Calcolo Combinatorio

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Calcolo Combinatorio"

Transcript

1 Capitolo S-09 Calcolo Combinatorio Autore: Mirto Moressa Contatto: Sito: Data inizio: 16/10/2010 Data fine: 21/10/2010 Ultima modifica: 21/10/2010 Versione: 2.0 Indice del capitolo 1) Generalità: 1)def. alfabeto; 2)def. vettore; 3)def. fattoriale; 4)def. fattoriale troncato; 5)Disposizioni con ripetizione; 6)Disposizioni senza ripetizione; 7)Permutazioni; 8)Combinazioni; 2) Applicazioni: 1)Super Enalotto; 2)Lotto; 3)Poker Texas Hold'em; 4)Poker a 5 carte; 5)La memoria del computer; 6)L'insieme dei sottoinsiemi;

2

3 9.1) Generalità 9.1.1) Def: Un alfabeto è un insieme finito di valori (simboli), la cui cardinalità viene indicata con n. es.1) alfabeto binario = {0, 1}; n = 2; es.2) alfabeto decimale = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; n = 10; 9.1.2) Def: Un vettore da k posti è una serie ordinata di k caselle, ciascuna delle quali può contenere un valore, scelto da un opportuno alfabeto. La casella più a sinistra è in prima posizione, quella più a destra in ultima posizione. es.1) vettore di 5 posti [ ][ ][ ][ ][ ] 9.1.3) Def: Dato un numero n, si definisce fattoriale del numero n e si indica con n!, la produttoria n n 1 n es.1) 3! = = 6 es.2) 100! = ! 9.1.4) Def: Dato un numero n, si definisce fattoriale troncato di k posizioni del numero n, la produttoria dei primi k termini. es.1) fattoriale troncato di 5 posizioni del numero 90 = e si può indicare come rapporto di fattoriali: 90! 85! = 90! n! 90 5! = n k! Per praticità assumeremo da qui in avanti n = 90 e k = 5, cioè di avere un alfabeto composto da 90 simboli (ad es. i numeri da 1 a 90) e un vettore da 5 posti, da riempire con altrettante estrazioni (che è allincirca ciò che accade nel gioco del lotto) ) Disposizioni con ripetizione Contiamo quanti vettori distinti possiamo ottenere se supponiamo di fare estrazioni con reinserimento (cioè reinserendo nell'urna la pallina appena estratta): alla prima posizione abbiamo 90 possibilità, alla seconda 90, ecc... Abbiamo appena contato tutte le possibili Disposizioni con ripetizione che sono: = 90 5 e si indicano col simbolo: D r 90, 5 (e in generale: D r n, k = n k )

4 9.1.6) Disposizioni senza ripetizione Contiamo quanti vettori distinti possiamo ottenere se supponiamo di fare estrazioni senza reinserimento: alla prima posizione abbiamo 90 possibilità, alla seconda 89, alla terza 88, ecc... Abbiamo appena contato tutte le possibili Disposizioni senza ripetizione che sono: = 90! 85! e si indicano col simbolo: D 90, 5 (e in generale: D n, k = n! n k! ) 9.1.7) Permutazioni Le Permutazioni si hanno quando si considerano le Disposizioni senza ripetizione, nel caso in cui sia k = n, cioè abbiamo un vettore con tanti posti quanti sono i simboli dell'alfabeto. Si ottiene facilmente che i vettori distinti sono 90! e si indicano col simbolo: D 90, 90 (e in generale: D n, n = n! ) 9.1.8) Combinazioni Se alle Disposizioni senza ripetizione togliamo il vincolo dell'ordine otteniamo le Combinazioni. In questo contesto la cinquina {1, 13, 25, 82, 74} è del tutto equivalente a {1, 82, 13, 74, 25} e a tutte le altre possibili Permutazioni (abbiamo, infatti, 5 numeri in 5 posti), che sono in totale 5! Possiamo, quindi, concludere che, rispetto alle Disposizioni senza ripetizione, l'insieme delle Combinazioni è 5! volte meno numeroso. Il numero totale di vettori relativi alle Combinazioni sarà dunque: ! = 90! 85! 5! e si indica col simbolo: C 90, 5 = 90 5 (e in generale: C n, k = n k = n! n k! k! ) prende anche il nome di Coefficiente binomiale, ed è utilizzato nella n Formula di Newton, per esplicitare il Binomio di Newton a b n = n k an k b k. NOTA BENE: il simbolo n k k =0

5 9.2) Applicazioni 9.2.1) Super Enalotto (n = 90, k = 6) Ci poniamo il problema di calcolare quante siano tutte le sestine possibili con 90 numeri. Non avendo il vincolo dell'ordine, per il calcolo ci serviamo delle Combinazioni: C 90, 6 = 90 6 = = 6! 448,282,533, = 622,614,630 Da questo calcolo possiamo trarre le seguenti conclusioni: - per avere la certezza di vittoria, dovremmo giocare 622,614,630 colonne per una spesa totale di 311,307,315 ; - giocando la schedina minima da 1 (2 colonne), abbiamo 1 possibilità di vittoria su 311,307,315, il che ci fa concludere che fintantoché il montepremi sarà più basso di 311,307,315, non conviene giocare (supponendo che venga premiato solo il 6); - se giochiamo una colonna, annerendo 30 numeri, giochiamo C 30, 6 = 593,775 sestine, con una spesa totale di 296, e con una probabilità di vittoria pari a 1.7 su 1,000,000 (e non 1 su 3 come si potrebbe pensare, solo per il fatto di aver scelto un terzo dei numeri a disposizione!!!!) - la sestina {1, 2, 3, 4, 5, 6} ha la stessa probabilità di uscita di {5, 10, 21, 42, 76, 89}; il fatto che i numeri siano consecutivi non costituisce un problema: l'ordinamento dei numeri è un significato interpretativo dell'uomo, mentre il caso vede le palline tutte alla stessa maniera; aggiungo che con tutta probabilità la prima sestina indicata non uscirà mai, così come la seconda: in 100 anni escono 15,600 sestine, quindi prima di vederle tutte devono trascorrere poco meno di 4 milioni di anni (al ritmo di 3 estrazioni settimanali e supponendo che non ci siano ripetizioni di sestine); - se giochiamo 2 colonne con numeri distinti (sono 2 x C(6, 3) terzine), abbiamo 1 possibilità su di fare 3, il che ci fa concludere che, nell'ipotesi in cui il 3 fosse l'unica combinazione per vincere prevista dal gioco, l'equità si avrebbe con una vincita di e la convenienza per vincite superiori (le terzine totali sono C(90, 3) e quelle estratte sono C(6, 3)); 9.2.2) Lotto (n = 90, k = 5) Il gioco del Lotto si sviluppa in maniera completamente diversa dal Super Enalotto, in quanto non ha un montepremi da spartire tra i vincitori, ma le vincite sono calcolate attraverso moltiplicatori fissi. Ci sono 11 ruote, ciascuna delle quali estrae 5 numeri, scelti fra i possibili 90 senza ripetizione e senza ordine. I moltiplicatori di vincita sono: estratto (1) = ambo (2) = 250 terno (3) = 4,500 quaterna (4) = 120,000 cinquina (5) = 6,000,000 (ai quali va ulteriormente tolto un 6% di ritenuta sulle vincite) Supponiamo di giocare 2 numeri su una singola ruota (es. Nazionale) e di puntare 1 sull'ambo. Con 90 numeri esistono C(90, 2) = 4,005 ambi e su una ruota escono 5 numeri, per un totale di C(5, 2) = 10

6 ambi estratti: abbiamo, quindi 1 possibilità x 10 su 4,005 = 1 possibilità su Per avere gioco equo, dovremmo vincere a fronte di 1 puntato; il fatto di vincere solo 250, fa capire come alla lunga sia il gestore del gioco a guadagnare per davvero. Supponiamo adesso di giocare 5 numeri su una ruota e di puntare sempre 1 sull'ambo. Stiamo giocando 10 ambi contemporaneamente e quindi stiamo scommettendo solo 0.10 su ognuno di essi. Se indoviniamo 2 numeri, abbiamo preso 1 ambo e vinciamo 25. Se indoviniamo 3 numeri, abbiamo preso C(3, 2) = 3 ambi e vinciamo 75. Se indoviniamo 4 numeri, abbiamo preso C(4, 2) = 6 ambi e vinciamo 150. Se indoviniamo tutti e 5 i numeri, è meglio non pensarci... Contiamo quante sono le cinquine: C(90, 5) = 43,949,268. Se puntiamo 1 sulla cinquina su una ruota, dovremmo vincere 43,949,268 per avere gioco equo. In realtà ne vinceremmo solo 6,000, ) Poker Texas Hold'em (n = 52, k = 2) Nel Poker Texas Hold'em si utilizza un mazzo completo di 52 carte francesi (13 carte per 4 semi) e se ne distribuiscono 2 coperte per ogni giocatore; poi, se le condizioni di gioco lo consentono, se ne scoprono 3 sul tavolo, poi un'altra e poi un'altra ancora, per un totale di 5 carte scoperte sul tavolo. Vediamo che probabilità abbiamo di cominciare la mano con 2 Assi. Tutte le possibili combinazioni sono C(52, 2) = 1,326 e di queste quelle che ci interessano sono C(4, 2) = 6, per un totale di 1 possibilità su 221 (0.45 %). Notare come avremmo ottenuto la stessa probabilità anche se avessimo cercato una coppia di 2: una cosa sono le combinazioni di carte, un'altra il valore della mano, stabilito dall'ordine di importanza che l'uomo assegna alla singola carta. Vediamo adesso che probabilità abbiamo di chiudere un tris, cominciando la mano con una coppia di Assi. Avendo già due carte in mano, ne restano 50 nel mazzo, di cui 2 di nostro interesse (le altre carte date ai giocatori non rientrano in questi conteggi, essendo coperte). Dovendo scendere ancora 5 carte in tavola, ci sono C(50, 5) = 2,118,760 bords diversi. Quelli di nostro interesse sono della forma Asso + 4 carte senza l'asso, e quindi sono C (48, 4) per il primo Asso mancante + C (48, 4) per il secondo Asso = 389,160. La possibilità di chiudere tris è allora 1 su 5.4 (18.5%). Facciamo poker con 2 Assi e 3 carte qualsiasi: C(48, 3) = 17,296 cioè 1 possibilità su (0.82%). Calcoliamo la probabilità di chiudere colore se cominciamo la mano con 2 carte dello stesso seme (es. cuori). Imponiamo che il bord sia composto da 3 cuori soli (e non anche da 4 o 5, in modo che possa chiudere colore solo un altro avversario in possesso di 2 cuori). Abbiamo 50 carte, delle quali 11 sono cuori e 39 no. I nostri bords favorevoli sono C(11, 3) x C(39, 2) = 165 x 741 = 122,265; segue che abbiamo 1 possibilità su (5.8%) ) Poker a 5 carte (n = 52, k = 5) Per la versione internazionale, chiamata 5-Cards Draw, si utilizza un mazzo completo di 52 carte francesi, e il gioco inizia distribuendone 5 a testa. Tutte le combinazioni iniziali che si possono avere sono C(52, 5) = 2,598,960. Vediamo quante combinazioni ci permettono di chiudere:

7 - Colore: dobbiamo pescare tutte le 5 carte dalle 13 disponibili dello stesso seme, e questo vale per ciascuno dei 4 semi; totale: 4 x C(13, 5) = 5,148; - Full: dobbiamo abbianare una coppia e un tris, e questo vale per le 13 coppie disponibile per i 12 tris rimanenti; totale: 13 x 12 x C(4, 2) x C(4, 3) = 3,744; - Poker: dobbiamo abbinare le 4 carte dello stesso valore, e questo vale per i 13 valori; la quinta carta può essere una qualsiasi delle 48 rimanenti; totale: 13 x C(4, 4) x 48 = 624; E da questi conti possiamo concludere che è più probabile chiudere Colore, quindi Full, e alla fine Poker (il calcolo delle percentuali è lasciato al lettore). La gerarchia di valori della mano sarà: Poker batte Full; Full batte Colore. Per la versione italiana, invece, nel caso di gioco a 5 giocatori, si utilizzano le carte che vanno dal 6 al Kappa, più gli Assi, per un totale di 9 valori per 4 semi = 36 carte. Il gioco inizia sempre distribuendo 5 carte ad ogni giocatore. Vediamo come cambiano le combinazioni, rispetto alla versione internazionale: - Totali: C(36, 5) = 376,992; - Colore: 4 x C(9, 5) = 504; - Full: 9 x 8 x C(4, 2) x C(4, 3) = 1,728; - Poker: 9 x C(4, 4) x 32 = 288; E si vede subito la differenza rispetto a prima: chiudere Colore è più difficile rispetto al Full!!! Pertanto, anche le gerarchie delle mani devono cambiare, ed infatti, in questa variante, il Colore batte il Full ) La memoria del computer (n = 2, k = 8) Il mattone fondamentale della memoria del computer è il BYTE, che è un vettore ordinato da 8 posti, chiamati BIT, ciascuno dei quali può assumere valori da un alfabeto binario {0, 1}. I valori rappresentabili da un Byte sono 2 8 = 256, perché siamo in presenza di disposizioni con ripetizione. Il problema che ci poniamo ora è come poter utilizzare questi Byte in modo utile per l'uomo, visto che la memorizzazione diretta di 0 e 1 non ha molta praticità. La risposta è la crezione di una tabella che associa ad ogni vettore binario un corrispondente simbolo umano. La prima tabella che hanno standardizzato è la Tabella ASCII, che ad esempio associa i vettori che vanno dal 97 al 122 ai simboli delle lettere che vanno dalla a alla z minuscole. Una seconda tabella, attualmente in uso, è la UNICODE, che utilizza 2 Byte (o eventualmente 4), dando così a disposizione 2 16 = 65,536 valori, che permettono di includere la maggior parte dei simboli degli alfabeti di tutte le lingue del mondo. Per mantenere la retrocompatibilità, ai primi 256 valori sono associati gli stessi simboli della tabella ASCII. La soluzione appena proposta permette di risolvere l'utilizzo testuale del computer, ma per utilizzi numerici è sicuramente poco efficiente. Per il contesto matematico, ci sono infatti altri codici di decodifica, ciascuno ottimizzato per la particolare applicazione. Per esempio, per fare somme con interi positivi, si può utilizzare una tabella che permetta ad un singolo Byte di rappresentare i numeri dallo 0 al 255, mentre se dobbiamo fare anche differenze, occorre un'altra tabella, che associ i valori dal -127 al +128, ottimizzando così la rappresentazione in funzione del contesto. Per fare divisioni occorre un'altra tabella ancora, visto che bisogna tener conto dei decimali. Nelle applicazioni informatiche reali, comunque, si utilizzano correntemente numeri da 4 o anche da 8 Byte (32 o 64 Bit): il problema dell'ottimizzazione degli spazi (molto importante negli anni '60) c'è ancora in settori

8 critici, ma è sostanzialmente assente in contesti normali, per via della notevole disponibilità di memoria a basso costo. La cosa importante da tenere a mente è che un dato memorizzato nel computer non ha alcun significato se non si sa di che tipo di dato sia, cioè se non si sa quale tabella utilizzare per interpretarlo ) L'insieme dei sottoinsiemi Nello studio della teoria dell'informatica, mi sono imbattuto molte volte nel concetto di insieme dei sottoinsiemi (o famiglia di sottoinsiemi) e della sua cardinalità, cioè dato un insime finito di elementi (es. 5), trovare quanti sono i sottoinsiemi distinti rappresentabili. Possiamo approciare questo problema pensando di sommare le combinazioni dei sottoinsiemi che otteniamo con 0 elementi, quindi quelli con 1 elemento, poi quelli con 2 elementi, ecc. fino a 5, ottenendo: 5 i=0 5 = = 32 i Se il numero di elementi fosse stato più grande (es. 100), questa strada sarebbe stata impraticabile. Osserviamo, però, che possiamo associare all'insieme di partenza un vettore binario lungo tanti posti quanti sono gli elementi (5), e che ciascun sottoinsieme è rappresentato da un vettore che ha una casella a 1 se il corrispondente elemento è incluso, 0 se è escluso. Con questa formalizzazione, si vede facilmente che ogni vettore distinto, individua univocamente un sottoinsieme distinto e viceversa. In questo modo è sufficiente contare i vettori per avere il numero dei sottoinsiemi, che sono facilmente 2 5. Nel caso dell'insieme con 100 elementi, il numero dei sottoinsiemi è Nel fare questi ragionamenti, abbiamo anche dimostrato che vale la relazione: n i=0 n = 2 i n

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme.

1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme. Esercizi difficili sul calcolo delle probabilità. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di, fra di esse vi sia un solo asso, di qualunque seme. Le parole a caso

Dettagli

Esericizi di calcolo combinatorio

Esericizi di calcolo combinatorio Esericizi di calcolo combinatorio Alessandro De Gregorio Sapienza Università di Roma alessandrodegregorio@uniroma1it Problema (riepilogativo) La segretaria di un ufficio deve depositare 3 lettere in 5

Dettagli

Cenni sul calcolo combinatorio

Cenni sul calcolo combinatorio Cenni sul calcolo combinatorio Disposizioni semplici Le disposizioni semplici di n elementi distinti di classe k con kn sono tutti i gruppi di k elementi scelti fra gli n, che differiscono per almeno un

Dettagli

Esempio II.1.2. Esempio II.1.3. Esercizi

Esempio II.1.2. Esempio II.1.3. Esercizi Calcolo combinatorio Il calcolo combinatorio consiste nello sviluppo di nozioni e tecniche per contare i possibili ordinamenti di un insieme e le possibili scelte di sottoinsiemi di un insieme Ha numerosi

Dettagli

STATISTICA MEDICA Prof. Tarcisio Niglio http://www.tarcisio.net tarcisio@mclink.it oppure su Facebook Anno Accademico 2011-2012

STATISTICA MEDICA Prof. Tarcisio Niglio http://www.tarcisio.net tarcisio@mclink.it oppure su Facebook Anno Accademico 2011-2012 STATISTICA MEDICA Prof. Tarcisio Niglio http://www.tarcisio.net tarcisio@mclink.it oppure su Facebook Anno Accademico 2011-2012 Calcolo delle Probabilità Teoria & Pratica La probabilità di un evento è

Dettagli

Dagli insiemi al calcolo combinatorio

Dagli insiemi al calcolo combinatorio Dagli insiemi al calcolo combinatorio Il calcolo combinatorio è una parte della matematica che si occupa di contare gli elementi di un insieme finito, ottenuto a partire da altri insiemi, dei quali si

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 9 giugno 006 Spazi di probabilità finiti e uniformi Esercizio Un urna contiene 6 palline rosse, 4 nere, 8 bianche. Si estrae una pallina; calcolare

Dettagli

Calcolo combinatorio

Calcolo combinatorio Calcolo combinatorio (da un file della Prof.ssa Marchisio, con alcune modifiche e integrazioni) Calcolo combinatorio branca della matematica che studia i modi per raggruppare e/o ordinare, secondo date

Dettagli

CARTE. Regolamento Belote. Regole del gioco: Determinazione del seme di briscola (Belote classico):

CARTE. Regolamento Belote. Regole del gioco: Determinazione del seme di briscola (Belote classico): CARTE aggiornato al 25/06/2014 Entrambe le gare di carte si svolgeranno presso il salone Polivalente di Pinasca. Entrambe le gare saranno giocate da giocatori in coppia, la coppia può essere diversa nelle

Dettagli

Laboratorio di dinamiche socio-economiche

Laboratorio di dinamiche socio-economiche Dipartimento di Matematica Università di Ferrara giacomo.albi@unife.it www.giacomoalbi.com 21 febbraio 2012 Seconda parte: Econofisica La probabilità e la statistica come strumento di analisi. Apparenti

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE Prof. G. Ciaschetti Fin dall antichità, l uomo ha avuto il bisogno di rappresentare le quantità in modo simbolico. Sono nati

Dettagli

k n Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011)

k n Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011) b) (vedi grafo di lato) 7 0 9 0 0 0 ( E ) + + 0, ) Calcolare, riguardo al gioco del totocalcio, la probabilità dei seguenti eventi utilizzando il calcolo combinatorio a) E : fare b) E : fare 0 c) E : fare

Dettagli

Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo.

Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo. Capitolo 1 9 Ottobre 00 Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo. 000, Milano Esercizio 1.0.1 (svolto in classe [II recupero Ing. Matematica aa.00-0-rivisitato]nel

Dettagli

Scopa. Scopone. Il Torneo. Il Gioco

Scopa. Scopone. Il Torneo. Il Gioco Scopa Il Torneo Il toreo di scopa viene solitamente organizzato in incontri ad eliminazione diretta due contro due (va quindi utilizzato il tabellone ad eliminazione diretta). Non è consentito parlare

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 19 marzo 2007 Spazi di probabilità finiti e uniformi Esercizio 1 Un urna contiene due palle nere e una rossa. Una seconda urna ne contiene una bianca

Dettagli

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni Analisi dei Dati 1/13 Esercizi proposti 3 soluzioni 0.1 Un urna contiene 6 palline rosse e 8 palline nere. Si estraggono simultaneamente due palline. Qual è la probabilità di estrarle entrambe rosse? (6

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

Prove e sottoprove. Perché il calcolo combinatorio. La moltiplicazione combinatorica. Scelta con e senza ripetizione { } ( )

Prove e sottoprove. Perché il calcolo combinatorio. La moltiplicazione combinatorica. Scelta con e senza ripetizione { } ( ) Perché il calcolo combinatorio Basato sulle idee primitive di distinzione e di classificazione, stabilisce in quanti modi diversi si possono combinare degli oggetti E molto utile nell enumerazione dei

Dettagli

Probabilità e bridge. Michele Impedovo

Probabilità e bridge. Michele Impedovo Probabilità e bridge Michele Impedovo Riassunto Nel gioco del bridge è di fondamentale importanza prevedere come sono distribuite le carte di un certo seme tra i due avversari. Questo articolo propone

Dettagli

6. I numeri reali e complessi ( R e C ). x2 = 2. 6.1 I numeri reali R.

6. I numeri reali e complessi ( R e C ). x2 = 2. 6.1 I numeri reali R. 6. I numeri reali e complessi ( R e C ). 6.1 I numeri reali R. Non tratteremo in modo molto approfondito gli ulteriori ampliamenti che dai numeri razionali ci portano a quelli reali, all insieme, e R d

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Giochiamo a dadi Nel XVII secolo il cavaliere De Meré, forte giocatore, come spesso accadeva fra la nobiltà di quel tempo, si pose questo quesito: Che cosa è più conveniente, scommettere

Dettagli

Poker tradizionale a 5 carte

Poker tradizionale a 5 carte Poker tradizionale a 5 carte Il poker tradizionale anche denominato poker a 5 carte o 5 card draw è la variante del gioco di carte più conosciuta e diffusa. Le regole e le modalità di gioco variano a seconda

Dettagli

Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu

Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu 1. Gli interi da 1 a 9 sono scritti nelle 9 caselle di una scacchiera 3x3, ogni intero in ogni casella diversa, in modo

Dettagli

Esercizi di calcolo combinatorio

Esercizi di calcolo combinatorio CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi di calcolo combinatorio Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability di Sheldon Ross, quinta

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

Regolamento di gioco di PokerClub

Regolamento di gioco di PokerClub Regolamento di gioco di PokerClub Obiettivo del gioco Lo scopo del poker Texas Holdem è avere la migliore mano con cinque carte, usando la combinazione delle due carte coperte personali e le cinque carte

Dettagli

Esercizi di Calcolo delle Probabilità (calcolo combinatorio)

Esercizi di Calcolo delle Probabilità (calcolo combinatorio) Esercizi di Calcolo delle Probabilità (calcolo combinatorio 1. Lanciamo due dadi regolari. Qual è la probabilità che la somma delle facce rivolte verso l alto sia pari a 7? 1/6 2. Due palline vengono estratte

Dettagli

BLACK JACK. Come si gioca

BLACK JACK. Come si gioca BLACK JACK INDICE 2 Il Gioco 2 Il tavolo da gioco 3 Le carte da gioco 5 Varianti del Gioco 7 Regole generali 12 BLACK JACK Il tavolo da gioco 2 Il gioco si svolge tra il banco rappresentato dal Casinó

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Dispensa 05 La rappresentazione dell informazione Carla Limongelli Ottobre 2011 http://www.dia.uniroma3.it/~java/fondinf/ La rappresentazione

Dettagli

TICHU NANJING (per 4 giocatori)

TICHU NANJING (per 4 giocatori) TICHU NANJING (per 4 giocatori) Le carte Sono di quattro tipi (Jade/Sword/Pagoda/Star) (Giada-verde/Spada-nero/Pagoda-blu/Stella-rosso) di 13 valori ognuna che corrispondono alle carte del Poker. L Asso

Dettagli

Dispense di Informatica per l ITG Valadier

Dispense di Informatica per l ITG Valadier La notazione binaria Dispense di Informatica per l ITG Valadier Le informazioni dentro il computer All interno di un calcolatore tutte le informazioni sono memorizzate sottoforma di lunghe sequenze di

Dettagli

Matematica e giochi di gruppo

Matematica e giochi di gruppo Matematica e giochi di gruppo Possiamo riempire di contenuti matematici situazioni di piccola sfida personale, situazioni di giochi di società. Di seguito proponiamo attività che affrontano i seguenti

Dettagli

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k Pordenone Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica

Dettagli

Pokerclub Texas Hold em modalità torneo

Pokerclub Texas Hold em modalità torneo Regole di gioco Pokerclub Texas Hold em modalità torneo Scopo del gioco Lo scopo del gioco Pokerclub Texas Hold em è riuscire a tenere per sé tutte le chips. Man mano che i giocatori finiscono le chips

Dettagli

Vincere a testa o croce

Vincere a testa o croce Vincere a testa o croce Liceo B. Russell - Cles (TN) Classe 3D Insegnante di riferimento: Claretta Carrara Ricercatrice: Ester Dalvit Partecipanti: Alessio, Christian, Carlo, Daniele, Elena, Filippo, Ilaria,

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

REGOLAMENTO ROULETTE FRANCESE

REGOLAMENTO ROULETTE FRANCESE REGOLAMENTO ROULETTE FRANCESE La Roulette Francese appartiene alla famiglia dei Giochi di sorte a quota fissa. Il gioco della Roulette Francese prevede una pallina che, lanciata in direzione opposta rispetto

Dettagli

Double Bonus Poker - Regole di Gioco

Double Bonus Poker - Regole di Gioco Double Bonus Poker - Regole di Gioco Come giocare Il gioco Double Bonus Poker utilizza un mazzo francese da 52 carte, e scopo del gioco è ottenere una combinazione pari o superiore alla coppia di Fanti

Dettagli

Regolamento Ravennate 200/400

Regolamento Ravennate 200/400 Regolamento Ravennate 200/400 L INIZIO Il tavolo è composto da 4 giocatori dove ognuno gioca per sé stesso. Controllare la propria posta in fiches,, deve risultare un totale di 2000 punti. ( 1 da 1.000,

Dettagli

Come si gioca al Macchiavelli

Come si gioca al Macchiavelli Come si gioca al Macchiavelli Macchiavelli conosciuto anche come Machiavelli, con una sola C, è un gioco di strategia, deriva dal Ramino. Le regole sono semplici ma il gioco è di fatto molto complesso,

Dettagli

IMPARARE A GESTIRE LE COPPIE. Quando ci viene servita una coppia di carte uguali dal dealer. è sempre un bel momento, ma non sempre si è in grado di

IMPARARE A GESTIRE LE COPPIE. Quando ci viene servita una coppia di carte uguali dal dealer. è sempre un bel momento, ma non sempre si è in grado di IMPARARE A GESTIRE LE COPPIE Quando ci viene servita una coppia di carte uguali dal dealer è sempre un bel momento, ma non sempre si è in grado di dare il giusto valore alle carte in nostro possesso, tendendo

Dettagli

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite.

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite. Formule di gioco La successione di mani necessarie per l eliminazione del penultimo giocatore o per la determinazione dei giocatori che accedono ad un turno successivo costituisce una partita. In base

Dettagli

1 Calcolo combinatorio

1 Calcolo combinatorio 1 Calcolo combinatorio In questo capitolo andremo ad introdurre le basi del calcolo combinatorio e le analizzeremo partendo dal caso pratico della risoluzione di un esercizio per poi dare la formulazione

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori Informazione e computer Si può rappresentare l informazione attraverso varie forme: Numeri Testi Suoni Immagini 0001010010100101010 Computer Cerchiamo di capire come tutte queste informazioni possano essere

Dettagli

BetOnMath. Sintesi del corso. 1 Modulo 1. A cura di C. Andrà, N. Parolini, M. Verani Dipartimento di Matematica, Politecnico di Milano

BetOnMath. Sintesi del corso. 1 Modulo 1. A cura di C. Andrà, N. Parolini, M. Verani Dipartimento di Matematica, Politecnico di Milano BetOnMath Sintesi del corso A cura di C. Andrà, N. Parolini, M. Verani Dipartimento di Matematica, Politecnico di Milano 1 Modulo 1 1.1 Iniziamo... giocando Iniziamo con un gioco molto semplice: il testa

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

Bonus Poker Multi - Regole di Gioco

Bonus Poker Multi - Regole di Gioco Bonus Poker Multi - Regole di Gioco Come giocare Il gioco Bonus Poker Multi utilizza un mazzo francese da 52 carte, e scopo del gioco è ottenere una combinazione pari o superiore alla coppia di Fanti (Jack),

Dettagli

LEZIONE 5: CALCOLO COMBINATORIO

LEZIONE 5: CALCOLO COMBINATORIO LEZIONE 5: CALCOLO COMBINATORIO e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 31 Ottobre 2012 Cos è il calcolo combinatorio?

Dettagli

Informatica Generale 02 - Rappresentazione numeri razionali

Informatica Generale 02 - Rappresentazione numeri razionali Informatica Generale 02 - Rappresentazione numeri razionali Cosa vedremo: Rappresentazione binaria dei numeri razionali Rappresentazione in virgola fissa Rappresentazione in virgola mobile La rappresentazione

Dettagli

Joker Poker - Regole di Gioco

Joker Poker - Regole di Gioco Joker Poker - Regole di Gioco Come giocare Il gioco Joker Poker utilizza un mazzo da 53 carte composto da 52 carte francesi più una carta Joker(Jolly) che quindi può assumere il valore di ogni altra carta.

Dettagli

La codifica dell informazione

La codifica dell informazione La codifica dell informazione Parte I Sui testi di approfondimento: leggere dal Cap. del testo C (Console, Ribaudo):.,. fino a pg.6 La codifica delle informazioni Un calcolatore memorizza ed elabora informazioni

Dettagli

COEFFICIENTI BINOMIALI

COEFFICIENTI BINOMIALI COEFFICIENTI BINOMIALI Michele Impedovo micheleimpedovo@uni-bocconiit Una definizione insiemistica Se n è un numero naturale e è un numero naturale compreso tra e n, si indica con il simbolo il coefficiente

Dettagli

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita NOTA 1 Gli esercizi sono presi da compiti degli scorsi appelli, oppure da testi o dispense di colleghi. A questi ultimi

Dettagli

I COLORI DELLE CARTE ( SUITS )

I COLORI DELLE CARTE ( SUITS ) Il Pyramid è un gioco di carte giocato nella serie originale di Battlestar Galactica. Nella nuova serie non è scomparso ma viene chiamato Full Colors mentre il termine Pyramid è ora riferito ad uno sport

Dettagli

REGOLAMENTO DI GIOCO POKER TEXAS HOLD'EM

REGOLAMENTO DI GIOCO POKER TEXAS HOLD'EM REGOLAMENTO DI GIOCO POKER TEXAS HOLD'EM Scopo del gioco La vittoria nei tornei è conseguita da chi riesce ad accumulare tutte le fiches degli altri partecipanti ovvero, nel caso di attribuzione di più

Dettagli

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete.

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete. Parliamo di probabilità. Supponiamo di avere un sacchetto con dentro una pallina rossa; posso aggiungere tante palline bianche quante voglio, per ogni pallina bianca che aggiungo devo pagare però un prezzo

Dettagli

Introduzione al pensiero probabilistico Il problema delle parti

Introduzione al pensiero probabilistico Il problema delle parti Introduzione al pensiero probabilistico Il problema delle parti Problema (in piccoli gruppi di lavoro) Due giocatori di pari abilità disputano una serie di partite; vince il gioco chi, per primo, raggiunge

Dettagli

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite.

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite. Formule di gioco La successione di mani necessarie per l eliminazione del penultimo giocatore o per la determinazione dei giocatori che accedono ad un turno successivo costituisce una partita. In base

Dettagli

REGOLAMENTO HOLD EM SHOWDOWN

REGOLAMENTO HOLD EM SHOWDOWN REGOLAMENTO HOLD EM SHOWDOWN Descrizione della fase iniziale Lo scopo del gioco Hold Em Showdown è quello di scegliere la parte (Banco o Avversario) che otterrà una mano di cinque carte contenente una

Dettagli

Jack or Better - Regole di Gioco

Jack or Better - Regole di Gioco Jack or Better - Regole di Gioco Come giocare Il gioco Jacks or Better utilizza un mazzo francese da 52 carte, e scopo del gioco e' ottenere una combinazione pari o superiore alla coppia di Jack, come

Dettagli

3. Formare tutte le parole (anche prive di senso) che si possono ottenere utilizzando tre lettere della parola AROMI. Quante sono? [R.

3. Formare tutte le parole (anche prive di senso) che si possono ottenere utilizzando tre lettere della parola AROMI. Quante sono? [R. 1. Scrivere tutti gli anagrammi della parola ARTO. [R. 24] 2. Scrivere tutti gli anagrammi della parola ORE. [R. 6] 3. Formare tutte le parole (anche prive di senso) che si possono ottenere utilizzando

Dettagli

4. Operazioni aritmetiche con i numeri binari

4. Operazioni aritmetiche con i numeri binari I Numeri Binari 4. Operazioni aritmetiche con i numeri binari Contare con i numeri binari Prima di vedere quali operazioni possiamo effettuare con i numeri binari, iniziamo ad imparare a contare in binario:

Dettagli

Dispense di Probabilità e Statistica. Francesco Caravenna Paolo Dai Pra

Dispense di Probabilità e Statistica. Francesco Caravenna Paolo Dai Pra Dispense di Probabilità e Statistica Francesco Caravenna Paolo Dai Pra Capitolo 1 Spazi di probabilità discreti 1.1 Generalità Nel corso di questo libro con la dicitura esperimento aleatorio indicheremo

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Calcolo combinatorio Ines Campa e Marco Longhi Probabilità e Statistica

Dettagli

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896 2 Esercizio 2.2 La rappresentazione esadecimale prevede 16 configurazioni corrispondenti a 4 bit. Il contenuto di una parola di 16 bit può essere rappresentato direttamente con 4 digit esadecimali, sostituendo

Dettagli

IMSV 0.8. (In Media Stat Virtus) Manuale Utente

IMSV 0.8. (In Media Stat Virtus) Manuale Utente Introduzione IMSV 0.8 (In Media Stat Virtus) Manuale Utente IMSV è una applicazione che calcola che voti può'prendere uno studente negli esami che gli mancano per ottenere la media che desidera. Importante:

Dettagli

LA RAPPRESENTAZIONE DELLE INFORMAZIONI

LA RAPPRESENTAZIONE DELLE INFORMAZIONI ISTITUTO TECNICO E LICEO SCIENTIFICO TECNOLOGICO ANGIOY LA RAPPRESENTAZIONE DELLE INFORMAZIONI Prof. G. Ciaschetti DATI E INFORMAZIONI Sappiamo che il computer è una macchina stupida, capace di eseguire

Dettagli

SISTEMI DI NUMERAZIONE E CODICI

SISTEMI DI NUMERAZIONE E CODICI SISTEMI DI NUMERAZIONE E CODICI Il Sistema di Numerazione Decimale Il sistema decimale o sistema di numerazione a base dieci usa dieci cifre, dette cifre decimali, da O a 9. Il sistema decimale è un sistema

Dettagli

REGOLAMENTO LIVE ROULETTE

REGOLAMENTO LIVE ROULETTE REGOLAMENTO LIVE ROULETTE La Live Roulette appartiene alla famiglia dei Giochi di sorte a quota fissa svolto con live dealer. Il gioco della Live Roulette prevede una pallina che, lanciata in direzione

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado

Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado. Risposta A). Il triangolo ABC ha la stessa altezza del triangolo AOB ma base di lunghezza doppia (il diametro

Dettagli

Appunti ed esercizi di combinatoria. Alberto Carraro

Appunti ed esercizi di combinatoria. Alberto Carraro Appunti ed esercizi di combinatoria Alberto Carraro December 2, 2009 01 Le formule principali per contare Disposizioni Sia A un insieme di n 1 elementi distinti Le sequenze di 1 k n elementi scelti senza

Dettagli

REGOLAMENTO ROULETTE 3D

REGOLAMENTO ROULETTE 3D REGOLAMENTO ROULETTE 3D La Roulette 3D appartiene alla famiglia dei Giochi di sorte a quota fissa. Il gioco della Roulette 3D prevede una pallina che, lanciata in direzione opposta rispetto ad una ruota

Dettagli

Esercizi di Calcolo delle Probabilita (I)

Esercizi di Calcolo delle Probabilita (I) Esercizi di Calcolo delle Probabilita (I) 1. Si supponga di avere un urna con 15 palline di cui 5 rosse, 8 bianche e 2 nere. Immaginando di estrarre due palline con reimmissione, si dica con quale probabilità:

Dettagli

H1. Probabilità - Esercizi

H1. Probabilità - Esercizi H. Probabilità - Esercizi CALCOLO COMBINATORIO Dati i seguenti esperimenti dire qual è lo spazio degli eventi. ) Il lancio di una moneta. 2) L estrazione di una pallina da una scatola contenente palline

Dettagli

Pinella Singolo ASC-CAAM 2013/14

Pinella Singolo ASC-CAAM 2013/14 Pinella Singolo ASC-CAAM 2013/14 Vedi Calendario Premi del campionato ( si svolge in 4/5 tappe di qualificazione ) : > Trofei per i primi nr 4 ( quattro ) > Ai prmi due omaggio pernottamento in residence

Dettagli

Unità 1. I Numeri Relativi

Unità 1. I Numeri Relativi Unità 1 I Numeri Relativi Allinizio della prima abbiamo introdotto i 0numeri 1 naturali: 2 3 4 5 6... E quattro operazioni basilari per operare con essi + : - : Ci siamo però accorti che la somma e la

Dettagli

Game Information for Joker Poker Power Poker. Viper - Power Poker Games

Game Information for Joker Poker Power Poker. Viper - Power Poker Games Game Information for Joker Poker Power Poker Viper - Power Poker Games Table of Contents Joker Poker Power Poker... 3 Vincite della partita... 3 Carte jolly... 5 Funzione Raddoppio... 5 Mani di poker...

Dettagli

Lezione 3 - Probabilità totale, Bayes -Alberi PROBABILITÀ TOTALE TEOREMA DI BAYES ALBERI E GRAFI

Lezione 3 - Probabilità totale, Bayes -Alberi PROBABILITÀ TOTALE TEOREMA DI BAYES ALBERI E GRAFI Lezione 3 - robabilità totale, ayes -lberi ROILITÀ TOTLE TEOREM DI YES LERI E GRFI GRUO MT06 Dip. Matematica, Università di Milano - robabilità e Statistica per le Scuole Medie -SILSIS - 2007 Lezione 3

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

ESERCIZI DI CALCOLO COMBINATORIO

ESERCIZI DI CALCOLO COMBINATORIO ESERCIZI DI CALCOLO COMBINATORIO 1. Calcolare il numero degli anagrammi che possono essere formati con le lettere della parola Amore. [120] 2. Quante partite di poker diverse possono essere giocate da

Dettagli

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE LE SUCCESSIONI 1. COS E UNA SUCCESSIONE La sequenza costituisce un esempio di SUCCESSIONE. Ecco un altro esempio di successione: Una successione è dunque una sequenza infinita di numeri reali (ma potrebbe

Dettagli

PRIMAVERA IN BICOCCA

PRIMAVERA IN BICOCCA PRIMAVERA IN BICOCCA 1. Numeri primi e fattorizzazione Una delle applicazioni più rilevanti della Teoria dei Numeri si ha nel campo della crittografia. In queste note vogliamo delineare, in particolare,

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Università di Torino QUADERNI DIDATTICI del Dipartimento di Matematica MARIA GARETTO STATISTICA Lezioni ed esercizi Corso di Laurea in Biotecnologie A.A. 00/00 Quaderno # Novembre 00 M. Garetto - Statistica

Dettagli

Regole di gioco Roulette Mobile

Regole di gioco Roulette Mobile Regole di gioco Roulette Mobile European Classic Roulette European Premium Roulette European VIP Roulette Regole di gioco European Classic Roulette Il gioco si svolge esclusivamente nella modalità a solitario,

Dettagli

Rappresentazione delle informazioni

Rappresentazione delle informazioni Rappresentazione delle informazioni Abbiamo informazioni (numeri, caratteri, immagini, suoni, video... ) che vogliamo rappresentare (e poter elaborare) in un calcolatore. Per motivi tecnologici un calcolatore

Dettagli

Game Information for Texas Hold'em Bonus Poker serie Gold. Viper Casinos Table Games

Game Information for Texas Hold'em Bonus Poker serie Gold. Viper Casinos Table Games Game Information for Texas Hold'em Bonus Poker serie Gold Viper Casinos Table Games Table of Contents Texas Hold'em Bonus Poker serie Gold... 3 Vincite della partita... 3 Regole del gioco... 7 Regole di

Dettagli

Matematica Discreta 2005 Esercizi di preparazione

Matematica Discreta 2005 Esercizi di preparazione Matematica Discreta 2005 Esercizi di preparazione Esercizio 1. Supponiamo di avere un rettangolo di cartone di dimensioni intere n e m e di tagliarlo successivamente secondo la seguente regola: togliamo

Dettagli

CowPoker. (Versione 1.0 Giugno 2006)

CowPoker. (Versione 1.0 Giugno 2006) CowPoker (Versione 1.0 Giugno 2006) Traduzione a cura di Andrea Casarino (acasarino70@alice.it) alias Turing70 della Tana dei Goblin (http://nuke.goblins.net/), direttamente dal regolamento ufficiale in

Dettagli

da 2 a 5 giocatori, dai 10 anni in su, durata 30 minuti

da 2 a 5 giocatori, dai 10 anni in su, durata 30 minuti da 2 a 5 giocatori, dai 10 anni in su, durata 30 minuti OBIETTIVO Il vincitore è colui che, dopo due round di gioco, delle sue 11 ordinazioni, ne ha consegnate il maggior numero. CONTENUTO DELLA SCATOLA

Dettagli

Pokerclub Texas Hold em Cash Game

Pokerclub Texas Hold em Cash Game Regole di gioco Pokerclub Texas Hold em Cash Game Scopo del gioco Il gioco Pokerclub Texas Hold em è offerto, nella modalità di gioco Tavoli Cash, nel quale le vincite sono assegnate sulla base dei risultati

Dettagli

Regole di base Poker

Regole di base Poker Regole di base Poker Modalità Torneo Nel poker organizzato in forma di torneo i partecipanti hanno in dotazione un monte Chips che costituisce lo Stack di partenza uguale per tutti. Queste chips hanno

Dettagli

Esercizi sul calcolo delle probabilità

Esercizi sul calcolo delle probabilità Esercizi sul calcolo delle probabilità Svolti e da svolgere (per MAR 13 marzo) Dati due eventi A e B dello spazio campionario Ω. Si sappia che P(A c )=0,3 P(B)=0,4 e P(A B c )=0,5 si determinino le probabilità

Dettagli

11) convenzioni sulla rappresentazione grafica delle soluzioni

11) convenzioni sulla rappresentazione grafica delle soluzioni 2 PARAGRAFI TRATTATI 1)La funzione esponenziale 2) grafici della funzione esponenziale 3) proprietá delle potenze 4) i logaritmi 5) grafici della funzione logaritmica 6) principali proprietá dei logaritmi

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico.

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico. Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Probabilità Ines Campa e Marco Longhi Probabilità e Statistica - Esercitazioni

Dettagli

CARIBBEAN POKER. Come si gioca

CARIBBEAN POKER. Come si gioca CARIBBEAN POKER INDICE Caribbean Poker 2 Il tavolo da gioco 3 Le carte da gioco 4 Il Gioco 5 Jackpot Progressive 13 Pagamenti 14 Pagamenti con Jackpot 16 Combinazioni 18 Regole generali 24 CARIBBEAN POKER

Dettagli

Regolamento Casinò Poker Joker Poker

Regolamento Casinò Poker Joker Poker Regolamento Casinò Poker Joker Poker Lo scopo del poker Joker è di ottenere una mano di poker da 5 carte che contenga una combinazione vincente (vedi la tabella dei pagamenti sulla macchina). Migliore

Dettagli

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alberto Pinto Corso di Matematica - NUCT 1 Insiemi 1.1 Generalità Diamo la definizione di insieme secondo Georg Cantor, matematico

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 8 marzo 2012 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2012.html DECISORI RAZIONALI INTERAGENTI di Fioravante Patrone,

Dettagli