BLAND-ALTMAN PLOT. + X 2i 2 la differenza ( d ) tra le due misure per ognuno degli n campioni; d i. X i. = X 1i. X 2i

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "BLAND-ALTMAN PLOT. + X 2i 2 la differenza ( d ) tra le due misure per ognuno degli n campioni; d i. X i. = X 1i. X 2i"

Transcript

1 BLAND-ALTMAN PLOT Il metodo di J. M. Bland e D. G. Altman è finalizzato alla verifica se due tecniche di misura sono comparabili. Resta da comprendere cosa si intenda con il termine metodi comparabili e quale sia la definizione di differenze accettabili tra i due metodi. Ad esempio, nelle analisi cliniche potrebbe significare che la diagnosi e la prescrizione non cambiano, se l analisi biologica effettuata al paziente è stata condotta in laboratorio con un metodo oppure con un altro. Il Bland-Altman plot serve per confrontare due misure della stessa natura; è un diagramma di dispersione in cui sulle ordinate viene riportata la differenza delle due misure e sulle ascisse la misura di riferimento, ottenuta come media aritmetica delle due misure. Le linee orizzontali rappresentano la media delle differenze, e la media delle differenze ± 1.96 SD. La media delle differenze permette di stimare se una delle due metodiche sottostima o sovrastima l indice rispetto all altra, mentre le altre due righe costituiscono l intervallo di confidenza. Se i punti del grafico sono all interno delle due linee si considera che le due metodiche forniscano risultati congruenti, mentre i punti fuori dalle due linee sono casi in cui i due metodi non sono congruenti tra loro. In particolare, si può verificare che se la distribuzione delle differenze è gaussiana il 95% dei dati cade nell area indicata. Si supponga di aver misurato n campioni, ottenendo per ognuno due set di dati quantitativi: la misura con il sistema 1 (X1 ); la misura con il sistema 2 (X2 ). Da queste n coppie di misure è possibile ottenere altre due quantità: la media ( X ) delle due misure per ognuno degli n campioni: X i = X 1i + X 2i 2 la differenza ( d ) tra le due misure per ognuno degli n campioni; d i = X 1i X 2i Il plot di Bland-Altman è un grafico a dispersione dei punti identificati da queste nuove coppie di valori, nel quale sull asse delle ascisse è riportata la media X i di ogni coppia e sull asse delle ordinate la differenza d i tra i valori della stessa coppia. Questo metodo risulta appropriato quando le differenze restano costanti, ma spesso non lo sono. Questa proposta è stata quindi integrata da altre due varianti, che cambiano il valore da riportare sull asse delle ordinate: le differenze d i trasformate in percentuale p i delle medie: p i = d i X i 100

2 il rapporto r i tra le due misure, trasformato in log: r i = log X 1i Questa ultima formula richiede che non siano presenti valori uguali a zero, in nessuno dei due sistemi di misurazione. Se sono presenti, è necessario che nella trasformazione sia aggiunta una costante. La figura 1 rappresenta un esempio con n = 46. X 2i Figura 1: Diagramma di BLAND-ALTMAN del caso 1 Nel diagramma sull asse delle ascisse è riportata la media X i, mentre sull asse delle ordinate è riportata la differenza d i. L analisi descrittiva dei dati richiede che per le differenze d i siano calcolate: il numero : n = 46; la media aritmetica delle n differenze: X d = 1,565; la deviazione standard: s = 8,661; l errore standard: = s/ n =1,277 ; l intervallo di confidenza al 95% delle differenze 1 : IC d = X d ±1,96 s l intervallo di confidenza al 95% della media delle differenze 2 : IC md = X d ±1,96 Con i dati della figura, l intervallo di confidenza IC d vale: s n IC d =1,565 ±1,96 8,661 quindi il limite inferiore (lower limit) vale -15,411, mentre il limite superiore (upper limit) 18,541. L intervallo di confidenza della media delle differenze è: IC md =1,565 ±1,96 1,277 1 Se i due metodiche sono equivalenti, la loro differenza seguirà una distribuzione gaussiana. 2 Dato il numero di campioni (n=46), il teorema del limite centrale assicura che la media segue, con ottima approssimazione, una distribuzione gaussiana. Un numero elevato di misure inoltre consente di evitare i fattori correttivi della distribuzione di Student.

3 quindi come limite inferiore (lower limit) ha -0,938 e come limite superiore (upper limit) +4,068. L informazione più importante del grafico è fornita congiuntamente dal valore medio 1,6 e dall intervallo di confidenza delle differenze al 95% che varia tra + 18,5 e 15,4. Il test di Bland-Altman consiste nel giudizio del ricercatore: se la variazione della media entro l intervallo di confidenza non è clinicamente importante, i due metodi possono essere considerati intercambiabili. Nel test di Bland-Altman la significatività non è fornita da calcoli statistici, ma consiste essenzialmente nel confronto (effettuato da un esperto della disciplina) dei due limiti (superiore ed inferiore) con la differenza clinicamente accettabile tra due metodi. Tuttavia, su molte riviste, in aggiunta al metodo di Bland-Altman, sono riportate l analisi della correlazione, l analisi della regressione con la motivazione che il plot delle differenze è complementare, non sostitutivo. Altre informazioni importanti sulla corrispondenza tra i due metodi di misurazione sono fornite inoltre dalla disposizione dei punti intorno alla media ed entro i limiti dell intervallo di confidenza. Le quattro figure riportate nel paragrafo sono rappresentative di altrettanti casi tipici. Nel caso di fig.1, la disposizione dei punti è casuale, i due metodi possono essere ritenuti equivalenti, se l analisi precedente sull intervallo di variazione della media è positivo. In fig. 2, i punti presentano un alternarsi periodico sopra e sotto la media quindi gli errori hanno una distribuzione non casuale, ma sistematica in valore assoluto, per cui i due metodi forniscono misure differenti. Figura 2: Diagramma di BLAND-ALTMAN con trend periodico delle differenze Nel caso di fig. 3 si ha un errore proporzionale in quanto le differenze sono negative per valori piccoli, e positive per valori grandi. Figura-3: Diagramma di BLAND-ALTMAN, con errore proporzionale

4 In fig. 4, le differenze tra i due metodi non sono costanti, ma dipendono dal valore. Quest ultimo è un caso classico di non uniformità della varianza (heteroscedasticity). Ne consegue che l errore standard è una misura inadeguata o errata (bias) della variabilità, poiché è un valore medio di tutti gli errori e quindi sovrastima la variabilità quando i valori sono piccoli e la sottostima quando i valori sono grandi. In questa situazione, è conveniente verificare sperimentalmente se si ottengono risultati migliori con le varianti del test precedentemente descritte. Figura-4: Diagramma di BLAND-ALTMAN, con non uniformità della varianza. Runs Test Una assunzione di base nella maggior parte delle analisi dei dati è che un set di dati costituisce un campione casuale di una popolazione. Comunque, alcune volte il set dei dati non è in realtà campione casuale proveniente da una popolazione ma può presentare qualche pattern interno. Per esempio i dati potrebbero avere un trend crescente o decrescente nel tempo, oppure ciclico. In questa sezione verrà sviluppato un test delle ipotesi che consente di valutare se il dato dataset rappresenti un campione casuale. Per testare l ipotesi che un determinato dataset rappresenti un campione casuale, si supponga che ciascun dato posa assumere solo due possibili valori, 0 oppure 1. Qualsiasi sequenza consecutiva di 0 o di 1 viene denominata run. Per esempio il dataset: 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0 contiene un totale di 9 run: cinque run di 0, e quattro run di 1. Il primo run consiste nel singolo valore 0, il run successivo da una sequenza di tre 1, e così via. Si supponga che il dataset sia costituito da un totale di n + m valori, dei quali n sono uguali a 1 e m uguali a 0. Con R viene indicato il numero totale di run nel dataset. Ora se il dataset era un campione random proveniente da una qualche popolazione, allora tutti i possibili ordinamenti di n + m valori saranno ugualmente probabili. Utilizzando questa considerazione è possibile determinare la distribuzione di probabilità di R e quindi testare l ipotesi che il campione sia random (ipotesi nulla H 0 ), cioè rifiutando H 0 se il valore di R è troppo piccolo o troppo grande per poter essere spiegato dal caso.

5 Per ottenere il valore di probabilità desiderato si sfrutta il fatto che quando l ipotesi nulla è vera ed il dataset è anche di moderate dimensioni (n + m > 20), R avrà approssimativamente una distribuzione di tipo normale, con media e varianza date rispettivamente da: e E[ R] = µ = 2nm n + m +1 E[ ( R µ ) 2 2nm(2nm n m) ] = σ 2 = (n + m) 2 (n + m 1) Combinando queste variabili per ottenere una variabile casuale standard Z: Z = R µ σ e considerando un coefficiente di confidenza del 95%, l'ipotesi del test e' falsa se: Z >1,96 E possibile utilizzare il test dei run per valutare la casualità di una sequenza di valori che non comprendono solo valori di 0 o 1, attraverso il seguente procedimento. Data la sequenza di dati X 1, X 2,, X n, si calcola la mediana di questo dataset (M), e si pongono uguali a 0 tutti i valori minori di M, e uguali a 1 tutti quelli maggiori di M. Si ottiene quindi un dataset binario che può essere valutato attraverso il test precedentemente descritto.

CHEMIOMETRIA. CONFRONTO CON VALORE ATTESO (test d ipotesi) CONFRONTO DI VALORI MISURATI (test d ipotesi) CONFRONTO DI RIPRODUCIBILITA (test d ipotesi)

CHEMIOMETRIA. CONFRONTO CON VALORE ATTESO (test d ipotesi) CONFRONTO DI VALORI MISURATI (test d ipotesi) CONFRONTO DI RIPRODUCIBILITA (test d ipotesi) CHEMIOMETRIA Applicazione di metodi matematici e statistici per estrarre (massima) informazione chimica (affidabile) da dati chimici INCERTEZZA DI MISURA (intervallo di confidenza/fiducia) CONFRONTO CON

Dettagli

Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva

Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva Fondamenti di Informatica Ester Zumpano Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva Lezione 5 Statistica descrittiva La statistica descrittiva mette a disposizione il calcolo di

Dettagli

Indicatori di Posizione e di Variabilità. Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Statistica Medica

Indicatori di Posizione e di Variabilità. Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Statistica Medica Indicatori di Posizione e di Variabilità Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Statistica Medica Indici Sintetici Consentono il passaggio da una pluralità

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 1 A. I dati riportati nella seguente tabella si riferiscono

Dettagli

Esercitazione: La distribuzione NORMALE

Esercitazione: La distribuzione NORMALE Esercitazione: La distribuzione NORMALE Uno dei più importanti esempi di distribuzione di probabilità continua è dato dalla distribuzione Normale (curva normale o distribuzione Gaussiana); è una delle

Dettagli

3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17

3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17 C L Autore Ringraziamenti dell Editore Elenco dei simboli e delle abbreviazioni in ordine di apparizione XI XI XIII 1 Introduzione 1 FAQ e qualcos altro, da leggere prima 1.1 Questo è un libro di Statistica

Dettagli

Esercitazione del

Esercitazione del Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 3

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 3 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 3 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Sintesi a cinque e misure di variabilità rispetto ad un centro Una catena di fast-food ha selezionato

Dettagli

Distribuzioni campionarie

Distribuzioni campionarie 1 Inferenza Statistica Descrittiva Distribuzioni campionarie Statistica Inferenziale: affronta problemi di decisione in condizioni di incertezza basandosi sia su informazioni a priori sia sui dati campionari

Dettagli

DESCRITTIVE, TEST T PER IL CONFRONTO DELLE MEDIE DI CAMPIONI INDIPENDENTI.

DESCRITTIVE, TEST T PER IL CONFRONTO DELLE MEDIE DI CAMPIONI INDIPENDENTI. Corso di Laurea Specialistica in Biologia Sanitaria, Universita' di Padova C.I. di Metodi statistici per la Biologia, Informatica e Laboratorio di Informatica (Mod. B) Docente: Dr. Stefania Bortoluzzi

Dettagli

Teoria e tecniche dei test. Concetti di base

Teoria e tecniche dei test. Concetti di base Teoria e tecniche dei test Lezione 2 2013/14 ALCUNE NOZIONI STATITICHE DI BASE Concetti di base Campione e popolazione (1) La popolazione è l insieme di individui o oggetti che si vogliono studiare. Questi

Dettagli

REGRESSIONE E CORRELAZIONE

REGRESSIONE E CORRELAZIONE REGRESSIONE E CORRELAZIONE Nella Statistica, per studio della connessione si intende la ricerca di eventuali relazioni, di dipendenza ed interdipendenza, intercorrenti tra due variabili statistiche 1.

Dettagli

Analisi della varianza

Analisi della varianza Analisi della varianza Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona ANALISI DELLA VARIANZA - 1 Abbiamo k gruppi, con un numero variabile di unità statistiche.

Dettagli

Capitolo 12. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 12.1: Suggerimento

Capitolo 12. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 12.1: Suggerimento Capitolo Suggerimenti agli esercizi a cura di Elena Siletti Esercizio.: Suggerimento Per verificare se due fenomeni sono dipendenti in media sarebbe necessario confrontare le medie condizionate, in questo

Dettagli

TOPOGRAFIA 2013/2014. Prof. Francesco-Gaspare Caputo

TOPOGRAFIA 2013/2014. Prof. Francesco-Gaspare Caputo TOPOGRAFIA 2013/2014 L operazione di misura di una grandezza produce un numero reale che esprime il rapporto della grandezza stessa rispetto a un altra, a essa omogenea, assunta come unità di misura. L

Dettagli

Statistica di base per l analisi socio-economica

Statistica di base per l analisi socio-economica Laurea Magistrale in Management e comunicazione d impresa Statistica di base per l analisi socio-economica Giovanni Di Bartolomeo gdibartolomeo@unite.it Definizioni di base Una popolazione è l insieme

Dettagli

Ringraziamenti dell Editore

Ringraziamenti dell Editore Indice Elenco dei simboli e delle abbreviazioni in ordine di apparizione Ringraziamenti dell Editore XI XVII 1 Introduzione FAQ e qualcos altro, da leggere prima 1 1.1 QuestoèunlibrodiStatistica....................

Dettagli

Il confronto fra medie

Il confronto fra medie L. Boni Obiettivo Verificare l'ipotesi che regimi alimentari differenti non producano mediamente lo stesso effetto sulla gittata cardiaca Ipotesi nulla IPOTESI NULLA La dieta non dovrebbe modificare in

Dettagli

Statistica. Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza e correlazione

Statistica. Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza e correlazione Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2010/2011 Statistica Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza

Dettagli

Prof. Anna Paola Ercolani (Università di Roma) Lez Indicatori di dispersione

Prof. Anna Paola Ercolani (Università di Roma) Lez Indicatori di dispersione Consentono di descrivere la variabilità all interno della distribuzione di requenza tramite un unico valore che ne sintetizza le caratteristiche CAMPO DI VARIAZIONE DIFFERENZA INTERQUARTILE SCOSTAMENTO

Dettagli

standardizzazione dei punteggi di un test

standardizzazione dei punteggi di un test DIAGNOSTICA PSICOLOGICA lezione! Paola Magnano paola.magnano@unikore.it standardizzazione dei punteggi di un test serve a dare significato ai punteggi che una persona ottiene ad un test, confrontando la

Dettagli

3) In una distribuzione di frequenza si può ottenere più di una moda Vero Falso

3) In una distribuzione di frequenza si può ottenere più di una moda Vero Falso CLM C Verifica in itinere statistica medica 13-01-2014 1) Indicate a quale categoria (Qualitativa, qualitativa ordinabile, quantitativa discreta, quantitativa continua) appartengono le seguenti variabili:

Dettagli

Statistica descrittiva II

Statistica descrittiva II Probabilità e Statistica Esercitazioni a.a. 009/010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Statistica descrittiva II Ines Campa Probabilità e Statistica - Esercitazioni

Dettagli

Teoria e tecniche dei test

Teoria e tecniche dei test Teoria e tecniche dei test Lezione 9 LA STANDARDIZZAZIONE DEI TEST. IL PROCESSO DI TARATURA: IL CAMPIONAMENTO. Costruire delle norme di riferimento per un test comporta delle ipotesi di fondo che è necessario

Dettagli

Statistica4-29/09/2015

Statistica4-29/09/2015 Statistica4-29/09/2015 Raccogliere i dati con il maggior numero di cifre significative ed arrotondare eventualmente solo al momento dei calcoli (min. 3); nella grande maggioranza delle ricerche biologiche

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione

Dettagli

DISTRIBUZIONE NORMALE (1)

DISTRIBUZIONE NORMALE (1) DISTRIBUZIONE NORMALE (1) Nella popolazione generale molte variabili presentano una distribuzione a forma di campana, bene caratterizzata da un punto di vista matematico, chiamata distribuzione normale

Dettagli

SCOPO DELL ANALISI DI CORRELAZIONE

SCOPO DELL ANALISI DI CORRELAZIONE CORRELAZIONE 1 SCOPO DELL ANALISI DI CORRELAZIONE STUDIARE LA RELAZIONE TRA DUE VARIABILI X E Y 2 diagrammi di dispersione un diagramma di dispersione (o grafico di dispersione) èuna rappresentazione grafica

Dettagli

b) E necessario formulare delle ipotesi per calcolare l intervallo di confidenza ottenuto al punto a? (motivare brevemente la risposta):

b) E necessario formulare delle ipotesi per calcolare l intervallo di confidenza ottenuto al punto a? (motivare brevemente la risposta): ESERCIZIO 1 Una grande banca vuole stimare l ammontare medio di denaro che deve essere corrisposto dai correntisti che hanno il conto scoperto. Si seleziona un campione di 100 clienti su cui si osserva

Dettagli

UNIVERSITÀ DEGLI STUDI DI PERUGIA

UNIVERSITÀ DEGLI STUDI DI PERUGIA SIGI, Statistica II, esercitazione n. 3 1 UNIVERSITÀ DEGLI STUDI DI PERUGIA FACOLTÀ DI ECONOMIA CORSO DI LAUREA S.I.G.I. STATISTICA II Esercitazione n. 3 Esercizio 1 Una v.c. X si dice v.c. esponenziale

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@gmail.com Università degli studi di Cassino () Statistica 1 / 24 Outline 1 2 3 4 5 () Statistica 2 / 24 Dipendenza lineare Lo studio della relazione tra caratteri

Dettagli

Distribuzione Normale

Distribuzione Normale Distribuzione Normale istogramma delle frequenze di un insieme di misure di una grandezza che può variare con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata di

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 33 Outline 1 2 3 4 5 6 () Statistica 2 / 33 Misura del legame Nel caso di variabili quantitative

Dettagli

Significatività ed analisi degli errori

Significatività ed analisi degli errori Significatività ed analisi degli errori Quanto il valore sperimentale è vicino al valore vero? Campioni replicati: si esclude a priori che venga eseguita una sola misurazione Quanto il valore sperimentale

Dettagli

Gli errori nella verifica delle ipotesi

Gli errori nella verifica delle ipotesi Gli errori nella verifica delle ipotesi Nella statistica inferenziale si cerca di dire qualcosa di valido in generale, per la popolazione o le popolazioni, attraverso l analisi di uno o più campioni E

Dettagli

TEST NON PARAMETRICO DI MANN-WHITNEY

TEST NON PARAMETRICO DI MANN-WHITNEY TEST NON PARAMETRICO DI MANN-WHITNEY Questo test viene può essere utilizzato come test di confronto tra due campioni in maniera analoga ai test ipotesi parametrici di confronto medie (test Z se la varianza

Dettagli

Ulteriori Conoscenze di Informatica e Statistica

Ulteriori Conoscenze di Informatica e Statistica ndici di forma Ulteriori Conoscenze di nformatica e Statistica Descrivono le asimmetrie della distribuzione Carlo Meneghini Dip. di fisica via della Vasca Navale 84, st. 83 ( piano) tel.: 06 55 17 72 17

Dettagli

Elementi di Statistica

Elementi di Statistica Università degli Studi di Palermo Dipartimento di Ingegneria Informatica Informatica ed Elementi di Statistica 3 c.f.u. Anno Accademico 2010/2011 Docente: ing. Salvatore Sorce Elementi di Statistica Statistica

Dettagli

Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti

Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti Laurea in Scienze dell Educazione Insegnamento di Pedagogia Sperimentale (Prof. Paolo Frignani) Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti giorgio.poletti@unife.it) MEDIA aritmetica semplice

Dettagli

LA DISTRIBUZIONE NORMALE (Vittorio Colagrande)

LA DISTRIBUZIONE NORMALE (Vittorio Colagrande) LA DISTRIBUZIONE NORMALE (Vittorio Colagrande) Allo scopo di interpolare un istogramma di un carattere statistico X con una funzione continua (di densità), si può far ricorso nell analisi statistica alla

Dettagli

STATISTICA Disciplina scien tifica che fornisce strumenti per l interpretazione delle informazioni contenute in insiemi di dati relativi a

STATISTICA Disciplina scien tifica che fornisce strumenti per l interpretazione delle informazioni contenute in insiemi di dati relativi a STATISTICA Disciplina scien tifica che fornisce strumenti per l interpretazione delle informazioni contenute in insiemi di dati relativi a VARIABILI CASUALI VARIABILE Qualunque fenomeno espri mibile numericamente

Dettagli

le scale di misura scala nominale scala ordinale DIAGNOSTICA PSICOLOGICA lezione si basano su tre elementi:

le scale di misura scala nominale scala ordinale DIAGNOSTICA PSICOLOGICA lezione si basano su tre elementi: DIAGNOSTICA PSICOLOGICA lezione! Paola Magnano paola.magnano@unikore.it si basano su tre elementi: le scale di misura sistema empirico: un insieme di entità non numeriche (es. insieme di persone; insieme

Dettagli

Proprietà della varianza

Proprietà della varianza Proprietà della varianza Proprietà della varianza Proprietà della varianza Proprietà della varianza Intermezzo: ma perché dovremmo darci la pena di studiare come calcolare la varianza nel caso di somme,

Dettagli

LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell

LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano Strumenti statistici in Excell Pacchetto Analisi di dati Strumenti di analisi: Analisi varianza: ad un fattore Analisi

Dettagli

Statistica. Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate. Covarianza e correlazione

Statistica. Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate. Covarianza e correlazione Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2011/2012 Statistica Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate.

Dettagli

Distribuzioni e inferenza statistica

Distribuzioni e inferenza statistica Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

STATISTICA AZIENDALE Modulo Controllo di Qualità

STATISTICA AZIENDALE Modulo Controllo di Qualità STATISTICA AZIENDALE Modulo Controllo di Qualità A.A. 009/10 - Sottoperiodo PROA DEL 14 MAGGIO 010 Cognome:.. Nome: Matricola:.. AERTENZE: Negli esercizi in cui sono richiesti calcoli riportare tutte la

Dettagli

Il campionamento e l inferenza. Il campionamento e l inferenza

Il campionamento e l inferenza. Il campionamento e l inferenza Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento

Dettagli

Capitolo 8. Intervalli di confidenza. Statistica. Levine, Krehbiel, Berenson. Casa editrice: Pearson. Insegnamento: Statistica

Capitolo 8. Intervalli di confidenza. Statistica. Levine, Krehbiel, Berenson. Casa editrice: Pearson. Insegnamento: Statistica Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 8 Intervalli di confidenza Insegnamento: Statistica Corso di Laurea Triennale in Economia Dipartimento di Economia e Management, Università

Dettagli

STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo

STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo STATISTICA (2) ESERCITAZIONE 7 11.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Test di indipendenza tra mutabili In un indagine vengono rilevate le informazioni su settore produttivo (Y) e genere (X)

Dettagli

Statistica descrittiva

Statistica descrittiva Statistica descrittiva Caso di 1 variabile: i dati si presentano in una tabella: Nome soggetto Alabama Dato 11.6.. Per riassumere i dati si costruisce una distribuzione delle frequenze. 1 Si determina

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/

Dettagli

i dati escludono vi sia una relazione tra variabile indipendente e variabile dipendente (rispettivamente

i dati escludono vi sia una relazione tra variabile indipendente e variabile dipendente (rispettivamente TEST DI AUTOVALUTAZIONE - SETTIMANA 6 I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia Parte A. La retta di regressione.2

Dettagli

PROCEDURE/TECNICHE DI ANALISI / MISURE DI ASSOCIAZIONE A) ANALISI DELLA VARIANZA

PROCEDURE/TECNICHE DI ANALISI / MISURE DI ASSOCIAZIONE A) ANALISI DELLA VARIANZA PROCEDURE/TECNICHE DI ANALISI / MISURE DI ASSOCIAZIONE A) ANALISI DELLA VARIANZA PROCEDURA/TECNICA DI ANALISI DEI DATI SPECIFICAMENTE DESTINATA A STUDIARE LA RELAZIONE TRA UNA VARIABILE NOMINALE (ASSUNTA

Dettagli

Intervallo di fiducia del coefficiente angolare e dell intercetta L intervallo di fiducia del coefficiente angolare (b 1 ) è dato da:

Intervallo di fiducia del coefficiente angolare e dell intercetta L intervallo di fiducia del coefficiente angolare (b 1 ) è dato da: Analisi chimica strumentale Intervallo di fiducia del coefficiente angolare e dell intercetta L intervallo di fiducia del coefficiente angolare (b 1 ) è dato da: (31.4) dove s y è la varianza dei valori

Dettagli

Capitolo 6. La distribuzione normale

Capitolo 6. La distribuzione normale Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università

Dettagli

Variabile casuale Normale

Variabile casuale Normale Variabile casuale Normale La var. casuale Normale (o Gaussiana) è considerata la più importante distribuzione Statistica per le innumerevoli Applicazioni e per le rilevanti proprietà di cui gode L'importanza

Dettagli

Caratterizzazione dei consumi energetici (parte 3)

Caratterizzazione dei consumi energetici (parte 3) ESERCITAZIONE 4 Caratterizzazione dei consumi energetici (parte 3) 4.1 CuSum: elementi di analisi statistica Il diagramma delle somme cumulate dei residui in funzione del tempo (CuSum) può essere in generale

Dettagli

Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n.

Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n. 5 STIMA PUNTUALE DEI PARAMETRI [Adattato dal libro Excel per la statistica di Enzo Belluco] Sia θ un parametro incognito della distribuzione di un carattere in una determinata popolazione. Il problema

Dettagli

Casa dello Studente. Casa dello Studente

Casa dello Studente. Casa dello Studente Esercitazione - 14 aprile 2016 ESERCIZIO 1 Di seguito si riporta il giudizio (punteggio da 0 a 5) espresso da un gruppo di studenti rispetto alle diverse residenze studentesche di un Ateneo: a) Si calcolino

Dettagli

Capitolo 6 La distribuzione normale

Capitolo 6 La distribuzione normale Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Economia Dipartimento di Economia e Management, Università

Dettagli

Σ (x i - x) 2 = Σ x i 2 - (Σ x i ) 2 / n Σ (y i - y) 2 = Σ y i 2 - (Σ y i ) 2 / n. 13. Regressione lineare parametrica

Σ (x i - x) 2 = Σ x i 2 - (Σ x i ) 2 / n Σ (y i - y) 2 = Σ y i 2 - (Σ y i ) 2 / n. 13. Regressione lineare parametrica 13. Regressione lineare parametrica Esistono numerose occasioni nelle quali quello che interessa è ricostruire la relazione di funzione che lega due variabili, la variabile y (variabile dipendente, in

Dettagli

Distribuzione Gaussiana - Facciamo un riassunto -

Distribuzione Gaussiana - Facciamo un riassunto - Distribuzione Gaussiana - Facciamo un riassunto - Nell ipotesi che i dati si distribuiscano seguendo una curva Gaussiana è possibile dare un carattere predittivo alla deviazione standard La prossima misura

Dettagli

Esercitazione di Statistica Indici di associazione

Esercitazione di Statistica Indici di associazione Esercitazione di Statistica Indici di associazione 28/10/2015 La relazione tra caratteri Indipendenza logica Quando si suppone che tra due caratteri non ci sia alcuna relazione di causa-effetto. Indipendenza

Dettagli

a.a Esercitazioni di Statistica Medica e Biometria Corsi di Laurea triennali Ostetricia / Infermieristica Pediatrica I anno

a.a Esercitazioni di Statistica Medica e Biometria Corsi di Laurea triennali Ostetricia / Infermieristica Pediatrica I anno a.a. 2007-2008 Esercitazioni di Statistica Medica e Biometria Corsi di Laurea triennali Ostetricia / Infermieristica Pediatrica I anno Dott.ssa Daniela Alessi daniela.alessi@med.unipmn.it 1 Argomenti:

Dettagli

N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento.

N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento. N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle abelle riportate alla fine del documento. Esercizio 1 La concentrazione media di sostanze inquinanti osservata nelle acque di un fiume

Dettagli

Test d Ipotesi Introduzione

Test d Ipotesi Introduzione Test d Ipotesi Introduzione Uno degli scopi più importanti di un analisi statistica è quello di utilizzare i dati provenienti da un campione per fare inferenza sulla popolazione da cui è stato estratto

Dettagli

LA DISTRIBUZIONE NORMALE

LA DISTRIBUZIONE NORMALE LA DISTRIBUZIONE NORMALE Italo Nofroni Statistica medica - Facoltà di Medicina Sapienza - Roma La più nota ed importante distribuzione di probabilità è, senza alcun dubbio, la Distribuzione normale, anche

Dettagli

STATISTICHE DESCRITTIVE Parte II

STATISTICHE DESCRITTIVE Parte II STATISTICHE DESCRITTIVE Parte II INDICI DI DISPERSIONE Introduzione agli Indici di Dispersione Gamma Differenza Interquartilica Varianza Deviazione Standard Coefficiente di Variazione introduzione Una

Dettagli

1/4 Capitolo 4 Statistica - Metodologie per le scienze economiche e sociali 2/ed Copyright 2008 The McGraw-Hill Companies srl

1/4 Capitolo 4 Statistica - Metodologie per le scienze economiche e sociali 2/ed Copyright 2008 The McGraw-Hill Companies srl 1/4 Capitolo 4 La variabilità di una distribuzione Intervalli di variabilità Box-plot Indici basati sullo scostamento dalla media Confronti di variabilità Standardizzazione Statistica - Metodologie per

Dettagli

L indagine campionaria Lezione 3

L indagine campionaria Lezione 3 Anno accademico 2007/08 L indagine campionaria Lezione 3 Docente: prof. Maurizio Pisati Variabile casuale Una variabile casuale è una quantità discreta o continua il cui valore è determinato dal risultato

Dettagli

FENOMENI CASUALI. fenomeni casuali

FENOMENI CASUALI. fenomeni casuali PROBABILITÀ 94 FENOMENI CASUALI La probabilità si occupa di fenomeni casuali fenomeni di cui, a priori, non si sa quale esito si verificherà. Esempio Lancio di una moneta Testa o Croce? 95 DEFINIZIONI

Dettagli

INDICATORI DI TENDENZA CENTRALE

INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo indice che riassume o descrive i dati e dipende dalla

Dettagli

Esplorazione dei dati

Esplorazione dei dati Esplorazione dei dati Introduzione L analisi esplorativa dei dati evidenzia, tramite grafici ed indicatori sintetici, le caratteristiche di ciascun attributo presente in un dataset. Il processo di esplorazione

Dettagli

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.

Dettagli

Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica

Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica Regressione Lineare e Correlazione Argomenti della lezione Determinismo e variabilità Correlazione Regressione Lineare

Dettagli

La distribuzione delle frequenze. T 10 (s)

La distribuzione delle frequenze. T 10 (s) 1 La distribuzione delle frequenze Si vuole misurare il periodo di oscillazione di un pendolo costituito da una sferetta metallica agganciata a un filo (fig. 1). A Figura 1 B Ricordiamo che il periodo

Dettagli

Analisi della varianza: I contrasti e il metodo di Bonferroni

Analisi della varianza: I contrasti e il metodo di Bonferroni Analisi della varianza: I contrasti e il metodo di Bonferroni 1 Contrasti In molti problemi risulta importante stabilire, nel caso venga rifiutata l ipotesi nulla, di uguaglianza delle medie µ j delle

Dettagli

Variabile Casuale Normale

Variabile Casuale Normale Variabile Casuale Normale Variabile Casuale Normale o Gaussiana E una variabile casuale continua che assume tutti i numeri reali, è definita dalla seguente funzione di densità: 1 f( x) = e σ 2 π ( x µ

Dettagli

TEORIA DEGLI ERRORI DI MISURA, IL CALCOLO DELLE INCERTEZZE

TEORIA DEGLI ERRORI DI MISURA, IL CALCOLO DELLE INCERTEZZE TEORIA DEGLI ERRORI DI MISURA, IL CALCOLO DELLE INCERTEZZE Errore di misura è la differenza fra l indicazione fornita dallo strumento e la dimensione vera della grandezza. Supponendo che la grandezza vera

Dettagli

1.4. Siano X B(1, 1/2) e Y B(1, 1/2) variabili aleatorie indipendenti. Quale delle seguenti affermazioni é falsa? E(X + Y ) = 1 V ar(x + Y ) = 1/2

1.4. Siano X B(1, 1/2) e Y B(1, 1/2) variabili aleatorie indipendenti. Quale delle seguenti affermazioni é falsa? E(X + Y ) = 1 V ar(x + Y ) = 1/2 Statistica N. Crediti: Cognome: Laurea Triennale in Biologia Nome: 4 settembre 2012 Matricola: 1. Parte A 1.1. Siano x 1, x 2,..., x 10 i dati relativi al peso di 10 neonati espressi in chilogrammi e y

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 2010-11 P.Baldi Lista di esercizi 3. Corso di Laurea in Biotecnologie Esercizio 1 Una v.a. X segue una legge N(2, ). Calcolare a1) P(X 1) a2) P(2

Dettagli

Politecnico di Milano - Scuola di Ingegneria Industriale. II Prova in Itinere di Statistica per Ingegneria Energetica 25 luglio 2011

Politecnico di Milano - Scuola di Ingegneria Industriale. II Prova in Itinere di Statistica per Ingegneria Energetica 25 luglio 2011 Politecnico di Milano - Scuola di Ingegneria Industriale II Prova in Itinere di Statistica per Ingegneria Energetica 25 luglio 2011 c I diritti d autore sono riservati. Ogni sfruttamento commerciale non

Dettagli

MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013

MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013 MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013 Soluzioni 1. Due sperimentatori hanno rilevato rispettivamente 25 e 5 misure di una certa grandezza lineare e calcolato le medie che sono risultate

Dettagli

INDICATORI DI TENDENZA CENTRALE

INDICATORI DI TENDENZA CENTRALE Psicometria (8 CFU) Corso di laurea triennale INDICATORI DI TENDENZA CENTRALE Torna alla pri ma pagina INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore

Dettagli

0 altimenti 1 soggetto trova lavoroentro 6 mesi}

0 altimenti 1 soggetto trova lavoroentro 6 mesi} Lezione n. 16 (a cura di Peluso Filomena Francesca) Oltre alle normali variabili risposta che presentano una continuità almeno all'interno di un certo intervallo di valori, esistono variabili risposta

Dettagli

Le medie. Antonello Maruotti

Le medie. Antonello Maruotti Le medie Antonello Maruotti Outline 1 Medie di posizione 2 Definizione Moda La moda di un collettivo, distributio secondo un carattere qualsiasi, è la modalità prevalente del carattere ossia quella a cui

Dettagli

Statistica a.a Autovalutazione 1

Statistica a.a Autovalutazione 1 Statistica a.a. 016-17 Autovalutazione 1 CORSO: Diritto per le Imprese e le Istituzioni ATTENZIONE: alle domande aperte è stato dato un possibile esempio di risposta, altre parole possono essere usate

Dettagli

INDICATORI DI TENDENZA CENTRALE

INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE INDICATORI DI TENDENZA CENTRALE Consentono di sintetizzare un insieme di misure tramite un unico valore rappresentativo è indice che riassume o descrive i dati e dipende

Dettagli

Statistica. POPOLAZIONE: serie di dati, che rappresenta linsieme che si vuole indagare (reali, sperimentali, matematici)

Statistica. POPOLAZIONE: serie di dati, che rappresenta linsieme che si vuole indagare (reali, sperimentali, matematici) Statistica La statistica può essere vista come la scienza che organizza ed analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni. Statistica descrittiva:

Dettagli

STATISTICHE, DISTRIBUZIONI CAMPIONARIE E INFERENZA

STATISTICHE, DISTRIBUZIONI CAMPIONARIE E INFERENZA Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 STATISTICHE, DISTRIBUZIONI CAMPIONARIE

Dettagli

Ogni misura è composta di almeno tre dati: un numero, un'unità di misura, un'incertezza.

Ogni misura è composta di almeno tre dati: un numero, un'unità di misura, un'incertezza. Ogni misura è composta di almeno tre dati: un numero, un'unità di misura, un'incertezza. Misure ripetute forniscono dati numerici distribuiti attorno ad un valore centrale indicabile con un indice (indice

Dettagli

Prova scritta di Complementi di Probabilità e Statistica. 7 Dicembre 2012

Prova scritta di Complementi di Probabilità e Statistica. 7 Dicembre 2012 Prova scritta di Complementi di Probabilità e Statistica 7 Dicembre. Un ingegnere vuole investigare se le caratteristiche di una superficie metallica sono influenzate dal tipo di pittura usata e dal tempo

Dettagli

Statistica Un Esempio

Statistica Un Esempio Statistica Un Esempio Un indagine sul peso, su un campione di n = 100 studenti, ha prodotto il seguente risultato. I pesi p sono espressi in Kg e sono stati raggruppati in cinque classi di peso. classe

Dettagli

Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo

Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo 1. Gli studi di simulazione possono permetterci di apprezzare alcune delle proprietà di distribuzioni campionarie ricavate

Dettagli

IL CONFRONTO TRA LE VARIANZE DI DUE POPOLAZIONI

IL CONFRONTO TRA LE VARIANZE DI DUE POPOLAZIONI IL CONFRONTO TRA LE VARIANZE DI DUE POPOLAZIONI Perchè confrontare le varianze stimate in due campioni? Torniamo all'esempio dei frinosomi Per poter applicare il test t avevamo detto che le varianze, e

Dettagli

Un esempio. Ipotesi statistica: supposizione riguardante: un parametro della popolazione. la forma della distribuzione della popolazione

Un esempio. Ipotesi statistica: supposizione riguardante: un parametro della popolazione. la forma della distribuzione della popolazione La verifica delle ipotesi In molte circostanze il ricercatore si trova a dover decidere quale, tra le diverse situazioni possibili riferibili alla popolazione, è quella meglio sostenuta dalle evidenze

Dettagli

Prova Scritta di METODI STATISTICI PER L AMMINISTRAZIONE DELLE IMPRESE (Milano, )

Prova Scritta di METODI STATISTICI PER L AMMINISTRAZIONE DELLE IMPRESE (Milano, ) Università degli Studi di Milano Bicocca Scuola di Economia e Statistica Corso di Laurea in Economia e Amministrazione delle Imprese (ECOAMM) Prova Scritta di METODI STATISTICI PER L AMMINISTRAZIONE DELLE

Dettagli

Intervallo di confidenza

Intervallo di confidenza Intervallo di confidenza Prof. Giuseppe Verlato, Prof. Roberto de Marco Sezione di Epidemiologia e Statistica Medica, Università di Verona campione inferenza popolazione Media Riportare sempre anche Stima

Dettagli

Indici di eterogeneità e di concentrazione

Indici di eterogeneità e di concentrazione Indici di eterogeneità e di concentrazione Dario Malchiodi e Anna Maria Zanaboni 12 gennaio 2016 1 Indici di eterogeneità Nel caso di variabili qualitative nominali la varianza e gli altri indici da essa

Dettagli