Didattica della Matematica per il triennio Geometria sintetica e geometria analitica

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Didattica della Matematica per il triennio Geometria sintetica e geometria analitica"

Transcript

1 Didattica della Matematica per il triennio Geometria sintetica e geometria analitica anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica per il triennio 1 / 22

2 index Coniche come curve algebriche di ordine due 1 Coniche come curve algebriche di ordine due 2 Classificazione euclidea metrica, euclidea simile, e affine delle Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica per il triennio 2 / 22

3 Coniche come curve algebriche di ordine due Luogo, non insieme Piano euclideo E 2, coordinate (x, y). Conica = luogo del secondo ordine, descritto da f (x, y) = a 1,1 x 2 + 2a 1,2 xy + a 2,2 y 2 + 2a 1,3 x + 2a 2,3 y + a 3,3 = 0 con f polinomio di secondo grado (cioè (a 1,1, a 1,2, a 2,2 ) (0, 0, 0)). Insieme degli zeri del polinomio f, Z(f ) = {p (x, y) f (x, y) = 0}. Ovviamente, per ρ 0, si ha Z(ρf ) = Z(f ) : conta l equazione, non il polinomio. La conica definita da f viene identificata a quella definita da ρf. Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica per il triennio 3 / 22

4 Coniche come curve algebriche di ordine due Conica Γ = coppia (Z(f ), f ), (o meglio, classe di equivalenza di coppie del tipo (Z(f ), f ), modulo la relazione che identifica (Z(ρf ), ρf ) con (Z(f ), f ), se ρ 0.) Può accadere che sia Z(f 1 ) = Z(f 2 ), con f 1 non proporzionale a f 2, (ad esempio nel caso x 2 = 0 e x = 0, oppure nel caso x 2 + y 2 = 0 e 2x 2 + 3y 2 = 0). In tale caso bisogna tenere distinte le coppie Γ 1 = (Z(f 1 ), f 1 ) e Γ 2 = (Z(f 2 ), f 2 ). Sono due distinte, con lo stesso insieme degli zeri. La conica si dice riducibile se il polinomio f lo è (in C). Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica per il triennio 4 / 22

5 Coniche come curve algebriche di ordine due Matrice associata f (x, y) = a 1,1 x 2 + 2a 1,2 xy + a 2,2 y 2 + 2a 1,3 x + 2a 2,3 y + a 3,3 = ( x y 1 ) ( a1,1 a 1,2 a 1,3 a 1,2 a 2,2 a 2,3 a 1,3 a 2,3 a 3,3 ) ( xy A matrice simmetrica, matrice dei coefficienti della conica. 1 ) = 0 TEOREMA - Γ = (Z(f ), f ) è riducibile se e solo se det(a) = 0. traccia della dimostrazione Sappiamo che (a 1,1, a 1,2, a 2,2 ) (0, 0, 0). Se a 1,1 = a 2,2 = 0, allora a 1,2 0 e l equazione diventa 2x(a 1,2 y + a 1,3 ) + 2a 2,3 y + a 3,3 = 0, Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica per il triennio 5 / 22

6 Coniche come curve algebriche di ordine due per cui f è riducibile se e solo se 2(a 1,2 y + a 1,3 ) = ρ(2a 2,3 y + a 3,3 ) ovvero se e solo se a 1,2 a 3,3 2a 1,3 a 2,3 0, e questo accade se e solo se ( 0 a1,2 a 1,3 ) det( a 1,2 a 1,3 0 a 2,3 a 2,3 a 3,3 ) = a 1,2 (2a 1,3 a 2,3 a 1,2 a 3,3 ) = 0. Se invece, ad esempio, a 2,2 0, allora l equazione diviene a 2,2 y 2 + 2(a 1,2 x + a 2,3 )y + (a 1,1 x 2 + 2a 1,3 x + a 3,3 ) = 0 Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica per il triennio 6 / 22

7 Coniche come curve algebriche di ordine due che si spezza in a 2,2 (y α)(y β) = 0 con α, β polinomi, se e solo se 4 = (a 1,2x + a 2,3 ) 2 a 2,2 (a 1,1 x 2 + 2a 1,3 x + a 3,3 ) = (a 2 1,2 a 1,1a 2,2 )x 2 + 2a 1,2 a 2,3 a 2,2 a 1,3 x + (a 2 2,3 a 2,2a 3,3 ) è un quadrato perfetto, ovvero se e solo se 0 = (a 1,2 a 2,3 a 2,2 a 1,3 ) 2 (a 2 1,2 a 1,1a 2,2 )(a 2 2,3 a 2,2a 3,3 ) = a 2,2 det(a) quindi (essendo a 2,2 0) se e solo se det(a) = 0. Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica per il triennio 7 / 22

8 index 1 Coniche come curve algebriche di ordine due 2 Classificazione euclidea metrica, euclidea simile, e affine delle Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica per il triennio 8 / 22

9 Invarianti ortogonali Γ E 2 conica di equazione f (x, y) = a 1,1 x 2 +2a 1,2 xy+a 2,2 y 2 +2a 1,3 x+2a 2,3 y+a 3,3 = ( x y 1 ) A ( xy 1 ) = Consideriamo le seguenti quantità estratte da A. I 1 (A) = a 1,1 + a 2,2, I 2 (A) = a 1,1 a 2,2 a 2 1,2, I 3(A) = det(a). Se si considera, come polinomio che definisce Γ, il polinomio ρf in luogo di f, la matrice associata diviene ρa in luogo di A e le quantità sopra definite si trasformano in I 1 (ρa) = ρi 1 (A), I 2 (ρa) = ρ 2 I 1 (A), I 3 (ρa) = ρ 3 I 1 (A). Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica per il triennio 9 / 22

10 Consideriamo ora una traslazione definita da (x = x + a, y = y + b) oppure una rotazione con centro nell origine definita da (x = x cos(θ) y sin(θ), y = x sin(θ) + y cos(θ)) e il polinomio trasformato f (x, y ) = f (x, y). Detta A la matrice associata a f, si ha I 1 (A ) = I 1 (A), I 2 (A ) = I 2 (A), I 3 (A ) = I 3 (A). Le quantità I 1 (A), I 2 (A) e I 3 (A) vengono detti invarianti ortogonali, rispettivamente, lineare, quadratico e cubico di f. Il gruppo delle congruenze (dirette) è generato da traslazioni e rotazioni attorno all origine. L annullarsi di I i (A), per i = 1, 2, 3, il segno di I 2 (A), e il segno del prodotto I 1 (A)I 3 (A), esprimono proprietà di Γ (non solo di f ) invarianti per congruenze (dirette). Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica per il triennio 10 / 22

11 Il caso I 2 (A) 0 OSSERVAZIONE - Se I 2 (A) 0, esiste una traslazione (della forma (x = x + a, y = y + b)) che riduce l equazione di Γ nella forma ( ) a 1,1x 2 + 2a 1,2x y + a 2,2y 2 + a 3,3 = 0. Infatti la condizione a 1,3 = a 2,3 = 0, corrisponde a a 1,1 a + a 1,2 b + a 1,3 = 0, a 1,2 a + a 2,2 b + a 2,3 = 0 e quest ultimo è un sistema di due equazioni in due incognite che, per l ipotesi I 2 (A) 0, è Crameriano. Si noti che questo ci dice che I 2 (A) 0 implica l esistenza di un centro di simmetria. OSSERVAZIONE - Sia Γ una conica di equazione ( ). Esiste una rotazione (della forma (x = x cos(θ) y sin(θ), y = x sin(θ) + y cos(θ))) che riduce l equazione di Γ nella forma ( ) a 1,1x 2 + a 2,2y 2 + a 3,3 = 0. Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica per il triennio 11 / 22

12 Infatti la condizione a 1,2 = 0, corrisponde alla equazione ovvero a 1,2sin 2 (θ) (a 1,1 a 2,2)sin(θ)cos(θ) + a 1,2cos 2 (θ) = 0 a 1,2tang 2 (θ) + (a 1,1 a 2,2)tang(θ) a 1,2 = 0 che ha soluzione poichè il suo disciminante è non negativo (come somma di quadrati). Quanto visto sopra mostra che ogni conica con I 2 0 (conica a centro), è congruente ad ( una di equazione ) a 1,1 x 2 + a 2,2 y 2 + a 3,3 = 0, cioè con a1,1 0 0 matrice A = 0 a 2,2 0, con a 1,1, a 2,2 0, (i cui con invarianti 0 0 a 3,3 ortogonali sono I 1 = a 1,1 + a 2,2, I 2 = a 1,1 a 2,2, I 3 = a 1,1 a 2,2 a 3,3 ). Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica per il triennio 12 / 22

13 Classificazione delle con I 2 0 (ovvero a centro) A) Caso riducibile (I 3 = 0) A 1 ) p 2 x 2 + q 2 y 2 = 0 (I 2 > 0, coppia di rette immaginarie coniugate) A 2 ) p 2 x 2 q 2 y 2 = 0 (I 2 < 0, coppia di rette reali distinte) B) Caso irriducibile (I 3 0) B 1 ) x2 a 2 + y2 b 2 B 2 ) x2 a 2 + y2 b 2 B 3 ) x2 a 2 y2 b 2 = 1 (I 2 > 0, I 1 I 3 < 0, ellisse reale) = 1 (I 2 > 0, I 1 I 3 > 0, ellisse immaginaria) = 1 (I 2 < 0, iperbole) Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica per il triennio 13 / 22

14 Il caso I 2 (A) = 0 OSSERVAZIONE - Se I 2 (A) = 0, la parte quadratica a 1,1 x 2 + 2a 1,2 xy + a 2,2 y 2 di f è un quadrato perfetto. Sia a 1,1 x 2 + 2a 1,2 xy + a 2,2 y 2 = (αx + βy) 2. Con una rotazione si trasforma la retta di equazione αx + βy = 0 nell asse delle ascisse, per cui l equazione della conica si trasforma in (ky ) 2 + 2a 1,3 x + 2a 2,3 y + a 3,3 = 0, con k 0 ovvero y 2 + 2a 1,3 x + 2a 2,3 y + a 3,3 = 0, e quindi la matrice associata diviene 0 o a 1,3 A = 0 1 a 2,3 a 1,3 a 2,3 a 3,3. Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica per il triennio 14 / 22

15 Classificazione delle con I 2 = 0 C) Caso riducibile (I 3 = 0) I 3 = 0 se e solo se a 1,3 = 0, quindi in questo caso l equazione della conica trasformata è y 2 + 2a 2,3 y + a 3,3 = 0, e pertanto la conica è costituita da C 1 ) due rette parallele C 2 ) insieme vuoto (due fattori lineari complessi coniugati) C 3 ) due rette coincidenti Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica per il triennio 15 / 22

16 D) Caso irriducibile (I 3 0) Se I 3 0, ovvero a 1,3 0, con una traslazione l equazione y 2 + 2a 1,3 x + 2a 2,3 y + a 3,3 = 0, si trasforma in y 2 2px = 0, con p 0, e pertanto D) la conica è una parabola. Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica per il triennio 16 / 22

17 Classificazione euclidea metrica Ogni conica è congruente ad una tra le seguenti (forme canoniche) B 1 ) x2 a 2 + y2 b 2 = 1 (I 3 0, I 2 > 0, I 1 I 3 < 0, ellisse reale) B 2 ) x2 vuoto) + y2 a 2 b 2 = 1 (I 3 0, I 2 > 0, I 1 I 3 > 0, ellisse immaginaria: insieme B 3 ) x2 a 2 y2 b 2 = 1 (I 3 0, I 2 < 0, iperbole) D) y 2 2px = 0 (I 3 0, I 2 = 0, parabola) A 1 ) p 2 x 2 + q 2 y 2 = 0 (I 3 = 0, I 2 > 0, coppia di rette immaginarie: un solo punto reale) Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica per il triennio 17 / 22

18 A 2 ) p 2 x 2 q 2 y 2 = 0 (I 3 = 0, I 2 < 0, coppia di rette reali incidenti) C 1 ) x 2 a 2 = 0 (I 3 = 0, I 2 = 0 coppia di due rette reali parallele) C 2 ) x 2 + a 2 = 0 (I 3 = 0, I 2 = 0 coppia di rette immaginarie: insieme vuoto) C 3 ) x 2 = 0 (I 3 = 0, I 2 = 0, retta doppia) N.B. Due che appartengono a famiglie diverse, tra le B1), B2),..., C 3 sopra elencate, non sono equivalenti dal punto di vista euclideo. Due di una stessa famiglia, con valori diversi dei parametri coinvolti, in alcuni casi, possono essere equivalenti: ad esempio l ellisse di equazione x2 a 2 + y2 b 2 = 1 è congruente a quello di equazione x2 b 2 + y2 a 2 = 1. Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica per il triennio 18 / 22

19 Classificazione euclidea simile Dal punto di vista simile, la classificazione è ovviamente ancora meno fine: ad esempio due ellissi di equazioni x2 + y2 = 1 e x2 + y2 = 1 sono simili se e a 2 b 2 c 2 d 2 solo se a b = c d oppure a b = d c (cioè se e solo se hanno lo stesso rapporto tra semiasse maggiore e minore: hanno la stessa forma). Dal punto di vista simile tutte le parabole sono equivalenti: l omotetia di equazioni y = y a, x = x a trasforma y = x2 in y = ax 2. Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica per il triennio 19 / 22

20 Nessuno direbbe che la circonferenza rossa è più stretta della circonferenza blu. Tutte le circonferenze hanno la stessa forma. Lo stesso accade per le parabole: hanno tutte la stessa forma! Dal punto di vista metrico, quello che cambia è la curvatura. Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica per il triennio 20 / 22

21 Classificazione affine Sia Γ una conica nel piano affine A 2. Con le trasformazioni usate per la classificazione metrica (che sono congruenze e quindi affinità) l equazione di Γ si riduce ad una delle forme viste sopra. Con un ulteriore affinità della forma (x = ax, y = by ), l equazione della conica si riduce ad una delle seguenti: x 2 + y 2 = 1 ellisse reale x 2 + y 2 = 1 ellisse immaginaria x 2 y 2 = 1 iperbole y 2 2x = 0 parabola x 2 y 2 = 0 coppia di rette reali incidenti x 2 + y 2 = 0 coppia di rette immaginarie incidenti in un punto reale x 2 1 = 0 coppia di rette reali parallele x = 0 coppia di rette immaginarie parallele x 2 = 0 retta doppia Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica per il triennio 21 / 22

22 Classificazione proiettiva Dal punto di vista proiettivo, esistono solo 5 tra loro distinte: 1 conica reale irrducibile 2 conica immaginaria irriducibile 3 due rette reali distinte 4 due rette immaginarie distinte (conplesse coniugate) 5 retta doppia Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica per il triennio 22 / 22

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

Cenni sulle coniche 1.

Cenni sulle coniche 1. 1 Premessa Cenni sulle coniche 1. Corso di laurea in Ingegneria Civile ed Edile Università degli Studi di Palermo A.A. 2013/2014 prof.ssa Paola Staglianò (pstagliano@unime.it) Scopo della geometria analitica

Dettagli

Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u.

Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Definizione Una quadriche è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee

Dettagli

Coniche metriche e affini

Coniche metriche e affini Coniche metriche e affini Carlo Petronio Dicembre 2007 Queste note riguardano le coniche non degeneri, le loro equazioni metriche e la loro classificazione affine. 1 Piano euclideo, isometrie e trasformazioni

Dettagli

4. Sia Γ la conica che ha fuoco F (1, 1) e direttrice d : x y = 0, e che passa per il punto P (2, 1).

4. Sia Γ la conica che ha fuoco F (1, 1) e direttrice d : x y = 0, e che passa per il punto P (2, 1). Geometria Complementi ed esercizi sulle coniche 1 (a) Scrivere l equazione dell ellisse Γ che ha fuochi F 1 ( 1, 1), F (1, 1) e che passa per il punto P (1, 1) (b) Determinare il centro, gli assi e i vertici

Dettagli

Geometria analitica: curve e superfici

Geometria analitica: curve e superfici Geometria analitica: curve e superfici Quadriche Quadriche in forma canonica Quadriche in generale Coni e cilindri Curve nello spazio Coniche nello spazio Coni e cilindri in forma canonica e parametrica

Dettagli

Formulario di Geometria Analitica a.a

Formulario di Geometria Analitica a.a Formulario di Geometria Analitica a.a. 2006-2007 Dott. Simone Zuccher 23 dicembre 2006 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore zuccher@sci.univr.it).

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Coniche

Dettagli

Classificazione delle coniche.

Classificazione delle coniche. Classificazione delle coniche Ora si vogliono studiare i luoghi geometrici rappresentati da equazioni di secondo grado In generale, non è facile riconoscere a prima vista di che cosa si tratta, soprattutto

Dettagli

Parte 12b. Riduzione a forma canonica

Parte 12b. Riduzione a forma canonica Parte 2b. Riduzione a forma canonica A. Savo Appunti del Corso di Geometria 202-3 Indice delle sezioni. Coniche, 2. Esempio di riduzione, 4 3. Teoremi fondamentali, 6 4. Come determinare l equazione canonica,

Dettagli

Similitudine (ortogonale) e congruenza (ortogonale) di matrici.

Similitudine (ortogonale) e congruenza (ortogonale) di matrici. Lezione del 4 giugno. Il riferimento principale di questa lezione e costituito da parti di: 2 Forme bilineari, quadratiche e matrici simmetriche associate, 3 Congruenza di matrici simmetriche, 5 Forme

Dettagli

Didattica della Matematica 1 - classe A047 Trasformazioni geometriche - seconda parte

Didattica della Matematica 1 - classe A047 Trasformazioni geometriche - seconda parte Didattica della Matematica 1 - classe A047 Trasformazioni geometriche - seconda parte anno acc. 2013/2014 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica

Dettagli

1 Cambiamenti di coordinate nel piano.

1 Cambiamenti di coordinate nel piano. Cambiamenti di coordinate nel piano.. Coordinate cartesiane Coordinate cartesiane su una retta. Sia r una retta: dare un sistema di coordinate su r significa fissare un punto O di r e un vettore u = U

Dettagli

22 Coniche proiettive

22 Coniche proiettive Geometria e Topologia I (U1-4) 2006-giu-06 95 22 Coniche proiettive (22.1) Definizione. Sia K[x 0, x 1,..., x n ] l anello dei polinomi nelle indeterminate (variabili) x 0, x 1,..., x n. Un polinomio di

Dettagli

Didattica della Matematica per il triennio Geometria sintetica e geometria analitica

Didattica della Matematica per il triennio Geometria sintetica e geometria analitica Didattica della Matematica per il triennio Geometria sintetica e geometria analitica anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica

Dettagli

Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche

Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche anno acc. 2013/2014 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi

Dettagli

1 Coniche. s (x, y, t ) (1) 1 (x, y, t )F r 2

1 Coniche. s (x, y, t ) (1) 1 (x, y, t )F r 2 1 Coniche Studieremo le curve nel piano euclideo, cioè nel piano con un sistema di riferimento cartesiano ortogonale fissato, oppure nel completamento proiettivo di questo piano, ottenuto con l introduzione

Dettagli

Capitolo 17 CONICHE Generalità

Capitolo 17 CONICHE Generalità Capitolo 17 CONICHE 17.1 Generalità La parola conica sta classicamente a significare una curva sezione di un cono (inteso come figura illimitata ottenuta facendo ruotare una retta attorno ad un asse ad

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli

Fasci di Coniche. Salvino Giuffrida. 2. Determinare e studiare il fascio Φ delle coniche che passano per A (1, 0) con tangente

Fasci di Coniche. Salvino Giuffrida. 2. Determinare e studiare il fascio Φ delle coniche che passano per A (1, 0) con tangente 1 Fasci di Coniche Salvino Giuffrida 1. Determinare e studiare il fascio Φ delle coniche che passano per O = (0, 0), con tangente l asse y, e per i punti (1, 0), (1, ). Determinare vertice e asse della

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

LEZIONE 27. C = { P = (x, y) x 2 /a 2 y 2 /b 2 = 1 }. C si dice iperbole di semiassi a e b (in forma canonica). L equazione

LEZIONE 27. C = { P = (x, y) x 2 /a 2 y 2 /b 2 = 1 }. C si dice iperbole di semiassi a e b (in forma canonica). L equazione LEZIONE 27 27.1. Ellisse, iperbole, parabola. Nelle prossime lezioni illustreremo come la teoria delle forme quadratiche e della riduzione ortogonale si applichi allo studio di alcuni oggetti geometrici

Dettagli

1 Geometria analitica nel piano

1 Geometria analitica nel piano Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )

Dettagli

Un fascio di coniche è determinato da una qualsiasi coppia di sue coniche distinte.

Un fascio di coniche è determinato da una qualsiasi coppia di sue coniche distinte. Piano proiettivo Conica: curva algebrica reale del II ordine. a 11 x 2 1 + 2a 12 x 1 x 2 + a 22 x 2 2 + 2a 13 x 1 x 3 + 2a 23 x 2 x 3 + a 33 x 2 3 = 0 x T A x = 0 Classificazione proiettiva delle coniche:

Dettagli

Vincenzo Aieta CONICHE, FASCI DI CONICHE

Vincenzo Aieta CONICHE, FASCI DI CONICHE Vincenzo Aieta CONICHE, FASCI DI CONICHE Le coniche 1 Teoria delle Coniche Il nome conica deriva dal semplice fatto che gli antichi Greci secando con un piano una conica a doppia falda ottenevano, a seconda

Dettagli

ESERCIZI DI RIPASSO, A.A

ESERCIZI DI RIPASSO, A.A ESERCIZI DI RIPASSO, A.A. 14-15 Per ogni risposta, segnare V se è vera, F se è falsa. Ogni test viene valutato 3 punti se vengono date tutte e sole le risposte corrette. Altrimenti, la valutazione è 0.

Dettagli

Ingegneria Civile. Compito di Geometria del 06/09/05. E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni

Ingegneria Civile. Compito di Geometria del 06/09/05. E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni Ingegneria Civile. Compito di Geometria del 06/09/05 E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni I f(,, 0) = (h +,h+, ) f(,, ) = (h,h, h) f(0,, ) = (,h, h) con h parametro reale. ) Studiare

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

X = x + 1. X = x + 1

X = x + 1. X = x + 1 CONICHE. Esercizi Esercizio. Classificare, ridurre a forma canonica (completando i quadrati), e disegnare le seguenti coniche: γ : x y + x = 0; γ : x + 4x y + = 0; γ 3 : x + y + y + 0 = 0; γ 4 : x + y

Dettagli

Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI

Universita degli Studi di Roma - Tor Vergata - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI R. Docente: Prof. F. Flamini Esercizi Riepilogativi Svolti Esercizio

Dettagli

Noi ci occuperemo esclusivamente dei casi n = 2 e n = 3. Se n = 2, la quadrica Q p sarà detta conica di equazione p, e indicata con C p.

Noi ci occuperemo esclusivamente dei casi n = 2 e n = 3. Se n = 2, la quadrica Q p sarà detta conica di equazione p, e indicata con C p. Durante il corso abbiamo studiato insiemi (rette e piani) che possono essere descritti come luogo di zeri di equazioni (o sistemi) di primo grado. Adesso vedremo come applicare quanto visto per studiare

Dettagli

Quadriche Maurizio Cornalba 7/6/2016

Quadriche Maurizio Cornalba 7/6/2016 Quadriche Maurizio Cornalba 7/6/2016 Sia K un campo. Informalmente, una ipersuperficie (algebrica) nello spazio proiettivo P n K è il luogo dei punti [t 0 : t 1 : : t n ] tali che (t 0, t 1,..., t n )

Dettagli

REGISTRO DELLE ESERCITAZIONI

REGISTRO DELLE ESERCITAZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE ESERCITAZIONI del Corso UFFICIALE di GEOMETRIA A tenute dal prof. Domenico AREZZO nell anno accademico

Dettagli

Lezione 5 Geometria Analitica 1

Lezione 5 Geometria Analitica 1 Lezione 5 Geometria Analitica 1 Donato A Ciampa In questa lezione richiameremo alcune nozioni della geometria analitica, quali le trasformazioni del piano in se stesso e le varie equazioni relative alla

Dettagli

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)

Dettagli

Geometria analitica del piano

Geometria analitica del piano Geometria analitica del piano dott.ssa Vita Leonessa Università degli Studi della Basilicata (27 marzo 2008) (Analisi) Matematica 2 CdL in Chimica, Biotecnologie, Scienze Geologiche Rette Fissato un sistema

Dettagli

22 Novembre Sia T α : RP 1 RP 1 la trasformazione proiettiva determinata dalla matrice non

22 Novembre Sia T α : RP 1 RP 1 la trasformazione proiettiva determinata dalla matrice non Primo esonero di GEOMETRIA 3 - C. L. Matematica 22 Novembre 2013 1. Sia T α : RP 1 RP 1 la trasformazione proiettiva determinata dalla matrice non singolare ( ) α 2. 1 0 (a) Si determini, al variare del

Dettagli

Corso di Matematica II

Corso di Matematica II Corso di Matematica II Università degli Studi della Basilicata Dipartimento di Scienze Corso di laurea in Chimica e in Scienze Geologiche A.A. 2014/15 dott.ssa Vita Leonessa Elementi di geometria analitica

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle da un altra angolazione.. Determinare

Dettagli

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione CONICHE Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oy sia data la conica C di equazione 7 2 + 2 3y + 5y 2 + 32 3 = 0. Calcolare le equazioni di una rototraslazione che riduce

Dettagli

FORME QUADRATICHE, CONICHE, QUADRICHE

FORME QUADRATICHE, CONICHE, QUADRICHE FORME QUADRATICHE, CONICHE, QUADRICHE Esercizi Esercizio 1. Sia data la forma quadratica q( T (x, y, z))=3y 2 +8z 2 +4xy +6xz +12yz. (1) Scrivere la matrice di q: q è definita positiva?. (2) Classificare

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Programma di Matematica svolto durante l anno scolastico nella classe 2 sez.e

Programma di Matematica svolto durante l anno scolastico nella classe 2 sez.e Programma di Matematica svolto durante l anno scolastico 2015-2016 nella classe 2 sez.e ALGEBRA 1) Richiami sul calcolo letterale e sulle equazioni algebriche lineari ad una incognita. 2) Disequazioni

Dettagli

Studio generale di una conica

Studio generale di una conica Studio generale di una conica Manlio De Domenico 19 Giugno 2003 Definizione 1 Si definisce conica C un equazione algebrica F (x 1, x 2, x 3 ) = 0 del secondo ordine omogenea. Detta A la matrice simmetrica

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Lezione 3 Andrea Susa OPERATORE DI PRODOTTO Π 2 1 Operatore di prodotto Π Consideriamo un insieme numerico ={ =1, }. Definiamo prodotto degli elementi in, = Esempio: ={ =1, =2, =3,

Dettagli

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3 Esercitazione di Geometria I 13 dicembre 2008 a. Completa la seguente definizione: i vettori v 1, v 2,..., v n del K-spazio vettoriale V si dicono linearmente dipendenti se... b. Siano w 1, w 2, w 3 vettori

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

Istituto d Istruzione Superiore Francesco Algarotti

Istituto d Istruzione Superiore Francesco Algarotti Classe: 1 M Docente: Antonio M. Povelato CAPITOLO 1 - Insiemi e numeri naturali Concetti primitivi di insieme e di elemento. Relazioni di appartenenza, inclusione e eguaglianza tra insiemi. Rappresentazione

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle più volte.. Stabilire il tipo di

Dettagli

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003 Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,

Dettagli

Corso di Geometria Lezione II: Spazi vettoriali

Corso di Geometria Lezione II: Spazi vettoriali .. Corso di Geometria Lezione II: Spazi vettoriali F. Baldassarri 8 ottobre 2013 Definizione di spazio vettoriale Uno spazio vettoriale su un campo C (ad es. Q,R,C,{0, 1}) è un insieme V dotato di due

Dettagli

Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa.

Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa. τ : P P' oppure P'=τ(P) P immagine di P trasformato di P secondo τ se α è una figura geometrica α =τ(α) è la figura geometrica trasformata x' = f (x, y) τ : y' = g(x, y) espressione analitica della trasformazione

Dettagli

Algebra lineare Geometria 1 11 luglio 2008

Algebra lineare Geometria 1 11 luglio 2008 Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =

Dettagli

TRASFORMAZIONI GEOMETRICHE

TRASFORMAZIONI GEOMETRICHE TRASFORMAZIONI GEOMETRICHE Def. Una trasformazione geometrica T tra i punti di un piano è una corrispondenza biunivoca che ad ogni punto P del piano associa uno e un solo punto P' appartenente al piano

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente.

CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. CAPITOLO 4 Quadriche Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. Esercizio 4.. Stabilire il tipo di quadrica corrispondente alle seguenti equazioni. Se si

Dettagli

PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S

PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S. VIA SILVESTRI ANNO SCOLASTICO 2015-2016 INSEGNANTE: MASCI ORNELLA ALGEBRA - Equazioni letterali fratte

Dettagli

Formule Utili Analisi Matematica per Informatici a.a

Formule Utili Analisi Matematica per Informatici a.a Formule Utili Analisi Matematica per Informatici a.a. 006-007 Dott. Simone Zuccher dicembre 006 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore zuccher@sci.univr.it).

Dettagli

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

(P x) (P y) = x P t (P y) = x (P t P )y = x y. Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici

Dettagli

GEOMETRIA ANALITICA 2

GEOMETRIA ANALITICA 2 GEOMETRIA ANALITICA CONICHE Dopo le rette, che come abbiamo visto sono rappresentate da equazioni di primo grado nelle variabili x e y (e ogni equazione di primo grado rappresenta una retta), le curve

Dettagli

f(x) = sin cos α = k2 2 k

f(x) = sin cos α = k2 2 k 28 Maggio 2015 Il punteggio viene attribuito in base alla correttezza e completezza nella risoluzione dei quesiti, nonché alle caratteristiche dell esposizione: chiarezza, ordine ed organicità. La sufficienza

Dettagli

Coniche - risposte 1.9

Coniche - risposte 1.9 Coniche - risposte. CAMBI DI COORDINATE ) ) cosπ/) sinπ/). a. Rotazione di π/, la matrice di rotazione è = sinπ/) cosπ/) ) ) ) X = Y X = Quindi le formule sono: cioè: Y = X e inversamente Y = = Y X = b.

Dettagli

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera? Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc

Dettagli

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 A I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 ESERCIZIO 1. Si consideri il seguente sistema di equazioni lineari x + y + 2z = 1 2x + ky + 4z = h 2x 2y + kz = 0 (a) Determinare,

Dettagli

Note di geometria analitica nel piano

Note di geometria analitica nel piano Note di geometria analitica nel piano e-mail: maurosaita@tiscalinet.it Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................

Dettagli

Lezione 24 - Esercitazioni di Algebra e Geometria - Anno accademico

Lezione 24 - Esercitazioni di Algebra e Geometria - Anno accademico CONICHE in A ~ (C) Punti propri (x P,y P ) hanno coordinate omogenee [(x P,y P, )], Punti impropri hanno coordinate omogenee [(l,m, )]. L equazione di una conica in coordinate non omogenee (x,y) C: a,

Dettagli

1. Proprietà focali delle coniche

1. Proprietà focali delle coniche 1. Proprietà focali delle coniche Per questo argomento, vedere anche P. Maroscia, Introduzione alla geometria e all algebra lineare, Zanichelli, Appendice B. Ricordiamo che il fenomeno fisico della riflessione

Dettagli

A.A. 2014/2015 Corso di Algebra Lineare

A.A. 2014/2015 Corso di Algebra Lineare A.A. 2014/2015 Corso di Algebra Lineare Stampato integrale delle lezioni Massimo Gobbino Indice Lezione 01: Vettori geometrici nel piano cartesiano. Operazioni tra vettori: somma, prodotto per un numero,

Dettagli

Equazione implicita della circonferenza. b= 2 c= 2 2 r 2

Equazione implicita della circonferenza. b= 2 c= 2 2 r 2 FORMULARIO DI GEOMETRIA ANALITICA Punto medio tra due punti. Distanza fra due punti. Baricentro di un triangolo. M = 1, y M = y 1 y d= 1 y y 1 0 = 1 3 3, y 0 = y 1 y y 3 3 Retta per due punti. Retta per

Dettagli

La circonferenza. Tutti i diritti sono riservati.

La circonferenza. Tutti i diritti sono riservati. La circonferenza Copyright c 008 Pasquale Terrecuso Tutti i diritti sono riservati. L equazione della circonferenza La circonferenza come luogo geometrico....................................... Questioni

Dettagli

Programma di matematica classe Prima

Programma di matematica classe Prima Programma di matematica classe Prima RELAZIONI E FUNZIONI Insiemi Definizione e rappresentazione con diagrammi di Venn, per elencazione, per caratteristica. Operazioni tra insiemi: intersezione, unione,

Dettagli

Liceo scientifico E. Fermi Nuoro Anno scolastico 2008/2009. Classe 3 a ARGOMENTI STUDIATI IN MATEMATICA

Liceo scientifico E. Fermi Nuoro Anno scolastico 2008/2009. Classe 3 a ARGOMENTI STUDIATI IN MATEMATICA Liceo scientifico E. Fermi Nuoro Anno scolastico 2008/2009 Classe 3 a C ARGOMENTI STUDIATI IN MATEMATICA Docente : prof. GUISO Agostino Logica matematica La Logica degli enunciati.nozioni fondamentali.

Dettagli

Le coniche in forma canonica: ellisse, iperbole e parabola 1 / 16

Le coniche in forma canonica: ellisse, iperbole e parabola 1 / 16 Le coniche in forma canonica: ellisse, iperbole e parabola 1 / 16 Coniche 2 / 16 In generale, per conica in R 2 si intende il luogo dei punti di R 2 che soddisfano un equazione polinomiale di secondo grado

Dettagli

Costruzione delle coniche con riga e compasso

Costruzione delle coniche con riga e compasso Costruzione delle coniche con riga e compasso Quando in matematica è possibile dare diverse definizioni, tutte equivalenti, di uno stesso oggetto, allora significa che quell oggetto può essere caratterizzato

Dettagli

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB); VETTORI E GEOMETRIA ANALITICA 1 GEOMETRIA PIANA Segmenti e distanza tra punti. Rette in forma cartesiana e parametrica. Posizioni reciproche di due rette, parallelismo e perpendicolarità. Angoli e distanze.

Dettagli

Esercitazioni di Geometria A: curve algebriche

Esercitazioni di Geometria A: curve algebriche Esercitazioni di Geometria A: curve algebriche 24-25 maggio 2016 Esercizio 1 Sia P 2 il piano proiettivo complesso munito delle coordinate proiettive (x 0 : x 1 : x 2 ). Sia r la retta proiettiva di equazione

Dettagli

Riflessioni e proposte didattiche sull uso di strumenti tecnologici La bellezza dei numeri complessi resa evidente dall uso del software

Riflessioni e proposte didattiche sull uso di strumenti tecnologici La bellezza dei numeri complessi resa evidente dall uso del software Riflessioni e proposte didattiche sull uso di strumenti tecnologici La bellezza dei numeri complessi resa evidente dall uso del software Cristiano Dané Liceo Sc A Volta di Torino Indice La gestione degli

Dettagli

LICEO CLASSICO-SCIENTIFICO EUCLIDE CAGLIARI PROGRAMMA DIDATTICO

LICEO CLASSICO-SCIENTIFICO EUCLIDE CAGLIARI PROGRAMMA DIDATTICO LICEO CLASSICO-SCIENTIFICO EUCLIDE CAGLIARI Materia: Matematica Anno scolastico: 010 011 Classe: 1 A Insegnante: Maria Maddalena Alimonda PROGRAMMA DIDATTICO NUMERI NATURALI E NUMERI INTERI Operazioni

Dettagli

PROGRAMMA DI MATEMATICA

PROGRAMMA DI MATEMATICA A.S. 2015/2016 ALGEBRA - Equazioni letterali fratte PROGRAMMA DI MATEMATICA - Disequazioni di 1 grado ad una incognita intere e frazionarie - Sistemi di disequazioni di 1 o grado in una incognita - Sistemi

Dettagli

PROGRAMMAZIONE GENERALE MATEMATICA-INFORMATICA a.s

PROGRAMMAZIONE GENERALE MATEMATICA-INFORMATICA a.s PROGRAMMAZIONE GENERALE MATEMATICA-INFORMATICA a.s. 2013-2014 GINNASIO CLASSI 4 sez. A-B-C SCIENZE UMANE CLASSI 1 sez. A-B-C-D-E-F Aritmetica e algebra Il primo anno sarà dedicato al passaggio dal calcolo

Dettagli

Calcolo Algebrico. Primo grado. ax 2 + bx + c = 0. Secondo grado. (a 0) Equazioni e disequazioni in una incognita e coefficienti reali: ax + b = 0

Calcolo Algebrico. Primo grado. ax 2 + bx + c = 0. Secondo grado. (a 0) Equazioni e disequazioni in una incognita e coefficienti reali: ax + b = 0 Calcolo Algebrico Equazioni e disequazioni in una incognita e coefficienti reali: Primo grado ax + b = 0 (a 0) x = b a Secondo grado ax 2 + bx + c = 0 (a 0) Si hanno due soluzioni che possono essere reali

Dettagli

1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche.

1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche. Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Quadriche Esercizi 1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche. (a) x + y + z + xy xz yz 6x 4y + z

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

Anno Accademico CORSO ABILITANTE 600 ORE - SSIS Diario. 11 ottobre 2006

Anno Accademico CORSO ABILITANTE 600 ORE - SSIS Diario. 11 ottobre 2006 Anno Accademico 2006-2007 CORSO ABILITANTE 600 ORE - SSIS Diario SILVANO DELLADIO 11 ottobre 2006 Teoria ingenua, fatta coi ceci, dei numeri naturali: definizione di numero, addizione e moltiplicazione

Dettagli

Le coniche da un punto di vista geometrico

Le coniche da un punto di vista geometrico Le coniche da un punto di vista geometrico Chiamiamo "cono circolare retto" la superficie generata dalla rotazione di una retta r intorno ad un'altra retta a (asse di rotazione) incidente ad r. Il punto

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Trasformazioni geometriche

Trasformazioni geometriche Trasformazioni geometriche Generalità sulle trasformazioni geometriche Una trasformazione geometrica è una corrispondenza biunivoca, quindi una funzione, che associa a un punto P del piano in un punto

Dettagli

GEOMETRIA ANALITICA: LE CONICHE

GEOMETRIA ANALITICA: LE CONICHE DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 2013-2014 ESERCIZI DI GEOMETRIA ANALITICA: LE CONICHE Esercizio 1: Fissato su un piano un sistema di riferimento cartesiano ortogonale

Dettagli

Proprietà focali delle coniche.

Proprietà focali delle coniche. roprietà focali delle coniche. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, gennaio 2014 Indice 1 Coniche 1 1.1 arabola....................................... 1 1.1.1 roprietà focale

Dettagli

RIDUZIONE A FORMA CANONICA DELL EQUAZIONE DI UNA CONICA

RIDUZIONE A FORMA CANONICA DELL EQUAZIONE DI UNA CONICA RIDUZIONE A FORMA CANONICA DELL EQUAZIONE DI UNA CONICA Appunti presi dalle lezioni del Prof. Liceo Scientifico di Castiglion Fiorentino (Classe 3B) March 3, 008 1 Le coniche dal punto di vista analitico

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia

Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia Classe III sez. A Modulo 1 Unità didattica 1 Ripetizione della risoluzione delle equazioni di

Dettagli

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico Classe 1 A AFM anno scolastico 2014-2015 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le potenze, le espressioni

Dettagli

Geometria analitica del piano pag 32 Adolfo Scimone

Geometria analitica del piano pag 32 Adolfo Scimone Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema

Dettagli

GAAL: Capitolo di Geometria Affine e Coniche

GAAL: Capitolo di Geometria Affine e Coniche GAAL: Capitolo di Geometria Affine e Coniche Nozioni introduttive: Distanza indotta Isometrie lineari (Gruppo ortogonale) Isometrie Affinità Spazi affini: Sottospazi affini Combinazione affine di punti

Dettagli

ITCG Sallustio Bandini

ITCG Sallustio Bandini ANNO SCOLASTICO 2015/2016 PROGRAMMA DI MATEMATICA CLASSE I sez. A corso GRAFICA INSEGNANTE: prof. MARIO SCACCIA Libro di Testo: Matematica.verde Vol. 1 multimediale- Algebra, Geometria, Statistica M.Bergamini

Dettagli

Geometria analitica: curve e superfici

Geometria analitica: curve e superfici Geometria analitica: curve e superfici Sfere Coordinate sferiche e sfere in forma parametrica Sfere, rette e piani Circonferenze nello spazio Circonferenze in forma parametrica 2 2006 Politecnico di Torino

Dettagli

CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico

CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico Baluardo Partigiani n 6 28100 - Novara Tel. 0321/620047 - Fax. 0321/620622 Email: novc010008@istruzione.it

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli