [ ; ] l sldo s ; y gener nteress pssv l tsso se n quel perodo l progetto ssorbe ond coè se s ; y oppure nteress ttv l tsso y se n quel perodo l progetto produce ond coè se s ; y 3. S vlut l progetto sull bse del vlore ssunto dl sldo nle, ovvero dll unzone: s n ; y Scelt tr pù progett dl conronto tr sld nl Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 4

43 Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 4 Dt due progett lterntv A e B : [ ] n n t t t t t t A,...,,,,...,,,, [ ] m m z z z z z b b b b b z b B,...,,,,...,,,, s densce come crtero d scelt l unzone ; y s n e s conrontno due progett preerendo quello che mssmzz tle unzone B A >> ; ; ; ; B y s A y s n n >

44 rlevnte n dell ordne d preerenz tr pù progett de tss d nteresse pssvo e ttvo y utlzzt per clcolre l sldo nle * ; y * * * * * s ; y ; A s ; y B > A >> B n n ; ; y s ; y ; B s ; y A > B >> A n n ; l crtero T.R.M. non è obettvo Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 43

45 Esempo Sno dt due progett lterntv A e B : A B [, t] [ b, t] t b t, 7, 8, 5,,,3, 4, 7, 55,,,3 S scelg come tsso d nteresse pssvo costo del denro l tsso 5% e come tsso d nteresse ttvo mpego de ond l tsso y % e s clcolno sld nl de due progett s 5%;%; e s 3 5%;%; B 3 A Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 44

46 Progetto A s5%;%; A s5%;%; A s 5%;%; A s 5%;%; A Progetto B s5%;%; B s 5%;%; B s5%;%; B s 5%;%; B Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 45

47 s3 5%;%; A s 5%;%; B B >> A Tuttv, se l costo del denro osse mnore e per l clcolo del sldo nle s utlzzsse un tsso pssvo, s vrebbe l conclusone oppost: 3% s3 3%;%; A s 3%;%; B A >> B Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 46

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Npol Prthenope Fcoltà d Ingegner Corso d Trsmssone Numerc docente: Prof. Vto Psczo 3 Lezone: /0/004 4 Lezone: /0/004 Sommro Quntzzzone sclre (unforme e non unforme) Quntzzzone vettorle (VQ)

Dettagli

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione Integrle Dento. Il prolem del clcolo delle ree Suddvsone dell ntervllo [,] n sottontervll che ne costtuscono un prtzone De. Prtzone S chm prtzone P dell ntervllo [,] un nseme d n+ punt <

Dettagli

Il Circuito Elementare

Il Circuito Elementare Corso d IMPIEGO INDUSRIALE dell ENERGIA L ener, ont, trsormzon ed us nl Impnt vpore I enertor d vpore Impnt turbos Ccl combnt e coenerzone Il mercto dell ener 1 Corso d IMPIEGO INDUSRIALE dell ENERGIA

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorem Fondmentle dell'artmetc Defnzone 7 Un nmero ntero p dverso d 0 e s dce prmo se per ogn b Z Altrment p s dce composto p b p oppre p b Defnzone

Dettagli

Indicatori di rendimento per i titoli obbligazionari

Indicatori di rendimento per i titoli obbligazionari Indcator d rendmento per ttol obblgazonar LA VALUTAZIONE DEGLI INVESTIMENTI A TASSO FISSO Per valutare la convenenza d uno strumento fnanzaro è necessaro precsare: /4 Le specfche esgenze d un nvesttore

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Gnmr Mrtn UNIVERSITÀ DEGLI STUDI DI BERGAMO Fcoltà d Ingegner Isttuzon d Econom Lure Trennle n Ingegner Gestonle Lezone 9 Domnd del mercto Prof. Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner

Dettagli

VA TIR - TA - TAEG Introduzione

VA TIR - TA - TAEG Introduzione VA TIR - TA - TAEG Introduzone La presente trattazone s pone come obettvo d analzzare due prncpal crter d scelta degl nvestment e fnanzament per valutare la convenenza tra due o pù operazon fnanzare. S

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

Regime di sconto commerciale. S = sconto ; K = somma da scontare ; s = tasso di sconto unitario V a = valore attuale ; I = interesse ; C = capitale

Regime di sconto commerciale. S = sconto ; K = somma da scontare ; s = tasso di sconto unitario V a = valore attuale ; I = interesse ; C = capitale Regime di sconto commercile Formule d usre : S = sconto ; K = somm d scontre ; s = tsso di sconto unitrio V = vlore ttule ; I = interesse ; C = cpitle s t = st i t st = st S t Kst V K st () () ; () ( )

Dettagli

Regime di interesse semplice

Regime di interesse semplice Formule d usre : I = interesse ; C = cpitle; S = sconto ; K = somm d scontre V = vlore ttule ; i = tsso di interesse unitrio it i() t = it () 1 ; s () t = ( 2) 1 + it I() t = Cit ( 3 ) ; M = C( 1 + it)

Dettagli

Rendite (2) (con rendite perpetue)

Rendite (2) (con rendite perpetue) Rendite (2) (con rendite perpetue) Esercizio n. Un ziend industrile viene vlutt ttulizzndo i redditi futuri dell gestione l tsso del 9% con inflzione null. I redditi prospettici vengono stimnti nell misur

Dettagli

METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI

METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI Per l rsoluzone d un sstem lnere A b, oltre metod drett, è possble utlzzre nche metod tertv che rggungono l soluzone estt come lmte d un procedmento

Dettagli

Modelli di base per la politica economica

Modelli di base per la politica economica Marcella Mulno Modell d base per la poltca economca Corso d Poltca economca a.a. 22-23 Captolo 2 Modello - e poltche scal e monetare In questo captolo rchamamo brevemente l modello macroeconomco a prezz

Dettagli

Esercitazioni Capitolo 8-9 Impianti di riscaldamento

Esercitazioni Capitolo 8-9 Impianti di riscaldamento Eserctzon Cptolo 8-9 Impnt d rscldmento 1) In un locle rscldto (volume V 400 [m 3 ]) l rnnovo d r è n 0.5 (1/h). Nell potes d un tempertur estern t e - 5 [ C], qunto vle l flusso termco per ventlzone v.

Dettagli

Teoremi su correnti e tensioni

Teoremi su correnti e tensioni Teorem su corrent e tenson 1) ombnzone lnere efnzone: n un crcuto, ogn corrente e tensone è dt un combnzone lnere d genertor: V = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... I = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... oe

Dettagli

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO 4. SCHMI ALTRNATIVI DI FINANZIAMNTO DLLA SPSA PUBBLICA. Se l Governo decde d aumentare la Spesa Pubblca G (o Trasferment TR), allora deve anche reperre fond necessar per fnanzare questa sua maggore spesa.

Dettagli

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria 2 Modello IS-LM 2. Gl e ett della poltca monetara S consderun modello IS-LM senzastatocon seguent datc = 0:8, I = 00( ), L d = 0:5 500, M s = 00 e P =. ) S calcolno valor d equlbro del reddto e del tasso

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

5. Coperture in acciaio: applicazione

5. Coperture in acciaio: applicazione 5. Coperture n cco: pplczone Le coperture n cco, d solto rservte costruzon non bttve, hnno tpologe costruttve bbstnz tpche ( FIGURA 1). Gl element costruttv ordnr sono: sol; le trv, sezone pen (rcrecc)

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Esercitazioni Capitolo 8-9 Impianti di riscaldamento

Esercitazioni Capitolo 8-9 Impianti di riscaldamento Eserctzon Cptolo 8-9 Impnt d rscldmento 1) In un locle rscldto (volume V 400 m 3 ) l rnnovo d r è n 5 (1/h). Nell potes d un tempertur estern t e - 5 C qunto vle l flusso termco per ventlzone v. ssumere:

Dettagli

PROBLEMA DI SCELTA FRA DUE REGIMI DI

PROBLEMA DI SCELTA FRA DUE REGIMI DI PROBLEMA DI SCELTA FRA DUE REGIMI DI CAPITALIZZAZIONE Prerequst: legge d captalzzazone semplce legge d captalzzazone composta logartm e loro propretà dervate d una funzone pendenza d una curva n un punto

Dettagli

Risoluzione quesiti I esonero 2011

Risoluzione quesiti I esonero 2011 Rsoluzone quest I esonero 011 1) Compto 1 Q3 Un azenda a a dsposzone due progett d nvestmento tra d loro alternatv. Il prmo prevede l pagamento d un mporto par a 100 all epoca 0 e fluss par a 60 all epoca

Dettagli

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( )

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( ) Generaltà Problema: soluzone d una equazone derenzale alle dervate ordnare d ordne n: n n K soggetta alle n condzon nzal: K n Ovvero rcercare la soluzone d un sstema d n equazon derenzal ordnare del prmo

Dettagli

La contabilità analitica nelle aziende agrarie

La contabilità analitica nelle aziende agrarie 2 La contabltà analtca nelle azende agrare Estmo rurale ed element d contabltà (analtca) S. Menghn Corso d Laurea n Scenze e tecnologe agrare Percorso Economa ed Estmo Contabltà generale e cont. ndustrale

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Rendite a rate costanti posticipate in regime di interessi composti

Rendite a rate costanti posticipate in regime di interessi composti Redte rte cott regme d tere compot Redte rte cott potcpte regme d tere compot /32 Redte rte cott potcpte regme d tere compot 2/32 Redte rte cott potcpte regme d tere compot VALORE ATTUALE DI UNA RENDITA

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

MATEMATICA FINANZIARIA 3. RENDITE

MATEMATICA FINANZIARIA 3. RENDITE MATEMATICA FINANZIAIA Prof. Adre Berrd 999 3. ENDITE Coro d Mtetc Fzr 999 d Adre Berrd Sezoe 3 ENDITA Operzoe fzr copot, crtterzzt d cdeze (,,...,,...,, rcuotere quelle cdeze,,...,,...,, t e d port d pgre

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verfca delle potes In molte crcostanze l rcercatore s trova a dover decdere quale, tra le dverse stuazon possbl rferbl alla popolazone, è quella meglo sostenuta dalle evdenze emprche. Ipotes statstca:

Dettagli

Calcolo della concentrazione e della densità del Silicio Monocristallino

Calcolo della concentrazione e della densità del Silicio Monocristallino Clcolo dell concentrzone e dell denstà del Slco Monocrstllno Clcolo del numero d tom per cell Contrbuto de vertc: 8 1 8 1 Contrbuto delle superfc: 6 1 2 3 Contrbuto tom ntern: 4 1 4 Totle: 8 tom equvlent

Dettagli

Fondamenti di Fisica Acustica

Fondamenti di Fisica Acustica Fondament d Fsca Acustca Pro. Paolo Zazzn - DSSARR Archtettura Pescara Anals n requenza de segnal sonor, bande d ottava e terz d ottava. Rumore banco e rumore rosa. Lvello equvalente. Fsologa dell apparato

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

3. Componenti adinamici

3. Componenti adinamici 3. Comonen dnmc Ssem rsolene d un crcuo. elzone cosu d un comonene. Clssfczon: comonene lnere/non lnere, dnmco/dnmco, con memor/senz memor, emo nrne/emo rne, omogeneo/non omogeneo, mresso/non mresso, sso,

Dettagli

Noi investiamo in qualità della vita e Tu?

Noi investiamo in qualità della vita e Tu? No nvestmo n qultà dell vt e Tu? sosttuzone de serrment SI NO - RISPARMIO IN BOLLETTA - COMFORT - QUALITÀ DELLA VITA + - lvor d rqulfczone lvor d rqulfczone + eff cen 10 nn relzzzone del cppotto z e nerg

Dettagli

POR FESR Sardegna 2007-2013 Asse VI Competitività BANDO PUBBLICO. Voucher Startup Incentivi per la competitività delle Startup innovative

POR FESR Sardegna 2007-2013 Asse VI Competitività BANDO PUBBLICO. Voucher Startup Incentivi per la competitività delle Startup innovative POR FESR Sardegna 2007-2013 Asse VI Compettvtà BANDO PUBBLICO Voucher Startup Incentv per la compettvtà delle Startup nnovatve ALLEGATO 3 PIANO DI UTILIZZO DEL VOUCHER STARTUP INNOVATIVE 2014 3. Pano d

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

Modellazione e Identificazione Dinamica della Cupola della Basilica di S. Gaudenzio in Novara

Modellazione e Identificazione Dinamica della Cupola della Basilica di S. Gaudenzio in Novara Modellzone e Identfczone Dnmc dell Cupol dell Bslc d S. Gudenzo n Novr Ing. Slvno Erlcher Sommro Nell prm prte dell rtcolo s present un modello gl element fnt dell Cupol dell Bslc d S. Gudenzo. S mostrno

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Napol Parthenope acoltà d Ingegnera Corso d Metod Probablstc Statstc e Process Stocastc docente: Pro. Vto Pascazo 20 a Lezone: /2/2003 Sommaro Dstrbuzon condzonate: CD, pd, pm Teorema della

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali Grndee sclr: I ettor engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee ettorl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse.

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse. Y Lnerzzzone Il dgrmm d dspersone suggersce che le funzone d nterpolzone de dt non sono lner, m presentno un ndmento che n un cso (dots ner) potree essere d tpo esponenzle, mentre nell ltro cso (dots ross)

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 Esercitazione: 16 marzo 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 Esercitazione: 16 marzo 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 Eserctazone: 16 marzo 2012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/8? Eserczo Un prestto d d 24 350 è rmborsable

Dettagli

31/03/2012. Collusione (Cabral cap.8 PRN capp. 13-14) Il modello standard. Collusione nel modello di Bertrand. Collusione nel modello di Bertrand

31/03/2012. Collusione (Cabral cap.8 PRN capp. 13-14) Il modello standard. Collusione nel modello di Bertrand. Collusione nel modello di Bertrand Collusone (Cabral cap.8 PRN capp. 13-14) Accord tact o esplct per aumentare l potere d mercato e pratcare prezz pù elevat rspetto all equlbro non cooperatvo corrspondente Esste un vantaggo dalla collusone

Dettagli

LEZIONE 11. Argomenti trattati

LEZIONE 11. Argomenti trattati LEZIONE LE ECONOMIE PERTE (2) Il modello IS-LM n regme d camb fss e d camb flessbl rgoment trattat S esamnano gl effett delle poltche macroeconomche n economa aperta consderando tre modell Il modello IS-LM

Dettagli

VALORI MEDI (continua da Lezione 5)

VALORI MEDI (continua da Lezione 5) VALORI MEDI (cotu d Lezoe 5) Dott.ss Pol Vcrd 6. L ed rtetc è lere coè è vrte per trsforzo ler de dt. S u dstrbuzoe utr d ed A. Effettuo u trsforzoe lere delle osservzo coè b c d dove c e d soo due costt

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

VERIFICA DEL FUNZIONAMENTO DI UN FILTRO PASSA BASSO E DI UN FILTRO PASSA ALTO RC.

VERIFICA DEL FUNZIONAMENTO DI UN FILTRO PASSA BASSO E DI UN FILTRO PASSA ALTO RC. EIFIA DE FUNZIONAMENTO DI UN FITO PAA BAO E DI UN FITO PAA ATO. IIEO DEE AIAZIONI HE I HANNO NEA IPOTA IN PEENZA DI UNA EITENZA DI AIO, DI UNA EITENZA DI OGENTE, DI ENTAMBE. vercherà l nluenz d un ressenz

Dettagli

Affidabilità e Sicurezza delle Costruzioni Meccaniche 5 Calcolo strutturale a fatica

Affidabilità e Sicurezza delle Costruzioni Meccaniche 5 Calcolo strutturale a fatica olecnco d Torno Adblà e Scurezz delle Cosruzon eccnche 5 Clcolo sruurle c Eserczo 5- Un cco h le d c lern v ll D 50 ( 0 6 ) e crco unro d rour R 600 ; clcolre l le d c per 0 5 ccl. (0 5 ) 40. Dll equzone

Dettagli

Le obbligazioni: misure di rendimento e rischio La curva dei rendimenti per scadenze

Le obbligazioni: misure di rendimento e rischio La curva dei rendimenti per scadenze Le obblgazon: msure d rendmento e rscho La curva de rendment per scadenze Economa del Mercato Moblare A.A. 2017-2018 La curva de rendment (yeld curve) (1) Il rendmento d un ttolo obblgazonaro dpende da

Dettagli

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm Il lto d un ddo è pr. cm. Usndo le cfre sgnfctve per stmre l errore clcolre l volume del cuo. Supponendo che l devzone stndrd nell msur del lto s d mm clcolre l devzone stndrd che ssoct ll msur del volume.

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Formule di Integrazione Numerica

Formule di Integrazione Numerica Formule d Itegrzoe Numerc Itegrzoe umerc: geerltà Prolem: vlutre l tegrle deto: I d F F utlzzo opportue tecce umerce qudo: l prmtv d o e esprmle orm cus d esempo s/, ep- ; dcoltà el clcolre ltcmete l prmtv

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

Modelli equivalenti del BJT

Modelli equivalenti del BJT Modll ulnt dl JT Pr lo studo dll pplczon crcutl dl JT, s è rso opportuno formulr d modll ulnt dl dsposto ch srssro rpprsntr n modo connnt l suo comportmnto ll ntrno d crcut. A scond dl tpo d pplczon (mplfczon

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

TECNICHE DI PROGRAMMAZIONE

TECNICHE DI PROGRAMMAZIONE TECNICHE DI PROGRAMMAZIONE IPOTESI SOTTOSTANTE: TECNICHE LINEARI (COEFFICIENTI FISSI DI PRODUZIONE) PREVISIONI (vendte, prezz de ben e de fattor) medante tecnche estrapolatve, econometrche e d mercato

Dettagli

Matematica Finanziaria 29 novembre 2000

Matematica Finanziaria 29 novembre 2000 Mtemtc Fnnzr 9 novembre 000 TEST d Ottmzzzone. FILA A Rspondere lle se domnde sbrrndo l csell ce s rtene corrett. Un sol rspost è corrett. Nel cso s ntend nnullre un rspost cercre l corrspondente csell.

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

MATEMATICA FINANZIARIA 1 ECONOMIA AZIENDALE. Cognome... Nome Matricola..

MATEMATICA FINANZIARIA 1 ECONOMIA AZIENDALE. Cognome... Nome Matricola.. MATEMATICA FINANZIARIA PROVA SCRITTA DEL 0 FEBBRAIO 009 ECONOMIA AZIENDALE Cognome... Nome Matrcola.. ESERCIZIO Un ndduo ha ogg a dsposzone una somma S0.000 che ha accumulato negl ultm ann tramte l ersamento

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

I SINDACATI E LA CONTRATTAZIONE COLLETTIVA. Il ruolo economico del sindacato in concorrenza imperfetta, in cui:

I SINDACATI E LA CONTRATTAZIONE COLLETTIVA. Il ruolo economico del sindacato in concorrenza imperfetta, in cui: I IDACATI E LA COTRATTAZIOE COLLETTIVA Il ruolo economco del sndacato n concorrenza mperfetta, n cu: a) le mprese fssano prezz de ben n contest d concorrenza monopolstca (con extra-proftt); b) lavorator

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Simulazione seconda prova Tema assegnato all esame di stato per l'abilitazione alla professione di geometra, 2006

Simulazione seconda prova Tema assegnato all esame di stato per l'abilitazione alla professione di geometra, 2006 Smulazone seconda prova Tema assegnato all esame d stato per l'abltazone alla professone d geometra, 006 roposte per lo svolgmento pubblcate sul ollettno SIFET (Socetà Italana d Fotogrammetra e Topografa)

Dettagli

Esercitazioni di Elettrotecnica: doppi-bipoli

Esercitazioni di Elettrotecnica: doppi-bipoli . Mffucc: serctzon su dopp-pol er.-9 Unerstà degl tud d ssno serctzon d lettrotecnc: dopp-pol prof. ntono Mffucc er.. ottore 9 . Mffucc: serctzon su dopp-pol er.-9. opp-pol n rege stzonro.. on rferento

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

Verifica termoigrometrica delle pareti

Verifica termoigrometrica delle pareti Unverstà Medterranea d Reggo Calabra Facoltà d Archtettura Corso d Tecnca del Controllo Ambentale A.A. 2009-200 Verfca termogrometrca delle paret Prof. Marna Mstretta ANALISI IGROTERMICA DEGLI ELEMENTI

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

Esempi di programmazione assembly

Esempi di programmazione assembly Corso d Clcoltor Elettronc I Esemp d progrmmzone ssembly ng. Alessndro Clrdo Corso d Lure n Ingegner Bomedc Progrmm con mtrc Scrvere un progrmm che conteng n memor un mtrce d byte d dmensone RG x CL (RG

Dettagli

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014 Dpartmento d Economa Azendale e Stud Gusprvatstc Unverstà degl Stud d Bar Aldo Moro Corso d Macroeconoma 2014 1.Consderate l seguente grafco: LM Partà de tass d nteresse LM B A IS IS Y E E E Immagnate

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Hansard OnLine. Unit Fund Centre Guida

Hansard OnLine. Unit Fund Centre Guida Hansard OnLne Unt Fund Centre Guda Sommaro Pagna Introduzone al Unt Fund Centre (UFC) 3 Uso de fltr per la selezone de fond 4-5 Lavorare con rsultat del fltro 6 Lavorare con rsultat del fltro - Prezz 7

Dettagli

Misura masse molecolari

Misura masse molecolari Msur msse molecolr Le propretà de mterl polmerc dpendono dll mss molecolre. E possble conoscere l mss molecolre de sstem polmerc msurndo tl propretà Qul propretà? meccnche, fsche, n soluzone? Qule mss

Dettagli

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

Calcolo della caduta di tensione con il metodo vettoriale

Calcolo della caduta di tensione con il metodo vettoriale Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta

Dettagli

Il pendolo di torsione

Il pendolo di torsione Unverstà degl Stud d Catana Facoltà d Scenze MM.FF.NN. Corso d aurea n FISICA esna d ABORAORIO DI FISICA I Il pendolo d torsone (sezone costante) Moreno Bonaventura Anno Accademco 005/06 Introduzone. I

Dettagli

La costituzione d azienda

La costituzione d azienda L costituzione d ziend Esercizio1 In dt 15/01/X si costituisce, per volontà dei soci Alf e Bet, l Eridice S.p.A. Il cpitle socile, costituito d 40.000 zioni ordinrie d 10 euro nominli ciscun, viene sottoscritto

Dettagli

MISURE DELL ACCELERAZIONE DI GRAVITÁ g 1) PENDOLO REVERSIBILE DI KATER

MISURE DELL ACCELERAZIONE DI GRAVITÁ g 1) PENDOLO REVERSIBILE DI KATER MISURE DELL ACCELERAZIONE DI GRAVIÁ In questo espermento s vuole msurre l ccelerzone d rvtà. Dvers sono mod possl. S consderno qu le oscllzon d un pendolo fsco e l cdut ler d pllne d cco. All fne del esperment

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

1 La domanda di moneta

1 La domanda di moneta La domanda d moneta Eserczo.4 (a) Keynes elenca tre motv per detenere moneta: Scopo transattvo Scopo precauzonale Scopo speculatvo Il modello d domanda d moneta a scopo speculatvo d Keynes consdera la

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

LE RETTIFICHE DI STORNO

LE RETTIFICHE DI STORNO Cpitolo 11 LE RETTIFICHE DI STORNO cur di Alfredo Vignò Le scritture di rettific di fine esercizio Sono composte l termine del periodo mministrtivo per inserire nel sistem vlori stimti e congetturti di

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

MOBILITA DI CAPITALI

MOBILITA DI CAPITALI Poltca Economca dell'unone Europea MOBILITA DI CAPITALI Prof. Roberto Lombard Prof. Roberto Lombard 1 Le Econome moderne hanno un elevato grado d nterazone ed ntegrazone de Mercat Fnanzar ed de Captal

Dettagli