Introduzione a data warehousing e OLAP

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Introduzione a data warehousing e OLAP"

Transcript

1 Corso di informatica Introduzione a data warehousing e OLAP La Value chain Information X vive in Z S ha Y anni X ed S hanno traslocato Data W ha del denaro in Z Stile di vita Punto di vendita Dati demografici Dati geografici Knowledge Una quantità Y del prodotto A è usata per lo più nella regione Z I clienti di classe Y usano x% di C durante il periodo D Decision Promuoviamo il prodotto A nei negozi della regione Z Spediamo i cataloghi alle famiglie di profilo P Offriamo dei servizi addizionali ai clienti C

2 Decision Support Systems Domande tipiche Quante sono le unità vendute per ogni promozione effettuata nel 1997? Qual è l incremento mensile dei profitti per ogni categoria di prodotto? Come sono incrementate le vendite di prodotti alcolici nel Canada rispetto alle vendite negli USA nel 1998? Data Warehouse Database per il supporto alle decisioni, mantenuto separatamente dal database operazionale subject-oriented integrated time-variant non-volatile Supporta l information analysis fornendo una piattaforma di dati storici consolidati

3 Data Warehouse Subject-Oriented Orientato alle aree dell attività di principale interesse E.g., in una compagnia d assicurazione: cliente, prodotti, attività, polizza, denuncia, conto, ecc. Applicazioni e database operazionali possono essere organizzati deversamente E.g., basati sul tipo d assicurazione: auto, vita, incendi-furti, ecc. Data Warehouse - Integrated Ci possono essere inconsistenze nella codifica, rappresentazione, ecc. tra sorgenti differenti di dati Le inconsistenze sono eliminate nel warehouse

4 Data Integration Da sorgenti eterogenee a data repositories consolidati RDBMS Legacy DBMS Flat Files External Data Consolidation and Cleaning Warehouse Object/Relation DBMS Multidimensional DBMS Deductive Database Flat files Data Warehouse - Non-Volatile I dati operazionali sono regolarmente acceduti e manipolati una tupla alla volta L update di dati operazionali viene fatto nello stesso ambiente operazionale I dati in un warehouse sono caricati un unica volta Non si può fare aggiornamento

5 Data Warehouse Time-Variant La struttura di un data warehouse contiene quasi sempre la dimensione temporale DB operazionali contengono valori correnti Un data warehouse contiene una serie di istantanee, prese in momenti differenti nel tempo La dimensione temporale dei dati è molto ampia Data Warehouse vs. Operational DBMS OLTP (On Line Transactional Processing) Esempi market: inserisci un ordine nel database, aggiornando lo stato dell ordine nel tempo banking: trasferisci $100 dal conto XXX al conto YYY dati fortemente dinamici attività strutturate e ripetitive transazioni corte lettura e/o aggiornamento di poche tuple isolamento, recovery ed integrità sono critici OLAP (On Line Analytical Processing) Operazione principale di un data warehouse Data analysis e decision making

6 OLTP vs. Decision Support OLAP: On-Line Analytical Processing Visione multidimensionale dei dati Analisi interattiva Modellazione analitica: derivazione delle proporzioni, delle varianze, etc. Aggregazioni per ogni intersezione di ogni dimensione Previsione, trend analysis, e statistical analysis Visualizzazione di dati in 2D o 3D

7 Modello multidimensionale Un datawarehouse si basa sul modello di dati multidimensionale Matrici multidimensionali In un cubo (data cube) i dati sono rappresentati in dimensioni multiple intorno ad un soggetto centrale (fatti) Dimensioni Misure Tre categorie di misure distributive: calcolo incrementale E.g., count(), sum(), min(), max() algebriche: risultato di una funzione algebrica di n argomenti in cui ogni argomento è un aggregato E.g., avg(), standard_deviation() olistiche: non c e un limite costante nel numero di elementi necessari per definirle a partire da un sottoaggregato E.g., median(), mode()

8 Dimensioni, livelli, gerarchie all all region Europe... North_America country Germany... Spain Canada... Mexico city Frankfurt... Vancouver... Toronto office L. Chan... M. Wind Multidimensional data Sales come funzione di product, month, e region Industry Region Year Category Country Quarter City Month Week Office Day Month

9 Pre-aggregazione Store Pisa Roma Firenze sum Milk Bread Orange... sum All s January 96, Pisa. Jan 96 Feb Time sum Gerarchie ed aggregati L idea delle gerarchie é di aggregare automaticamente i dati di interesse quando ci si focalizza su un livello se ci concentriamo su mese i fatti rappresentano i totali delle vendite per ogni mese Possiamo concentrarci su diversi livelli della gerarchia in dimensioni diverse vendite mensili per regione di ogni prodotto

10 Operazioni tipiche Roll up: riassumi i dati: passa da un livello di dettaglio alto ad un livello basso il volume totale di vendite per categoria di prodotto e per regione Roll down, drill down, drill through: passa da un livello di dettaglio basso ad un livello alto per un particolare prodotto, trova le vendite dettagliate per ogni venditore e per ogni data Slice and dice: select & project Vendite delle bevande nel West negli ultimi 6 mesi Pivot: riorganizza il cubo Operazioni tipiche: Slice and Dice Slice Month Month

11 Operazioni tipiche: Roll-Up Roll-up Year Roll-up Year Drill-Down Month Drill-Down Data Mining Automated Exploration/Discovery Clustering Association Rules Prediction/Classification Inductive Decision Trees Regression Reti neurali Algoritmi genetici Explanation/Description Inductive Decision Trees Rule systems

12 Approcci Verification-Driven Metodologie Analisi passiva, atta a verificare se un certo modello (ipotesi) è coerente con i dati a disposizione L ipotesi o il modello sono formulati dall utente sulla base della sua esperienza Approcci Discovery-Driven Analisi attiva, in cui i dati stessi suggeriscono possibili ipotesi sul significato del loro contenuto Individuazione di fatti significativi, relazioni, tendenze, pattern, associazioni, eccezioni e anomalie, che sfuggono all analisi manuale per la loro complessità

Analisi dei Dati. Lezione 10 Introduzione al Datwarehouse

Analisi dei Dati. Lezione 10 Introduzione al Datwarehouse Analisi dei Dati Lezione 10 Introduzione al Datwarehouse Il Datawarehouse Il Data Warehousing si può definire come il processo di integrazione di basi di dati indipendenti in un singolo repository (il

Dettagli

Data warehousing Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007

Data warehousing Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007 Data warehousing Introduzione A partire dalla metà degli anni novanta è risultato chiaro che i database per i DSS e le analisi di business intelligence vanno separati da quelli operazionali. In questa

Dettagli

OLAP On Line Analytical Processing

OLAP On Line Analytical Processing OLAP On Line Analytical Processing Alfredo Cuzzocrea DEIS Dipartimento di Elettronica, Informatica e Sistemistica Università della Calabria cuzzocrea@si.deis.unical.it Testo di Riferimento: J. Han, M.

Dettagli

Data warehousing Mario Guarracino Data Mining a.a. 2010/2011

Data warehousing Mario Guarracino Data Mining a.a. 2010/2011 Data warehousing Introduzione A partire dagli anni novanta è risultato chiaro che i database per i DSS e le analisi di business intelligence vanno separati da quelli operazionali. In questa lezione vedremo

Dettagli

Introduzione data warehose. Gian Luigi Ferrari Dipartimento di Informatica Università di Pisa. Data Warehouse

Introduzione data warehose. Gian Luigi Ferrari Dipartimento di Informatica Università di Pisa. Data Warehouse Introduzione data warehose Gian Luigi Ferrari Dipartimento di Informatica Università di Pisa Data Warehouse Che cosa e un data warehouse? Quali sono i modelli dei dati per data warehouse Come si progetta

Dettagli

Data warehouse. Architettura complessiva con OLTP e OLAP OLTP. Sistemi di supporto alle decisioni

Data warehouse. Architettura complessiva con OLTP e OLAP OLTP. Sistemi di supporto alle decisioni Data warehouse Data warehouse La crescita dell importanza dell analisi dei dati ha portato ad una separazione architetturale dell ambiente transazionale (OLTP on-line transaction processing) da quello

Dettagli

On Line Analytical Processing

On Line Analytical Processing On Line Analytical Processing Data integra solitamente Warehouse(magazzino dati) èun sorgenti un unico schema globalel informazione estratta da piu puo replicazioneai puo essere èinterrogabile, non modificabile

Dettagli

Data Warehousing e Data Mining

Data Warehousing e Data Mining Università degli Studi di Firenze Dipartimento di Sistemi e Informatica A.A. 2011-2012 I primi passi Data Warehousing e Data Mining Parte 2 Docente: Alessandro Gori a.gori@unifi.it OLTP vs. OLAP OLTP vs.

Dettagli

Data warehousing e OLAP

Data warehousing e OLAP Data warehousing e OLAP Introduzione Il contesto, processi aziendali Decision Support Systems Sistemi di Data Warehousing Data mart Architettura Modellazione Concettuale Star Schema, Dimensioni, Livelli

Dettagli

Data warehousing con SQL Server

Data warehousing con SQL Server Data warehousing con SQL Server SQL Server è un RDBMS (Relational DataBase Management System) Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data warehousing

Dettagli

OLAP On Line Analytical Processing

OLAP On Line Analytical Processing OLAP On Line Analytical Processing Alfredo Cuzzocrea DEIS Dipartimento di Elettronica, Informatica e Sistemistica Università della Calabria cuzzocrea@si.deis.unical.it Testo di Riferimento: J. Han, M.

Dettagli

Data Warehousing (DW)

Data Warehousing (DW) Data Warehousing (DW) Il Data Warehousing è un processo per estrarre e integrare dati storici da sistemi transazionali (OLTP) diversi e disomogenei, e da usare come supporto al sistema di decisione aziendale

Dettagli

Data Warehousing. Argomenti della lezione. Rappresentazioni dei dati. Rappresentazione dei dati. Parte II Analisi multidimensionale

Data Warehousing. Argomenti della lezione. Rappresentazioni dei dati. Rappresentazione dei dati. Parte II Analisi multidimensionale Argomenti della lezione Data Warehousing Parte II Analisi multidimensionale richiami sul data warehousing organizzazione di un data warehouse l analisi multidimensionale data warehousing e internet strumenti

Dettagli

Sistemi per le decisioni Dai sistemi gestionali ai sistemi di governo

Sistemi per le decisioni Dai sistemi gestionali ai sistemi di governo Sistemi per le decisioni Dai sistemi gestionali ai sistemi di governo Obiettivi. Presentare l evoluzione dei sistemi informativi: da supporto alla operatività a supporto al momento decisionale Definire

Dettagli

Governo Digitale a.a. 2011/12

Governo Digitale a.a. 2011/12 Governo Digitale a.a. 2011/12 I sistemi di supporto alle decisioni ed il Data Warehouse Emiliano Casalicchio Agenda Introduzione i sistemi di supporto alle decisioni Data warehouse proprietà architettura

Dettagli

Data warehousing con SQL Server

Data warehousing con SQL Server Data warehousing con SQL Server! SQL Server è un RDBMS (Relational DataBase Management System)! Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data

Dettagli

Architetture per l analisi di dati

Architetture per l analisi di dati Architetture per l analisi di dati Basi di dati: Architetture e linee di evoluzione - Seconda edizione Capitolo 8 Appunti dalle lezioni Motivazioni I sistemi informatici permettono di aumentare la produttività

Dettagli

Data warehousing con SQL Server

Data warehousing con SQL Server Data warehousing con SQL Server! SQL Server è un RDBMS (Relational DataBase Management System)! Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data

Dettagli

Sistemi Informativi Aziendali I

Sistemi Informativi Aziendali I Modulo 6 Sistemi Informativi Aziendali I 1 Corso Sistemi Informativi Aziendali I - Modulo 6 Modulo 6 Integrare verso l alto e supportare Managers e Dirigenti nell Impresa: Decisioni più informate; Decisioni

Dettagli

Data Warehousing: concetti base e metodologie

Data Warehousing: concetti base e metodologie Data Warehousing: concetti base e metodologie Paolo Atzeni (con la collaborazione di Luca Cabibbo e Riccardo Torlone) Università di Roma Tre Dipartimento di Informatica e Automazione atzeni@dia.uniroma3.it

Dettagli

Data warehousing con SQL Server

Data warehousing con SQL Server Data warehousing con SQL Server SQL Server è un RDBMS (Relational DataBase Management System) Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data warehousing

Dettagli

PROGETTAZIONE E IMPLEMENTAZIONE DI UN DATAWAREHOUSE

PROGETTAZIONE E IMPLEMENTAZIONE DI UN DATAWAREHOUSE Tesi in: ARCHITETTURA DEI SISTEMI INFORMATIVI PROGETTAZIONE E IMPLEMENTAZIONE DI UN DATAWAREHOUSE IN UN AMBIENTE DI DISTRIBUZIONE FARMACEUTICA RELATORE: Prof. Crescenzio Gallo LAUREANDO: Alessandro Balducci

Dettagli

Breve introduzione ai data warehouse (per gli allievi che non hanno seguito BD2)

Breve introduzione ai data warehouse (per gli allievi che non hanno seguito BD2) Tecnologie per i sistemi informativi Breve introduzione ai data warehouse (per gli allievi che non hanno seguito BD2) Letizia Tanca lucidi tratti dal libro: Atzeni, Ceri, Paraboschi, Torlone Introduzione

Dettagli

Rassegna sui principi e sui sistemi di Data Warehousing

Rassegna sui principi e sui sistemi di Data Warehousing Università degli studi di Bologna FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI Rassegna sui principi e sui sistemi di Data Warehousing Tesi di laurea di: Emanuela Scionti Relatore: Chiar.mo Prof.Montesi

Dettagli

Data warehouse Introduzione

Data warehouse Introduzione Database and data mining group, Data warehouse Introduzione INTRODUZIONE - 1 Pag. 1 Database and data mining group, Supporto alle decisioni aziendali La maggior parte delle aziende dispone di enormi basi

Dettagli

Sistemi Informativi. Catena del valore di PORTER

Sistemi Informativi. Catena del valore di PORTER Sistemi Informativi Catena del valore di PORTER La catena del valore permette di considerare l'impresa come un sistema di attività generatrici del valore, inteso come il prezzo che il consumatore è disposto

Dettagli

Cosa è un data warehouse?

Cosa è un data warehouse? Argomenti della lezione Data Warehousing Parte I Introduzione al warehousing cosa è un data warehouse classificazione dei processi aziendali sistemi di supporto alle decisioni elaborazione OLTP e OLAP

Dettagli

SOMMARIO. 9- Basi di dati direzionali. Tipi di sistemi direzionali SISTEMI INFORMATIVI DIREZIONALI. Basi di Dati per la gestione dell Informazione

SOMMARIO. 9- Basi di dati direzionali. Tipi di sistemi direzionali SISTEMI INFORMATIVI DIREZIONALI. Basi di Dati per la gestione dell Informazione 1 SOMMARIO 2 9- Basi di dati direzionali Basi di Dati per la gestione dell Informazione A. Chianese, V. Moscato, A. Picariello, L. Sansone Sistemi Informativi Direzionali (SID) Architettura dei SID La

Dettagli

Sistemi Informativi Aziendali. Sistemi Informativi Aziendali. Sistemi Informativi Aziendali

Sistemi Informativi Aziendali. Sistemi Informativi Aziendali. Sistemi Informativi Aziendali DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI Introduzione al Data Warehousing per a. Modello Multidimensionale & OLAP 1 Cos è il Data Warehousing Collezione di metodi,

Dettagli

Introduzione al Data Warehousing

Introduzione al Data Warehousing Il problema - dati IPERVENDO Via Vai 111 P.I.11223344 Vendite II Trim. (Milioni!) Introduzione al Data Warehousing tecnologia abilitante per il data mining ACQUA MIN 0.40 LATTE INTERO 1.23 SPAZZ.DENTI

Dettagli

Business Intelligence & Data Mining. In ambiente Retail

Business Intelligence & Data Mining. In ambiente Retail Business Intelligence & Data Mining In ambiente Retail Business Intelligence Platform DATA SOURCES STAGING AREA DATA WAREHOUSE DECISION SUPPORT Application Databases Packaged application/erp Data DATA

Dettagli

Introduzione al data warehousing

Introduzione al data warehousing Introduzione al data warehousing, Riccardo Torlone aprile 2012 1 Motivazioni I sistemi informatici permettono di aumentare la produttività delle organizzazioni automatizzandone la gestione quotidiana dei

Dettagli

ANALISI DEI DATI. OLAP (On Line Analytical Processing) Data Warehousing Data Mining

ANALISI DEI DATI. OLAP (On Line Analytical Processing) Data Warehousing Data Mining ANALISI DEI DATI OLAP (On Line Analytical Processing) Data Warehousing Data Mining Dall OLTP all OLAP La tecnologia delle basi di dati è finalizzata prevalentemente alla gestione dei dati in linea, si

Dettagli

4 Introduzione al data warehousing

4 Introduzione al data warehousing Che cosa è un data warehouse? Introduzione al data warehousing 22 maggio 2001 Un data warehouse è una base di dati collezione di dati di grandi dimensioni, persistente e condivisa gestita in maniera efficace,

Dettagli

Sistema informativo. Combinazione di risorse umane, materiali e procedure per la gestione. (raccolta, archiviazione, elaborazione, scambio )

Sistema informativo. Combinazione di risorse umane, materiali e procedure per la gestione. (raccolta, archiviazione, elaborazione, scambio ) Data Warehousing 1 Ripasso 2 Sistema informativo Combinazione di risorse umane, materiali e procedure per la gestione (raccolta, archiviazione, elaborazione, scambio ) delle informazioni necessarie per

Dettagli

SQL Server BI Development Studio

SQL Server BI Development Studio Il Data warehouse SQL Server Business Intelligence Development Studio Analysis Service Sorgenti dati operazionali DB relazionali Fogli excel Data warehouse Staging Area e dati riconciliati Cubi Report

Dettagli

SQL Server 2005. Introduzione all uso di SQL Server e utilizzo delle opzioni Olap. Dutto Riccardo - SQL Server 2005.

SQL Server 2005. Introduzione all uso di SQL Server e utilizzo delle opzioni Olap. Dutto Riccardo - SQL Server 2005. SQL Server 2005 Introduzione all uso di SQL Server e utilizzo delle opzioni Olap SQL Server 2005 SQL Server Management Studio Gestione dei server OLAP e OLTP Gestione Utenti Creazione e gestione DB SQL

Dettagli

Informazioni generali sul corso

Informazioni generali sul corso Informazioni generali sul corso Principi di Datawarehouse 1 Obiettivi del corso Conoscere i Datawarehouse 2 1 Argomenti Il contesto I sistemi DSS Architettura DW Proprietà DW Utilizzo DW Elementi OLAP:

Dettagli

Introduzione alla Business Intelligence

Introduzione alla Business Intelligence SOMMARIO 1. DEFINIZIONE DI BUSINESS INTELLIGENCE...3 2. FINALITA DELLA BUSINESS INTELLIGENCE...4 3. DESTINATARI DELLA BUSINESS INTELLIGENCE...5 4. GLOSSARIO...7 BIM 3.1 Introduzione alla Pag. 2/ 9 1.DEFINIZIONE

Dettagli

Relazione sul data warehouse e sul data mining

Relazione sul data warehouse e sul data mining Relazione sul data warehouse e sul data mining INTRODUZIONE Inquadrando il sistema informativo aziendale automatizzato come costituito dall insieme delle risorse messe a disposizione della tecnologia,

Dettagli

Introduzione ad OLAP (On-Line Analytical Processing)

Introduzione ad OLAP (On-Line Analytical Processing) Introduzione ad OLAP (On-Line Analytical Processing) Metodi e Modelli per il Supporto alle Decisioni 2002 Dipartimento di Informatica Sistemistica e Telematica (Dist) Il termine OLAP e l acronimo di On-Line

Dettagli

Estensioni del linguaggio SQL per interrogazioni OLAP

Estensioni del linguaggio SQL per interrogazioni OLAP Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Estensioni del linguaggio SQL per interrogazioni OLAP Outline! Esempio introduttivo e motivazioni! Introduzione al modello

Dettagli

Misure. Definizione delle misure

Misure. Definizione delle misure Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Misure In parte dal Capitolo 5 del libro Data Warehouse - teoria e pratica della Progettazione Autori: Matteo Golfarelli,

Dettagli

Data mining e rischi aziendali

Data mining e rischi aziendali Data mining e rischi aziendali Antonella Ferrari La piramide delle componenti di un ambiente di Bi Decision maker La decisione migliore Decisioni Ottimizzazione Scelta tra alternative Modelli di apprendimento

Dettagli

Introduzione alla Business Intelligence. E-mail: infobusiness@zucchetti.it

Introduzione alla Business Intelligence. E-mail: infobusiness@zucchetti.it Introduzione alla Business Intelligence E-mail: infobusiness@zucchetti.it Introduzione alla Business Intelligence Introduzione Definizione di Business Intelligence: insieme di processi per raccogliere

Dettagli

Il modello dimensionale

Il modello dimensionale aprile 2012 1 L organizzazione dei dati del data warehouse costituisce la pietra angolare dell intero sistema DW/BI le applicazioni BI, di supporto alle decisioni, accedono i dati direttamente dal DW l

Dettagli

Sistemi direzionali e modello multidimensionale. Prof. Piercarlo Giolito

Sistemi direzionali e modello multidimensionale. Prof. Piercarlo Giolito Sistemi direzionali e modello multidimensionale Prof. Piercarlo Giolito 1 Data warehousing e tecnologia OLAP Argomenti trattati. Evoluzione dei Sistemi Informativi Decisionali Il modello dei dati multidimensionale

Dettagli

Business Intelligence CRM

Business Intelligence CRM Business Intelligence CRM CRM! Customer relationship management:! L acronimo CRM (customer relationship management) significa letteralmente gestione della relazione con il cliente ;! la strategia e il

Dettagli

Ambienti Operativi per OLAP. Casi di Studio

Ambienti Operativi per OLAP. Casi di Studio Ambienti Operativi per OLAP. Casi di Studio Alfredo Cuzzocrea DEIS Dipartimento di Elettronica, Informatica e Sistemistica Università della Calabria cuzzocrea@deis.unical.it Sommario Installazione e Configurazione

Dettagli

02/mag/2012. Il Modello Multidimensionale. Il Modello Multidimensionale. Il Modello Multidimensionale. Il Modello Multidimensionale

02/mag/2012. Il Modello Multidimensionale. Il Modello Multidimensionale. Il Modello Multidimensionale. Il Modello Multidimensionale Modello semplice ed intuitivo Si presta bene a descrivere dei FATTI in modo grafico (CUBO o IPERCUBO) Es. di FATTI: Vendite Spedizioni Ricoveri Interventi chirurgici Andamento borsistico 62 Un cubo multidimensionale

Dettagli

Introduzione al Data Mining

Introduzione al Data Mining Introduzione al Data Mining Sistemi informativi per le Decisioni Slide a cura di Prof. Claudio Sartori Evoluzione della tecnologia dell informazione (IT) (Han & Kamber, 2001) Percorso evolutivo iniziato

Dettagli

Introduzione. La misurazione dei sistemi di Data Warehouse. Definizioni & Modelli. Sommario. Data Warehousing. Introduzione. Luca Santillo (CFPS)

Introduzione. La misurazione dei sistemi di Data Warehouse. Definizioni & Modelli. Sommario. Data Warehousing. Introduzione. Luca Santillo (CFPS) Introduzione La misurazione dei sistemi di Data Warehouse Luca Santillo (CFPS) AIPA, 17/5/01 In pratica I concetti generali, le definizioni e le regole di conteggio possono essere difficili da applicare

Dettagli

Sviluppo Applicazione di BI/DWH. con tecnologia Microsoft. per il supporto della catena logistica

Sviluppo Applicazione di BI/DWH. con tecnologia Microsoft. per il supporto della catena logistica UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA Dipartimento di Ingegneria Enzo Ferrari di Modena Corso di Laurea Magistrale in Ingegneria Informatica (270/04) Sviluppo Applicazione di BI/DWH con tecnologia

Dettagli

OLAP (On Line Analytical Processing)

OLAP (On Line Analytical Processing) OLAP (On Line Analytical Processing) Con il termine OLAP si intende la possibilità di effettuare analisi dei dati su strutture multidimensionali in maniera rapida, flessibile ed efficiente, attraverso

Dettagli

MODELLI DEI DATI PER DW DAI DATI ALLE DECISIONI. Per definire la struttura di un DW si usano i seguenti formalismi, detti modelli dei dati:

MODELLI DEI DATI PER DW DAI DATI ALLE DECISIONI. Per definire la struttura di un DW si usano i seguenti formalismi, detti modelli dei dati: DAI DATI ALLE DECISIONI MODELLI DEI DATI PER DW Le aziende per competere devono usare metodi di analisi, con tecniche di Business Intelligence, dei dati interni, accumulati nel tempo, e di dati esterni,

Dettagli

SQL Server. Applicazioni principali

SQL Server. Applicazioni principali SQL Server Introduzione all uso di SQL Server e utilizzo delle opzioni OLAP Applicazioni principali SQL Server Enterprise Manager Gestione generale di SQL Server Gestione utenti Creazione e gestione dei

Dettagli

ht://miner Un sistema open-source di data mining e data warehousing per lo studio dei comportamenti degli utenti su Internet

ht://miner Un sistema open-source di data mining e data warehousing per lo studio dei comportamenti degli utenti su Internet ht://miner Un sistema open-source di data mining e data warehousing per lo studio dei comportamenti degli utenti su Internet Gabriele Bartolini Comune di Prato Sistema Informativo Servizi di E-government

Dettagli

Knowledge Discovery e Data Mining

Knowledge Discovery e Data Mining Sommario Knowledge Discovery e Mining Introduzione Motivazioni ed applicazioni ll processo di KDD Fasi e caratteristiche Le tecniche di DM Classificazione e regressione Scoperta di regole associative Clustering

Dettagli

Lezione 9. Microsoft Analysis Services: Principi e Funzionalità

Lezione 9. Microsoft Analysis Services: Principi e Funzionalità Lezione 9 Microsoft Analysis Services: Principi e Funzionalità MS Analysis Services (OLAP Server) E l implementazione Microsoft di OLAP Server Offre buone prestazione per realtà aziendali medie/grandi

Dettagli

Business Intelligence: Data warehouse & Data mining

Business Intelligence: Data warehouse & Data mining Business Intelligence Business Intelligence: Data warehouse & Data mining Termine generico per indicare: un insieme di processi per raccogliere ed analizzare informazioni strategiche la tecnologia utilizzata

Dettagli

Applicazioni OLAP in ambiente Analysis Service

Applicazioni OLAP in ambiente Analysis Service Applicazioni OLAP in ambiente Analysis Service Pasquale De Meo DIMET Università Mediterranea di Reggio Calabria Via Graziella, Località Feo di Vito demeo@unirc.it Corso di Sistemi Informativi- A.A. 2004-2005

Dettagli

Introduzione al Data Warehousing

Introduzione al Data Warehousing Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Introduzione al Data Warehousing Molte di queste slide sono state realizzate dal Prof. Stefano Rizzi (http://www-db.deis.unibo.it/~srizzi/)

Dettagli

Basi di Dati Complementi Esercitazione su Data Warehouse

Basi di Dati Complementi Esercitazione su Data Warehouse Sommario Basi di Dati Complementi Esercitazione su Data Warehouse 1. Riassunto concetti principali dalle slide della lezione di teoria 2.Studio di caso : progettazione di un Data Warehouse di una catena

Dettagli

Data warehouse (parte 1)

Data warehouse (parte 1) Data warehouse (parte 1) La maggior parte delle aziende dispone di enormi basi di dati contenenti dati di tipo operativo: queste basi di dati costituiscono una potenziale miniera di informazioni utili.

Dettagli

Data Mining e Analisi dei Dati

Data Mining e Analisi dei Dati e Analisi dei Dati Rosaria Lombardo Dipartimento di Economia, Seconda Università di Napoli La scienza che estrae utili informazioni da grandi databases è conosciuta come E una disciplina nuova che interseca

Dettagli

SISTEMI INFORMATIVI AZIENDALI

SISTEMI INFORMATIVI AZIENDALI SISTEMI INFORMATIVI AZIENDALI Prof. Andrea Borghesan venus.unive.it/borg borg@unive.it Ricevimento: Alla fine di ogni lezione Modalità esame: scritto 1 Sistemi informazionali La crescente diffusione dei

Dettagli

Lezione 9. Ambienti Operativi per OLAP Casi di Studio 08/03/2010 1

Lezione 9. Ambienti Operativi per OLAP Casi di Studio 08/03/2010 1 Lezione 9 Ambienti Operativi per OLAP Casi di Studio 08/03/2010 1 Ambienti Operativi per OLAP. Casi di Studio Alfredo Cuzzocrea DEIS Dipartimento di Elettronica, Informatica e Sistemistica Università della

Dettagli

Database Commerciali/ Marketing. Indice: 1. Gli elementi chiave del db commerciale/ marketing 2. Come si costruisce un db commerciale/ marketing

Database Commerciali/ Marketing. Indice: 1. Gli elementi chiave del db commerciale/ marketing 2. Come si costruisce un db commerciale/ marketing Database Commerciali/ Marketing Indice: 1. Gli elementi chiave del db commerciale/ marketing 2. Come si costruisce un db commerciale/ marketing Database Commerciali/ Marketing Gli elementi chiave del db

Dettagli

IT FOR BUSINESS AND FINANCE

IT FOR BUSINESS AND FINANCE IT FOR BUSINESS AND FINANCE Business Intelligence Siena 14 aprile 2011 AGENDA Cos è la Business Intelligence Terminologia Perché la Business Intelligence La Piramide Informativa Macro Architettura Obiettivi

Dettagli

Data Warehousing. Esercitazione 1

Data Warehousing. Esercitazione 1 Esercitazione 1 IBM DB2 UDB DB2 Universal Database Suite di strumenti per la gestione dei dati Funzioni avanzate per soluzioni business intelligence Dispone di strumenti di sviluppo del data warehouse

Dettagli

Data Warehouse Architettura e Progettazione

Data Warehouse Architettura e Progettazione Introduzione Data Warehouse Architettura! Nei seguenti lucidi verrà fornita una panoramica del mondo dei Data Warehouse.! Verranno riportate diverse definizioni per identificare i molteplici aspetti che

Dettagli

Progettazione Logica. Sviluppo di un Database/DataWarehouse

Progettazione Logica. Sviluppo di un Database/DataWarehouse Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Progettazione Logica Dal Capitolo 8 e 9 del libro Data Warehouse - teoria e pratica della Progettazione Autori: Matteo

Dettagli

PDF created with pdffactory trial version www.pdffactory.com. Il processo di KDD

PDF created with pdffactory trial version www.pdffactory.com. Il processo di KDD Il processo di KDD Introduzione Crescita notevole degli strumenti e delle tecniche per generare e raccogliere dati (introduzione codici a barre, transazioni economiche tramite carta di credito, dati da

Dettagli

BI: la genesi di un progetto Gruppo FINSA

BI: la genesi di un progetto Gruppo FINSA BI: la genesi di un progetto Gruppo FINSA Maggio 2008 Il Gruppo Finsa Nazionale ed internazionale Quattro società integrate con più di 100 effettivi su 4 sedi operative in Italia Roma Milano Torino Genova

Dettagli

Caratteristiche principali. Contesti di utilizzo

Caratteristiche principali. Contesti di utilizzo Dalle basi di dati distribuite alle BASI DI DATI FEDERATE Antonella Poggi Dipartimento di Informatica e Sistemistica Antonio Ruberti Università di Roma La Sapienza Anno Accademico 2006/2007 http://www.dis.uniroma1.it/

Dettagli

Lezione 1. Introduzione e Modellazione Concettuale

Lezione 1. Introduzione e Modellazione Concettuale Lezione 1 Introduzione e Modellazione Concettuale 1 Tipi di Database ed Applicazioni Database Numerici e Testuali Database Multimediali Geographic Information Systems (GIS) Data Warehouses Real-time and

Dettagli

Supporto alle decisioni e strategie commerciali/mercati/prodotti/forza vendita;

Supporto alle decisioni e strategie commerciali/mercati/prodotti/forza vendita; .netbin. è un potentissimo strumento SVILUPPATO DA GIEMME INFORMATICA di analisi dei dati con esposizione dei dati in forma numerica e grafica con un interfaccia visuale di facile utilizzo, organizzata

Dettagli

Business Intelligence

Business Intelligence aggregazione dati Business Intelligence analytic applications query d a t a w a r e h o u s e aggregazione budget sales inquiry data mining Decision Support Systems MIS ERP data management Data Modeling

Dettagli

SISTEMI INFORMATIVI AZIENDALI

SISTEMI INFORMATIVI AZIENDALI SISTEMI INFORMATIVI AZIENDALI Prof. Andrea Borghesan venus.unive.it/borg borg@unive.it Ricevimento: Alla fine di ogni lezione Modalità esame: scritto 1 Data Mining. Introduzione La crescente popolarità

Dettagli

INDICE CONROLLO DI GESTIONE E SISTEMI INFORMATIVI AZIENDALI IL CONTROLLO DI GESTIONE E GLI ALTRI MECCANISMI OPERATIVI

INDICE CONROLLO DI GESTIONE E SISTEMI INFORMATIVI AZIENDALI IL CONTROLLO DI GESTIONE E GLI ALTRI MECCANISMI OPERATIVI INDICE PREMESSA...1 PARTE PRIMA CONROLLO DI GESTIONE E SISTEMI INFORMATIVI AZIENDALI CAPITOLO PRIMO IL CONTROLLO DI GESTIONE E GLI ALTRI MECCANISMI OPERATIVI 1. I concetti di pianificazione strategica

Dettagli

CRM analitico: introduzione. Andrea Farinet

CRM analitico: introduzione. Andrea Farinet CRM analitico: introduzione Andrea Farinet 1 1. Agenda Definizione di Customer Relationship Management (CRM) Le caratteristiche strutturali di un progetto di Customer Relationship Management Il Customer

Dettagli

Ferrara, 18 gennaio 2011. Gianluca Nostro Senior Sales Consultant Oracle Italia

Ferrara, 18 gennaio 2011. Gianluca Nostro Senior Sales Consultant Oracle Italia Ferrara, 18 gennaio 2011 Gianluca Nostro Senior Sales Consultant Oracle Italia Agenda 18 gennaio 2011 Kick Off Oracle - ICOS Business Intelligence: stato dell arte in Italia Oracle Business Intelligence

Dettagli

B C I un altro punto di vista Introduzione

B C I un altro punto di vista Introduzione Bollicine Community B C Intelligence B C I un altro punto di vista Introduzione Graziano Guazzi General Manager Data Flow Settembre 2007 pag, 1 Cosa misurare La definizione di quale domanda di mercato

Dettagli

Data Warehouse: una collezione di dati in supporto al processo decisionale del management

Data Warehouse: una collezione di dati in supporto al processo decisionale del management Data Warehouse Data Warehouse: una collezione di dati in supporto al processo decisionale del management Orientata al soggetto Integrata Dipendente dal tempo Non volatile Bill Inmon ORIENTATA AL SOGGETTO:

Dettagli

Introduzione alle tecniche di Data Mining. Prof. Giovanni Giuffrida

Introduzione alle tecniche di Data Mining. Prof. Giovanni Giuffrida Introduzione alle tecniche di Data Mining Prof. Giovanni Giuffrida Programma Contenuti Introduzione al Data Mining Mining pattern frequenti, regole associative Alberi decisionali Clustering Esempio di

Dettagli

Che cosa è SADAS INFOMANAGER (1982) Gestione Archivi Storici (1992) SADAS (2005) Ambiente MVS OVERMILLION (1990) Client-Server e multipiattaforma

Che cosa è SADAS INFOMANAGER (1982) Gestione Archivi Storici (1992) SADAS (2005) Ambiente MVS OVERMILLION (1990) Client-Server e multipiattaforma 1 Che cosa è SADAS SADAS è un DBMS column-based progettato in modo specifico per ottenere grandi performance nell interrogazione di archivi statici di grandi dimensioni (analisi data warehouse, OLAP).

Dettagli

Il Data Warehousing. Prof. Stefano Rizzi Alma Mater Studiorum - Università di Bologna

Il Data Warehousing. Prof. Stefano Rizzi Alma Mater Studiorum - Università di Bologna Il Data Warehousing Prof. Stefano Rizzi Alma Mater Studiorum - Università di Bologna 1 Sommario Il ruolo della business intelligence e del sistema informativo 9 Il ruolo dell informatica in azienda 9 La

Dettagli

Per capire meglio l ambito di applicazione di un DWhouse consideriamo la piramide di Anthony, L. Direzionale. L. Manageriale. L.

Per capire meglio l ambito di applicazione di un DWhouse consideriamo la piramide di Anthony, L. Direzionale. L. Manageriale. L. DATA WAREHOUSE Un Dataware House può essere definito come una base di dati di database. In molte aziende ad esempio ci potrebbero essere molti DB, per effettuare ricerche di diverso tipo, in funzione del

Dettagli

Lorenzo Braidi. Database design. Libro_datadesign.indb 1 23-11-2004 10:06:17

Lorenzo Braidi. Database design. Libro_datadesign.indb 1 23-11-2004 10:06:17 Lorenzo Braidi Database design Libro_datadesign.indb 1 23-11-2004 10:06:17 Sommario Introduzione...XI Capitolo 1 Le basi di dati relazionali... 1 Le basi di dati... 1 Un po di storia... 2 I database gerarchici...

Dettagli

Progetto Turismo Pisa. Sommario dei risultati

Progetto Turismo Pisa. Sommario dei risultati 2012 Progetto Turismo Pisa Sommario dei risultati 0 Studio realizzato per il Comune di Pisa da KddLab ISTI-CNR Pisa Sommario 1 Progetto Turismo Pisa: Sintesi dei risultati... 1 1.1 L Osservatorio Turistico

Dettagli

Miriam Gotti m.gotti@cineca.it

Miriam Gotti m.gotti@cineca.it Cenni sul Dat a Warehouse Ravenna 5 Novembre 2007 Miriam Gotti m.gotti@cineca.it www. cineca.it Agenda Fondamenti di Data Warehouse Modello Multidimensionale Analisi OLAP Introduzione a Statportal www.cineca.it

Dettagli

Università degli Studi di Modena e Reggio Emilia Facoltà di Ingegneria di Modena

Università degli Studi di Modena e Reggio Emilia Facoltà di Ingegneria di Modena Università degli Studi di Modena e Reggio Emilia Facoltà di Ingegneria di Modena Corso di Laurea Specialistica in Ingegneria Informatica Business Intelligence per le imprese: progetto e realizzazione di

Dettagli

DSCube. L analisi dei dati come strumento per i processi decisionali

DSCube. L analisi dei dati come strumento per i processi decisionali DSCube L analisi dei dati come strumento per i processi decisionali Analisi multi-dimensionale dei dati e reportistica per l azienda: DSCube Introduzione alla suite di programmi Analyzer Query Builder

Dettagli

SEGMENTAZIONE INNOVATIVA VS TRADIZIONALE

SEGMENTAZIONE INNOVATIVA VS TRADIZIONALE SEGMENTAZIONE INNOVATIVA VS TRADIZIONALE Arricchimento dei dati del sottoscrittore / user Approccio Tradizionale Raccolta dei dati personali tramite contratto (professione, dati sul nucleo familiare, livello

Dettagli

Misure (parte II) Gerarchie Incomplete

Misure (parte II) Gerarchie Incomplete Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Misure (parte II) Gerarchie Incomplete Esempio Schema di Fatto STUDENTE(STUDENTE,,REGIONE,), DF:! REGIONE (,,) REGIONE!

Dettagli

I sistemi di reporting e i rapporti direzionali

I sistemi di reporting e i rapporti direzionali I sistemi di reporting e i rapporti direzionali Reporting - Sintesi dei fenomeni aziendali secondo modelli preconfezionati e con frequenza e aggiornamento prestabiliti - contabile (dati economici) - extracontabile

Dettagli

SQL/OLAP. Estensioni OLAP in SQL

SQL/OLAP. Estensioni OLAP in SQL SQL/OLAP Estensioni OLAP in SQL 1 Definizione e calcolo delle misure Definire una misura significa specificare gli operatori di aggregazione rispetto a tutte le dimensioni del fatto Ipotesi: per ogni misura,

Dettagli

Introduzione al Data Warehousing per Sistemi Informativi Aziendali

Introduzione al Data Warehousing per Sistemi Informativi Aziendali Università La Sapienza di Roma AA 2009-2010 Prof. Introduzione al Data Warehousing per Cos è il Data Warehousing Collezione di metodi, tecnologie e strumenti di ausilio al lavoratore della conoscenza (manager,

Dettagli

Progetto Turismo Pisa

Progetto Turismo Pisa 2012 Progetto Turismo Pisa Deliverable D2.2 Realizzazione del prototipo per la navigazione dell infrastruttura di conoscenza Coordinamento: Fosca Fosca Giannotti Salvatore Rinzivillo KDD KDD Lab, Lab,

Dettagli

SISTEMI INFORMATIVI AZIENDALI

SISTEMI INFORMATIVI AZIENDALI SISTEMI INFORMATIVI AZIENDALI Prof. Andrea Borghesan venus.unive.it/borg borg@unive.it Ricevimento: Alla fine di ogni lezione Modalità esame: scritto 1 Data Warehousing. Introduzione 1/2 I data warehousing

Dettagli