Esercizi di approfondimento di Analisi IA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi di approfondimento di Analisi IA"

Transcript

1 Esercizi di approfodimeto di Aalisi IA 4 geaio Estremo superiore/iferiore, classi cotigue, archimedeità 1.1. Mostrare che A = {x R : x > 0, x < } ha u estremo superiore ξ, ed è ξ =. 1.. Siao A, B due sottoisiemi o vuoti di R, co A B. Provare che (A, B) formao ua coppia di classi cotigue se, e solo se, per ogi ε > 0 esistoo a ε A e b ε B tali che b ε a ε < ε. { } { } 1.3. Provare che gli isiemi A = + 1 : N e B = 1 : N formao ua coppia di classi cotigue Siao A, B due sottoisiemi o vuoti di R, co A B. Provare che (A, B) formao ua coppia di classi cotigue se, e solo se, sup A = if B Sia S R superiormete limitato. É vero che (S, S ) è ua coppia di classi cotigue? Provare l affermazioe Provare che l archimedeità di R implica la o limitatezza di N (sugg: qui o coviee dimostrarlo per assurdo) Sia A R. Provare che sup A = + se e solo se per ogi M R esiste a A tale che M a. Desità.1. Sia a > 0. Mostrare che {x Q : x > 0, x < a} ha u estremo superiore ξ, ed è ξ = a... Sia θ irrazioale. (a) Sia q Q: è vero che qθ / Q? (b) Dedurre che i umeri irrazioali soo desi i R. 3 Isiemi bee ordiati 3.1. Si cosideri l isieme M = {m 1 : m, N \ {0} }. Lo scopo dell esercizio cosiste el provare che M è bee ordiato, cioè che ogi sottoisieme o vuoto di M ha miimo. (a) Sia m 1; descrivere [m 1, m[ M. Sia ora S M. (b) Provare che esiste m 1 miimo tra gli m 1 tali che [m 1, m[ S ; (c) Provare che esiste il miimo dell isieme { 1 : m 1 S}; (d) Dedurre dai puti precedeti che S ha miimo. 3.. Provare che Z o è limitato. 1

2 4 Iduzioe 4.1. Ituire ua formula per la somma dei primi 1 umeri aturali dispari ( 1), dimostrarla poi per iduzioe. 4.. Sia φ : N N strettamete crescete. Provare che φ() per ogi. 5 Topologia di base 5.1. Dire quali dei segueti isiemi soo chiusi e quali soo aperti: [0, + [, N, N { + 1/( + 1) : N}. 5.. Sia S u sottoisieme o vuoto di R. Provare che l isieme dei maggiorati di S è chiuso. { } L isieme A = : N è chiuso? è aperto? Stesse domade per l isieme A {0} Z { } {+ } è chiuso, è aperto i R? 5.5. Sia S chiuso o vuoto iferiormete limitato. Provare che S ha miimo Sia S u sottoisieme aperto e chiuso o vuoto di R. Provare che S = R. (Sugg: se a / S cosiderare l isieme S [a, + [... e utilizzare l esercizio precedete) 6 Successioi 6.1. Usado la defiizioe di limite, provare che lim + ( 1) = +, lim =. 6.. Calcolare lim + ( ) Estrarre dalla successioe ( 1) due sottosuccessioi covergeti a limiti distiti Siao (x ) ua successioe e l R. Scrivere la defiizioe di lim + x = l, egare poi tale affermazioe Sia (x ) ua successioe, e vi sia l R tale che ogi sottosuccessioe ammette ua sottosuccessioe che tede ad l. È vero che lim x = l? (caratterizzazioe del sup co le successioi) Sia S u sottoisieme o vuoto, superiormete limitato di R. Provare che z = sup S se, e solo se (a) z S; (b) c è ua successioe di elemeti di S che coverge a z Sia (x ) ua successioe e S = {x : N}. (a) È vero i geerale che S è chiuso? (b) Rispodere alla domada precedete suppoedo che (c) Suppoiamo ora che 6.8. Sia (x ) ua successioe e si suppoga che: (x k ) k e (x k+1 ) k siao mootoe; lim k (x k x k+1 ) = 0 Provare che (x ) ammette limite. lim x = + ; + lim x = l R. È vero che S {l} è chiuso? +

3 7 Successioi defiite per ricorreza 7.1. Siao I itervallo chiuso, f : I I cotiua, e (x ) successioe defiita da (a) Si suppoga che x 0 I, x +1 = f(x ) 0. lim x = l. Provare che l è puto fisso di f; + (b) Si suppoga che esista c I tale che f f(c) = c. Provare che f ha u puto fisso (sugg: cosiderare f sull itervallo di estremi c e f(c)) 8 Successioi complesse 8.1. (Il teorema di Jacobi) Sia q = e itπ co t R, S = {q : N}. (a) Si suppoga t Q. Provare che la successioe (q ) è periodica, cioè che assume solo u umero fiito di valori distiti, dire per quali valori di t essa ammette limite; (b) Si suppoga t / Q. i. Provare che la successioe (q ) assume ifiiti valori; ii. Provare che (q ) ha ua sottosuccessioe covergete: dedurre che per ogi ε > 0 esistoo m tali che 0 < q q m < ε; iii. dedurre che per ogi ε > 0 esiste s S tale che 0 < s 1 < ε; iv. provare che S è deso sul circolo uitario (sugg: usare il fatto che se 0 < r < y x allora esiste N co x < r < y...). (c) Dedurre dai puti precedeti il comportameto delle successioi (cos(t)), (si(t)) 9 Serie a secoda dei valori di t R Discutere, al variare di a > 0 la covergeza di 9.. Coverge la serie 9.3. Coverge la serie =1 =1 log? log ? =1 + 5 a (a) Per quali x R coverge la serie 1 x! + x4 4! +...? (b) Posto f(x) uguale alla somma della serie precedete (per gli x ei quali la serie coverge): i. Mostrare che f è fuzioe pari; ii. Per quali x si può applicare il criterio di Leibiz a partire dal primo termie? iii. Mostrare che i u itoro di 0 si ha 0 x! x4 x 1 f(x) 4!! ; ( π ) iv. Forire ua approssimazioe di f(1) e di f a meo di 1/ Defiizioe di serie covergete. E vero che ua serie coverge se il suo termie geerale tede a 0? E vero il viceversa? Giustificare le affermazioi. 3

4 9.6. Siao (a ) successioe reale, e ρ > 0 tali che la serie a x coverge assolutamete. = Calcolare la somma della serie =1 a ρ coverge. Sia x < ρ. Provare che la serie = Calcolare la somma della serie 9.9. Calcolare la somma della serie Studiare al covergeza della serie =1 ( 1)( + 1). =1 = ( ) Puti di accumulazioe, frotiera, itero, chiusura Sia p di accumulazioe per E R. Provare che ogi itoro di p cotiee ifiiti puti di E Sia S = {0} {1/ : N 1 }. Determiare itero, chiusura e frotiera di S Sia A u sottoisieme aperto di R. Dare ua risposta motivata a tutti i quesiti: (a) è vero che ogi puto di A è di accumulazioe? (b) è vero che la frotiera di A è coteuta i A? (c) è vero che A ha massimo? (d) è vero che A è u itervallo del tipo ]a, b[? Sia I itervallo chiuso di R, e S I. Sia S deso i I per l ordie: per ogi x < y i I esista s S tale che x < s < y. Provare che S = I, cioè per ogi α I esiste (s ) i S tale che lim s = α; Si suppoga che S = I: provare che S è deso i I per l ordie. 11 Fuzioi trigoometriche, iperboliche e loro iverse Provare che si(x) è strettamete crescete su [ π/, π/]. Abbozzare il grafico dell iversa, detta fuzioe arcoseo: arcsi : [ 1, 1] [ π/, π/] Provare che cos(x) è strettamete crescete su [0, π]. Abbozzare il grafico dell iversa, detta fuzioe arcocoseo: arccos : [ 1, 1] [0, π] Provare che ta(x) := si x è defiita su R \ {π/ + πz}, periodica di periodo π, ed è strettamete cos x crescete su ] π/, π/[. Calcolare i limiti agli estremi di tale itervallo. Abbozzare il grafico dell iversa di ta(x) ristretta a ] π/, π/[, detta fuzioe arcotagete: arcta :?? ] π/, π/[. 4

5 11.4. La fuzioe seo iperbolico è defiita da sih(x) = ex e x per ogi x R. Provare che sih è strettamete crescete e dispari sul suo domiio, determiare i limiti agli estremi. Abbozzare il grafico della fuzioe sih e dell iversa settsih :?? R, e scrivere ua formula esplicita per settsih(y) i termii di fuzioi ote. Scrivere la fuzioe sih(x) come somma di ua serie di poteze (sugg: usare l espasioe di e x...) La fuzioe coseo iperbolico è defiita da cosh(x) = ex + e x per ogi x R. Provare che cosh è pari, strettamete crescete su [0, + [, determiare i limiti i 0 e all ifiito. Abbozzare il grafico di cosh e dell iversa settcosh :?? [0, + [ di cosh ristretta a [0, + [; scrivere ua formula esplicita per settcosh(y) i termii di fuzioi ote. Scrivere la fuzioe cosh(x) come somma di ua serie di poteze (sugg: usare l espasioe di e x...) La fuzioe tagete iperbolica è defiita da tah(x) = sih(x) per ogi x R. Provare che tah è cosh(x) dispari e strettamete crescete su R, determiare i limiti agli estremi del domiio. Abbozzare il grafico dell iversa setttah :?? R, e scrivere ua formula esplicita per setttah(y) i termii di fuzioi ote. 1 Limiti, Fuzioi cotiue, topologia idotta 1.1. Sia f fuzioe defiita attoro a 0. Si cosiderio le sequeti proposizioi: a) f(x) = 4 + x 5x + o(x ) per x 0; b) f(x) 4 + x 5x + o(x ) per x 0; c) f(x) 4 + x 5x per x 0; d) f(x) 4 per x 0; e) f(x) = 4 + x 5x + o(x) per x 0. f) f(x) = 4 + o(1) per x 0. Determiare le implicazioi ed equivaleze tra a) b) c) d) e). 1.. Sia f : D R R. Provare che f è cotiua se e solo se per ogi chiuso F di R l atiimmagie f 1 (F ) di F tramite f è chiuso ella topologia relativa di D Siao E D R. Mostrare che E è aperto ella topologia relativa di D se e solo se per oigi c E esiste u itoro U di c i R tale che U D E Siao S D R o C. Si dice che S è deso i D se D S, cioè se ogi elemeto di D è limite di ua successioe i S. Siao f, g : D R tali che f = g su S. Provare che f = g su D. { } Sia D = [, 0[ B, dove B := : N \ {0}. (a) B è chiuso i R? è chiuso i D per la topologia idotta? (b) [, 0[ è aperto? è aperto i D per la topologia idotta? (c) L isieme {1/, 1} è itoro di 1 i R? e i D per la topologia idotta? 1.6. {0} è aperto i N per la topologia idotta: vero o falso? 1.7. Se ua fuzioe ha miimo i u puto p itero al domiio allora, almeo localmete, è vero che la fuzioe è decrescete a siistra di p e crescete a destra di p: vero (forire dim) o falso (forire u cotroesempio)? 1.8. La fuzioe f(x) = si x + log 4 x + cos 1 ha miimo assoluto su [1, + [? x 1.9. Siao I itervallo, f : I R localmete costate (per ogi x I vi è u itoro di x i I sul quale f è costate). Provare che f costate Sia f : D R R mootoa. Provare che le discotiuità di f formao u isieme al più umerabile. Sugg: cosiderare f(d): le discotiuità corrispodoo ad itervalli o degeeri... 5

6 13 Compattezza, estremi globali e locali Sia (x ) successioe tale che ogi sua sottosuccessioe che ha limite i R coverga ad u dato valore l R idipedete dalla sottosuccessioe data. La successioe è limitata?è vero che la successioe coverge? 13.. Sia f : [a, b[ R cotiua, co lim x b f(x) = +. Provare che f ha miimo assoluto Sia f :]a, b[ R cotiua, co lim f(x) = lim f(x) +. Provare che f ha miimo assoluto. x b x a Forire i segueti esempi: (a) ua fuzioe cotiua su u itervallo chiuso che o ammette miimo assoluto; (b) ua fuzioe su u itervallo chiuso e limitato che o ammette miimo assoluto; (c) ua fuzioe cotiua su u itervallo limitato che o ammette miimo assoluto Sia I itervallo di R. Provare che f : I R ha u estremo (massimo o miimo) assoluto i c itero ad I se e solo se il rapporto icremetale da c, defiito da h(x) = f(x) f(c), x I \ {c} x c cambia di sego i c (h(x) 0 per x < c e h(x) 0 per x > c o viceversa) Provare che u isieme ifiito, limitato, ha almeo u puto di accumulazioe i R Sia f : [a, b] R cotiua e si suppoga che ogi puto di [a, b] sia miimo locale per f. Provare che f è costate. L affermazioe è vera se f o è cotiua? Sia f : [a, b] R cotiua e si suppoga che ogi puto di [a, b] sia miimo o massimo locale per f. Provare che f è costate. L affermazioe è vera se f o è cotiua? Sugg: sia p puto di massimo per f. Cosiderare C = {x [a, p] : f(y) = f(p) y [x, p]}. Provare che C = [a, p]. Aalogamete f(x) = f(p) a destra di p. Esempio:1 χ Sia f : [a, b] R cotiua e si suppoga che ogi puto di [a, b] sia miimo o massimo locale per f. Provare che f è costate. L affermazioe è vera se f o è cotiua? Esempio: χ [0,1] Q. Se f o è costate allora f([a, b]) è u itervallo o degeere. Cosideriamo la famiglia (umerabile) (I ) N degli itervalli del tipo [p, q] [a, b] co p, q Q. Per ogi N poiamo I mi := {x I : x miimo per f su I }, I max := {x I : x massimo per f su I }. f è costate su I mi. Ifatti se x, y I mi si ha sia f(x) f(y) che f(y) f(x). Aalogamete f è costate su I max. Ogi puto è estremo locale [a, b] = ( I mi Si ha quidi che f([a, b]) = ( f(i mi I max ). ) f(i max ) ) è al più umerabile: assurdo. 14 Iverse di fuzioi cotiue Provare l esisteza e al cotiuità del logaritmo, ammettedo le proprietà della fuzioe espoeziale Sia ϕ :]a, b[ ]c, d[ cotiua e biiettiva. Si suppoga che lim ϕ(x) < lim ϕ(x). x a + x b (a) Determiare tali limiti; (b) Determiare lim ϕ 1 (y) e lim ϕ 1 (y). y c + y d Sia f(x) = e x + log(x + 1), x I = [0, + [. (a) Determiare la mootoia di f e i limiti agli estremi del domiio. 6

7 (b) Determiare J := f(i). (c) Mostrare che f : I J è ivertibile, studiare la cotiuità e i limiti agli estremi di J dell iversa. (d) Determiare a, b, c R (se esistoo) tali che (e) Studiare (seza usare le derivate) il limite f 1 (y) = a + b(y 1) + c(y 1) + o 1 (y 1). f 1 (y) (y 1) lim y 1 (y 1). 7

Esercizi di Analisi Matematica A utili per la preparazione all esame scritto. File con soluzioni.

Esercizi di Analisi Matematica A utili per la preparazione all esame scritto. File con soluzioni. Esercizi di Aalisi Matematica A: soluzioi Es. Esercizi di Aalisi Matematica A utili per la preparazioe all esame scritto. File co soluzioi. PSfrag replacemets a.5.5.5.5 PSfrag replacemets 5 5 a b 4 3.5

Dettagli

Esercizi di Analisi Matematica 1 utili per la preparazione all esame scritto. File con soluzioni.

Esercizi di Analisi Matematica 1 utili per la preparazione all esame scritto. File con soluzioni. Esercizi di Aalisi Matematica. Paola Gervasio Es. Esercizi di Aalisi Matematica utili per la preparazioe all esame scritto. File co soluzioi. a.5.5.5.5 b 4 3.5 3.5.5.5 5 5 Figura 5 5.5 a 3 b 4 5.5 6 5

Dettagli

Foglio di esercizi N. 1. (Il logaritmo si intende in base naturale e dove non specificato. Il risultato comunque non dipende dalla scelta della base)

Foglio di esercizi N. 1. (Il logaritmo si intende in base naturale e dove non specificato. Il risultato comunque non dipende dalla scelta della base) Foglio di esercizi N. 1 (Il logaritmo si itede i base aturale e dove o specificato. Il risultato comuque o dipede dalla scelta della base) 1. Determiare il domiio della fuzioe 2. Determiare il domiio della

Dettagli

Programma dettagliato del Corso di Analisi 1

Programma dettagliato del Corso di Analisi 1 Programma dettagliato del Corso di Aalisi Ig. per l Ambiete e il Territorio, Ig. Civile, Ig. dei Trasporti a.a. 2006-2007 http://www.dmmm.uiroma.it/persoe/capitaelli I NUMERI E LE FUNZIONI REALI Itroduzioe

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1.

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1. Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 0: Riferimeti: R.Adams, Calcolo Differeziale - Si cosiglia vivamete di fare gli esercizi del testo. Successioi umeriche:

Dettagli

Esercizi proposti. f(x), f(x), f(x), f(x + 1), f(x) + 1. x 2 x 1 se x 1, 4 x se x > 1 2, 2).

Esercizi proposti. f(x), f(x), f(x), f(x + 1), f(x) + 1. x 2 x 1 se x 1, 4 x se x > 1 2, 2). Esercizi proposti 1. Risolvere la disequazioe + 1.. Disegare i grafici di a) y = 1 + + 3 ; b) y = 1 ; c) y = log 10 + 1). 3. Si cosideri la fuzioe f) = ; disegare i grafici di f), f), f), f + 1), f) +

Dettagli

Facoltà di Architettura Corso di Laurea in Architettura UE 1 I NUMERI E LE FUNZIONI REALI. Istituzioni di Matematica 1 (Canale A-L) a.a.

Facoltà di Architettura Corso di Laurea in Architettura UE 1 I NUMERI E LE FUNZIONI REALI. Istituzioni di Matematica 1 (Canale A-L) a.a. Facoltà di Architettura Corso di Laurea i Architettura UE Istituzioi di Matematica (Caale A-L) a.a. 200-20 http://www.dmmm.uiroma.it/persoe/capitaelli I NUMERI E LE FUNZIONI REALI Itroduzioe al corso.

Dettagli

Analisi Matematica I

Analisi Matematica I Uiversità di Pisa - orso di Laurea i Igegeria Edile-rchitettura alisi Matematica I Pisa, febbraio Domada La derivata della fuzioe f) log ) si è ) log )si B) log )cos ) log ) si cos loglog ) + si ) log

Dettagli

Esercizi sui limiti di successioni

Esercizi sui limiti di successioni AM0 - AA 03/4 ALFONSO SORRENTINO Esercizi sui iti di successioi Esercizio svolto a) Usado la defiizioe di ite, dimostare che: + 3 si π cos e ) e b) 0 Soluzioe Comiciamo da a) Vogliamo dimostrare che: ε

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

Paolo Perfetti, Dipartimento di matematica, II Università degli Studi di Roma, facoltà di Ingegneria

Paolo Perfetti, Dipartimento di matematica, II Università degli Studi di Roma, facoltà di Ingegneria Esercizi svolti a lezioe e o proveieti dal Marcellii Sbordoe La preseza della lettera C idica u esercizio da fare a casa. La capacità di svolgere tali esercizi è parte del bagaglio ecessario i sede di

Dettagli

Riassunto delle Esercitazioni di Analisi Matematica II

Riassunto delle Esercitazioni di Analisi Matematica II Riassuto delle Esercitazioi di Aalisi Matematica II C.d.L. i Matematica e Matematica per le Applicazioi - A. A. 2006-2007 Prof. Kevi R. Paye e Dott. Libor Vesely 1 Serie Numeriche - Mer. 28 marzo - due

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

ESERCIZI PER IL CORSO DI ANALISI MATEMATICA A

ESERCIZI PER IL CORSO DI ANALISI MATEMATICA A ESERCIZI PER IL CORSO DI ANALISI MATEMATICA A Igegeria Elettroica e delle Telecomuicazioi ao accademico 005 006 Gli esercizi idicati co presetao maggiori difficoltà teciche. Biomio di Newto. Sviluppare

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

a) la funzione costante k. Sia k un numero reale e consideriamo la funzione che ad ogni numero reale x associa k: x R k

a) la funzione costante k. Sia k un numero reale e consideriamo la funzione che ad ogni numero reale x associa k: x R k ALCUNE FUNZIONI ELEMENTARI ( E NON) E LORO GRAFICI (*) a) la fuzioe costate k. Sia k u umero reale e cosideriamo la fuzioe che ad ogi umero reale x associa k: x R k Tale fuzioe è detta fuzioe costate k;

Dettagli

Copyrighted. Collezione di esercizi di Analisi Matematica uno Università di Padova Scuola di Ingegneria A.A. 2016/2017 A.

Copyrighted. Collezione di esercizi di Analisi Matematica uno Università di Padova Scuola di Ingegneria A.A. 2016/2017 A. Collezioe di esercizi di Aalisi Matematica uo Uiversità di Padova Scuola di Igegeria A.A. 6/7 A. LANGUASCO Versioe del 9 ovembre 6 Versioe del 9 ovembre 6 p. Questo documeto è stato preparato esclusivamete

Dettagli

Istituzioni di Analisi Superiore Esercizi

Istituzioni di Analisi Superiore Esercizi Istituzioi di Aalisi Superiore Esercizi G.P.Leoardi 13 aprile 2010 Nota: gli esercizi delle sezioi 2 4 soo stati tratti i buoa parte da ua raccolta di esercizi di Aalisi Fuzioale ad opera di H.Brezis e

Dettagli

Serie numeriche e di funzioni - Esercizi svolti

Serie numeriche e di funzioni - Esercizi svolti Serie umeriche e di fuzioi - Esercizi svolti Serie umeriche Esercizio. Discutere la covergeza delle serie segueti a) 3, b) 5, c) 4! (4), d) ( ) e. Esercizio. Calcolare la somma delle serie segueti a) (

Dettagli

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10 Materiale didattico relativo al corso di Matematica geerale Prof. G. Rotudo a.a.2009/10 ATTENZIONE: questo materiale cotiee i lucidi utilizzati per le lezioi. NON sostituisce il libro, che deve essere

Dettagli

Programma (orientativo) secondo semestre 32 ore - 16 lezioni

Programma (orientativo) secondo semestre 32 ore - 16 lezioni Programma (orietativo) secodo semestre 32 ore - 6 lezioi 3 lezioi: successioi e serie 4 lezioi: itegrali 2-3 lezioi: equazioi differeziali 4 lezioi: sistemi di equazioi e calcolo vettoriale e matriciale

Dettagli

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri.

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri. Laboratorio di Matematica, A.A. 009-010; I modulo; Lezioi II e III - schema. Limiti e isiemi aperti; SB, Cap. 1 Successioi di vettori; SB, Par. 1.1, pp. 3-6 Itori sferici aperti. Nell aalisi i ua variabile

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

1 Esponenziale e logaritmo.

1 Esponenziale e logaritmo. Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

Esercizi sulle successioni

Esercizi sulle successioni Esercizi sulle successioi 1 Verificare, attraverso la defiizioe, che la successioe coverge a 2 3. a := 2 + 3 3 7 2 Verificare, attraverso la defiizioe, che la successioe coverge a 0. a := 4 + 3 3 5 + 7

Dettagli

15 - Successioni Numeriche e di Funzioni

15 - Successioni Numeriche e di Funzioni Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 15 - Successioi Numeriche e di Fuzioi Ao Accademico 2013/2014 M Tummiello, V Lacagia,

Dettagli

Cenni di topologia di R

Cenni di topologia di R Cei di topologia di R. Sottoisiemi dei umeri reali Studieremo le proprietà dei sottoisiemi dei umeri reali, R, che hao ad esempio la forma: = (, ) (,) 6 8 = [,] { ;6;8} { } = (, ) (,) [, + ) Defiizioe:

Dettagli

Ingegneria Elettronica, Informatica e delle Telecomunicazioni Prova scritta di ANALISI B - 23/06/2006

Ingegneria Elettronica, Informatica e delle Telecomunicazioni Prova scritta di ANALISI B - 23/06/2006 Igegeria Elettroica, Iformatica e delle Telecomuicazioi Prova scritta di ANALISI B - 23/06/2006 CORSO DI STUDI IN INGEGNERIA... NOME E COGNOME:... NUMERO DI MATRICOLA:... (scrivere ome e cogome ache su

Dettagli

Calcolo differenziale e integrale

Calcolo differenziale e integrale Calcolo differeziale e itegrale fuzioi di ua variabile reale Gabriele H. Greco Dipartimeto di Matematica Uiversità di Treto 385 POVO Treto Italia www.sciece.uit.it/ greco a.a. 5-6: Apputi del corso di

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

Studio di funzione. Rappresentazione grafica di una funzione: applicazioni

Studio di funzione. Rappresentazione grafica di una funzione: applicazioni Studio di fuzioe Tipi di fuzioi Le fuzioi si possoo raggruppare i alcue tipologie di base: Razioali: se le operazioi che vi si effettuao soo addizioe, sottrazioe, prodotto, divisioe ed elevameto a poteza

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

Richiami sulle potenze

Richiami sulle potenze Richiami sulle poteze Dopo le rette, le fuzioi più semplici soo le poteze: Distiguiamo tra: - poteze co espoete itero - poteze co espoete frazioario (razioale) - poteze co espoete reale = Domiio delle

Dettagli

Matematica 5. Dipartimento di Matematica. ITIS V.Volterra San Donà di Piave. Versione [12/13][S-All]

Matematica 5. Dipartimento di Matematica. ITIS V.Volterra San Donà di Piave. Versione [12/13][S-All] Matematica 5 Dipartimeto di Matematica ITIS V.Volterra Sa Doà di Piave Versioe [/3][S-All] Idice I Itegrazioe Itegrazioe impropria. Geeralità............................................. Criteri di itegrabilità......................................

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 26 giugno 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 26 giugno 2012 Uiversità degli Studi della Calabria Facoltà di Igegeria Correzioe della Secoda Prova Scritta di alisi Matematica 2 giugo 202 cura dei Prof. B. Sciuzi e L. Motoro. Secoda Prova Scritta di alisi Matematica

Dettagli

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ;

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ; . Serie umeriche Esercizio. Studiare il carattere delle segueti serie: ;! ;! ;!. Soluzioe.. Serie a termii positivi; cofrotiamola co la serie +, che è covergete: + + + 0. Pertato, per il criterio del cofroto

Dettagli

16 - Serie Numeriche

16 - Serie Numeriche Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 6 - Serie Numeriche Ao Accademico 03/04 M. Tummiello, V. Lacagia, A. Cosiglio, S.

Dettagli

Michela Eleuteri ANALISI MATEMATICA. Serie numeriche (teoria ed esercizi)

Michela Eleuteri ANALISI MATEMATICA. Serie numeriche (teoria ed esercizi) Michela Eleuteri ANALISI MATEMATICA Serie umeriche (teoria ed esercizi) A Giulia co la speraza che almeo ella matematica o assomigli al papà Idice Serie 5. Deizioe di serie e prime proprietà........................

Dettagli

Analisi Matematica 1. Anno Accademico Roberto Monti. Versione del 31 Ottobre 2013

Analisi Matematica 1. Anno Accademico Roberto Monti. Versione del 31 Ottobre 2013 Aalisi Matematica Ao Accademico 203-204 Roberto Moti Versioe del 3 Ottobre 203 Cotets Chapter. Numeri aturali e reali 5. Numeri aturali e pricipio di iduzioe 5 2. Numeri reali 7 3. R come spazio metrico

Dettagli

Analisi Matematica I

Analisi Matematica I Aalisi Matematica I Apputi delle lezioi teute dal Prof. A. Foda Uiversità di Trieste, CdL Fisica e Matematica, a.a. 016/017 Lezioe 1 del 03/10/016: I umeri aturali e il pricipio di iduzioe Descriviamo

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione Aritmetica 06/07 Esercizi svolti i classe Secoda lezioe Dare ua formula per 3 che o coivolga sommatorie Dato che sappiamo che ( + e ( + ( + 6 vogliamo esprimere 3 mediate, e poliomi i U idea possibile

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso itegrato di Matematica per le scieze aturali ed applicate Materiale itegrativo Paolo Baiti Lorezo Freddi Dipartimeto di Matematica e Iformatica, Uiversità di Udie, via delle Scieze 206, 3300 Udie,

Dettagli

Calcolo differenziale Parte prima. Mauro Saita Versione provvisoria. Novembre

Calcolo differenziale Parte prima. Mauro Saita Versione provvisoria. Novembre Calcolo differeziale Parte prima Mauro Saita maurosaita@tiscaliet.it Versioe provvisoria. Novembre 204. Idice Derivate 2. Defiizioe di derivata............................... 2.2 Fuzioi differeziabili...............................

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

Serie numeriche. Paola Rubbioni. 1 Denizione, serie notevoli e primi risultati. i=0 a i, e si indica con il simbolo +1X.

Serie numeriche. Paola Rubbioni. 1 Denizione, serie notevoli e primi risultati. i=0 a i, e si indica con il simbolo +1X. Serie umeriche Paola Rubbioi Deizioe, serie otevoli e primi risultati Deizioe.. Data ua successioe di umeri reali (a ) 2N, si dice serie umerica la successioe delle somme parziali (S ) 2N, ove S = a +

Dettagli

Limiti di successioni

Limiti di successioni Limiti di successioi Ricordiamo che si chiama successioe (umerica) ua qualsiasi fuzioe a : N a () R. Per evideziare il fatto che i valori assuti dalla fuzioe a si possoo umerare (cioè cotare), si preferisce

Dettagli

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che 1 Il Teorema di Marov 1.1 Aalisi spettrale della matrice di trasizioe Il teorema di Marov afferma che Teorema 1.1 Ua matrice di trasizioe regolare P su u isieme di stati fiito E ha ua uica distribuzioe

Dettagli

Matematica per Finanza, assicurazioni e impresa; aa ; argomenti svolti:

Matematica per Finanza, assicurazioni e impresa; aa ; argomenti svolti: Matematica per Fiaza, assicurazioi e impresa; aa 2015-2016; argometi svolti: I settimaa; 21.09 Presetazioe del corso. I particolare: -Aalisi (fuzioi reali di ua variabile reale, calcolo differeziale, calcolo

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

Successioni di numeri reali

Successioni di numeri reali CAPITOLO Successioi di umeri reali. Defiizioi ed esempi. Limite di ua successioe. Nell ultimo paragrafo del capitolo precedete abbiamo itrodotto alcue fuzioi elemetari da sottoisiemi di) R a valori i R,

Dettagli

Il candidato risolva uno dei due problemi e 4 quesiti del questionario. la sua primitiva tale che ( 1) f ( 1)

Il candidato risolva uno dei due problemi e 4 quesiti del questionario. la sua primitiva tale che ( 1) f ( 1) Sessioe ordiaria all estero caledario australe 005 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ E DELLA RICERCA SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sessioe Ordiaria 005 Caledario

Dettagli

REGISTRO ELETTRONICO DELLE LEZIONI

REGISTRO ELETTRONICO DELLE LEZIONI A.A. 2016/17 CORSO DI ANALISI MATEMATICA 1 PER I CORSI DI LAUREA IN MATEMATICA E FISICA I semestre, 12 crediti Teoria: 9 crediti, teuti da me Esercitazioi: 3 crediti, teuti dal Dott. Bruo Scardamaglia

Dettagli

Lezione 4. Gruppi di permutazioni

Lezione 4. Gruppi di permutazioni Lezioe 4 Prerequisiti: Applicazioi tra isiemi Lezioi e Gruppi di permutazioi I questa lezioe itroduciamo ua classe ifiita di gruppi o abeliai Defiizioe 41 ia X u isieme o vuoto i dice permutazioe su X

Dettagli

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla

Dettagli

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 DICEMBRE 2010 1. Sviluppi di Laplace Proposizioe 1.1. Sia A M, (K), allora per ogi idice i = 1,..., fissato vale lo sviluppo

Dettagli

SUCCESSIONI E SERIE DI FUNZIONI (Dal CAPITOLO 5 del testo di riferimento n. 2)

SUCCESSIONI E SERIE DI FUNZIONI (Dal CAPITOLO 5 del testo di riferimento n. 2) SUCCESSIONI E SERIE DI FUNZIONI (Dal CAPITOLO 5 del testo di riferimeto. 2) Nel presete capitolo verrao cosiderate successioi e serie di fuzioi reali aveti u domiio comue D. 5.1. Successioi di fuzioi Si

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

Facoltà di Ingegneria CdL Ingegneria Informatica. Prova scritta di Analisi Matematica I COMPITO A. Lecce, 11.12.2006

Facoltà di Ingegneria CdL Ingegneria Informatica. Prova scritta di Analisi Matematica I COMPITO A. Lecce, 11.12.2006 Prova scritta di Aalisi Matematica I COMPITO A Lecce, 11.1.006 1. Dopo aver determiato il domiio aturale della fuzioe defiita dalla seguete espressioe aalitica: f(x) = 1 x x 9 calcolare la derivata e descrivere

Dettagli

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con Calcolo Combiatorio Adolfo Scimoe pag 1 Calcolo combiatorio Cosideriamo u isieme di oggetti di atura qualsiasi. Idicheremo questi oggetti co a1 a2... a. Co questi oggetti si voglioo formare dei gruppi

Dettagli

CAPITOLO 3-FUNZIONI REALI DI UNA VARIABILE REALE CONTINUE Siano: X una parte non vuota di R, f una funzione reale definita in X ed x

CAPITOLO 3-FUNZIONI REALI DI UNA VARIABILE REALE CONTINUE Siano: X una parte non vuota di R, f una funzione reale definita in X ed x CAPITOLO -FUNZIONI REALI DI UNA VARIABILE REALE CONTINUE X DEFINIZIONE DI FUNZIONE CONTINUA DEF Siao: X ua parte o vuota i R, f ua fuzioe reale efiita i X e u elemeto i Si ice che la fuzioe f è cotiua

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PROBLEMA Sia ABCD u quadrato di lato, P u puto di

Dettagli

MATEMATICA DEL DISCRETO elementi di calcolo combinatorio. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di calcolo combinatorio. anno acc. 2009/2010 elemeti di calcolo combiatorio ao acc. 2009/2010 Cosideriamo u isieme fiito X. Chiamiamo permutazioe su X u applicazioe biuivoca di X i sè. Ad esempio, se X = {a, b, c}, le permutazioi distite soo 6 e

Dettagli

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo

Dettagli

3. Calcolo dei limiti e confronti asintotici

3. Calcolo dei limiti e confronti asintotici Lezioi di Aalisi Matematica per Iformatici a.a. 009/00) Capitolo 3 Prof. Paolo Caldiroli 3. Calcolo dei iti e cofroti asitotici 3. Itroduzioe La teoria delle serie umeriche sviluppata el capitolo ci forisce

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO Che cosa sigifica cotare Tutti coosciamo la successioe dei umeri iteri Naturali N = {0, 1,,, } si tratta di ua struttura metale fodametale, chiaramete presete alla ostra ituizioe che

Dettagli

Immaginario Un numero immaginario si ottiene moltiplicando un numero reale per i, dove si intende con i la radice quadrata di meno uno.

Immaginario Un numero immaginario si ottiene moltiplicando un numero reale per i, dove si intende con i la radice quadrata di meno uno. Immagiario U umero immagiario si ottiee moltiplicado u umero reale per i, dove si itede co i la radice quadrata di meo uo. Immagie Data ua fuzioe y=f(x) di domiio A e codomiio B si chiama immagie di x

Dettagli

Serie numeriche: esercizi svolti

Serie numeriche: esercizi svolti Serie umeriche: esercizi svolti Gli esercizi cotrassegati co il simbolo * presetao u grado di difficoltà maggiore. Esercizio. Dopo aver verificato la covergeza, calcolare la somma delle segueti serie:

Dettagli

1. ESERCIZI sui NUMERI REALI. Determinare l estremo superiore e inferiore, il massimo e il minimo, se esistono, dei seguenti insiemi.

1. ESERCIZI sui NUMERI REALI. Determinare l estremo superiore e inferiore, il massimo e il minimo, se esistono, dei seguenti insiemi. . ESERCIZI sui NUMERI REALI Determiare l estremo superiore e iferiore, il massimo e il miimo, se esistoo, dei segueti isiemi.. A = { R apple }. B = {

Dettagli

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA CHU WENCHANG A Iduzioe matematica: Itroduzioe La gra parte delle proposizioi della teoria dei umeri dà euciati che coivolgoo i umeri aturali; per esempio

Dettagli

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA Politecico di Torio 7 Fuzioi Radice FUNZIONI RADICE RICHIAMI DI TEORIA f ( x) = x dom f Im f grafici. = = =7 =9. dispari R R -. - -. - - -. Grafici di fuzioi radici co pari pari [,+ ) [,+ ).. = = =6 =8

Dettagli

5. Le serie numeriche

5. Le serie numeriche 5. Le serie umeriche Ricordiamo che ua successioe reale è ua fuzioe defiita da N, evetualmete privato di u umero fiito di elemeti, a R. Solitamete si idica ua successioe co la lista dei suoi valori: (a

Dettagli

Teorema 13. Se una sere converge assolutamente, allora converge:

Teorema 13. Se una sere converge assolutamente, allora converge: Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 03: Riferimeti: R.Adams, Calcolo Differeziale.- Si cosiglia vivamete di fare gli esercizi del testo. Covergeza assoluta e

Dettagli

F. Ricci. Appunti per il corso. Introduzione alla Teoria della Misura e all Analisi Funzionale A.A

F. Ricci. Appunti per il corso. Introduzione alla Teoria della Misura e all Analisi Funzionale A.A F. Ricci Apputi per il corso Itroduzioe alla Teoria della Misura e all Aalisi Fuzioale A.A. 2013-14 Idice Capitolo 1. σ-algebre e misure 5 1. Fuzioi di isieme additive e σ-additive 5 2. Spazi misurabili

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

(1 2 3) (1 2) Lezione 10. I gruppi diedrali.

(1 2 3) (1 2) Lezione 10. I gruppi diedrali. Lezioe 0 Prerequisiti: Simmetrie di poligoi regolari. Gruppi di permutazioi. Cetro di u gruppo. Cetralizzate di u elemeto di u gruppo. Riferimeto al testo: [PC] Sezioe 5.4 I gruppi diedrali. Ogi simmetria

Dettagli

ESERCIZI DI ANALISI MATEMATICA. xn lim sup. lim inf x n. lim sup x n. = L, allora esiste anche lim e vale L.

ESERCIZI DI ANALISI MATEMATICA. xn lim sup. lim inf x n. lim sup x n. = L, allora esiste anche lim e vale L. ESERCIZI DI ANALISI MATEMATICA GRAZIANO CRASTA Notzioi. N = {, 1, 2,...} = isieme dei umeri turli, N + = Z + = N\{} = isieme dei umeri turli positivi, Z = isieme degli iteri reltivi. = esercizio difficile,

Dettagli

SULLE PARTIZIONI DI UN INSIEME

SULLE PARTIZIONI DI UN INSIEME Claudia Motemurro Ricordiamo la SULLE PRTIZIONI DI UN INSIEME Defiizioe: Ua partizioe di u isieme è ua famiglia { sottoisiemi o vuoti di X tali che: - X è l uioe degli isiemi X i (i I ), cioè X = U i X

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE LORENZO BRASCO. Teoremi di Cesaro Teorema di Stolz-Cesaro. Siao {a } N e {b } N due successioi umeriche, co {b } N strettamete positiva, strettamete crescete e ilitata. Se esiste

Dettagli

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI ALGEBRA I MODULO PROF. VERARDI - ESERCIZI Sezioe 1 NUMERI NATURALI E INTERI 2 1.1. Si dimostri per iduzioe la formula: N, k 2 "1( * " 3 ) " 3k +1(. 3 1.2. A) Si dimostri che per ogi a,b N +, N +, se a

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it PNI 004 - SESSIONE SUPPLETIVA QUESITO La fuzioe f(x) = 3x six x 3six della fuzioe, per x + : è, per x +, ua forma idetermiata del tipo. Il limite A) No esiste; B) è 3/; C) è /3 ; D) è

Dettagli

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim.

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim. Esercizi svolti. Calcolare i segueti iti: a log + + c ± ta 5 + 5 si π e b + si si e d + f + 4 5 g + 6 4 6 h 4 + i + + + l ± + log + log 7 log 5 + 4 log m + + + o cos + si p + e q si s e ta cos e u siπ

Dettagli

I tre personaggi della matematica. Prof.ssa Sandra Gaudenzi 30 aprile 2012

I tre personaggi della matematica. Prof.ssa Sandra Gaudenzi 30 aprile 2012 i e 0 I tre persoaggi della matematica Prof.ssa Sadra Gaudezi 30 aprile 202 Numeri algebrici e trascedeti U umero algebrico è u ualsiasi umero x, reale o complesso, che soddisfi u euazioe algebrica della

Dettagli

3 Limiti e continuità

3 Limiti e continuità 3 Limiti e cotiuità I questo corso ci occuperemo prevaletemete del calcolo ifiitesimale, disciplia matematica che affoda le sue radici ella Grecia del III secolo a.c. Euclide, Archimede), ha u grade sviluppo

Dettagli

Esercizi sul principio di induzione

Esercizi sul principio di induzione Esercitazioi di Aalisi I, Uiversità di Trieste, lezioe del 0/0/008 Esercizi sul pricipio di iduzioe Esercizio Dimostrare per iduzioe che + + + ( + ), Risoluzioe Le dimostrazioi di ua proprietà P() per

Dettagli

Traccia delle soluzioni degli esercizi del fascicolo 6

Traccia delle soluzioni degli esercizi del fascicolo 6 Traccia delle soluzioi degli esercizi del fascicolo 6 Esercizio Vegoo geerati umeri casuali tra 0 e, co distribuzioe uiforme. Quati umeri è ecessario geerare affiché la probabilità che la somma di essi

Dettagli

La base naturale dell esponenziale

La base naturale dell esponenziale La base aturale dell espoeziale Beiamio Bortelli 7 aprile 007 Il problema I matematica, ci è stato detto, la base aturale della fuzioe espoeziale è il umero irrazioale: e =, 7888... Restao, però, da chiarire

Dettagli

(5 1) (3 1) 20, in generale:

(5 1) (3 1) 20, in generale: Ottavio Serra Cei di geometria aalitica Tageti e derivate Il piao cartesiao come modello del piao euclideo Equazioe di curve piae, calcolo dei gradi di libertà Curve algebrice (piae), defiizioe di retta

Dettagli

16. Derivate di ordine superiore.

16. Derivate di ordine superiore. 6. Derivate di ordie superiore. Fiora abbiamo visto due livelli di approssimazioe Livello uzioi cotiue ()=( )+ε () co ε () ε ( ) Livello uzioi diereziabili ()=( )+ ( ) (- )+ε () co Ci si chiede se è possibile

Dettagli

SUL NUMERO DI NEPERO

SUL NUMERO DI NEPERO SUL NUMERO DI NEPERO GUGLIELMO DI MEGLIO Idice Itroduzioe. Covergeza di ua certa successioe. Prima defiizioe del umero di Nepero 2. Il umero di Nepero come limite di altre successioi* 5 3. Il umero di

Dettagli

4.1.1 Definizione Un algebra di sottoinsiemi di un insieme X è una famiglia A P(X) tale che:

4.1.1 Definizione Un algebra di sottoinsiemi di un insieme X è una famiglia A P(X) tale che: Capitolo 4 MISUR La teoria modera dell itegrazioe può svolgersi a partire dalla teoria dei fuzioali lieari e cotiui sugli spazi di fuzioi cotiue, o a partire dalla teoria della misura: il primo approccio,

Dettagli

Successioni. Capitolo 2. 2.1 Definizione

Successioni. Capitolo 2. 2.1 Definizione Capitolo 2 Successioi 2.1 Defiizioe Ua prima descrizioe, più ituitiva che rigorosa, di quel che itediamo per successioe cosiste i: Ua successioe è ua lista ordiata di oggetti, avete u primo ma o u ultimo

Dettagli