UNITA 3. LE EQUAZIONI GONIOMETRICHE.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "UNITA 3. LE EQUAZIONI GONIOMETRICHE."

Transcript

1 UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, eno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni inverse areno, arcoeno, arcoangene e arcocoangene.. Equazioni riconducibili ad equazioni goniomeriche elemenari.. Equazioni lineari in seno e eno. 7. Equazioni omogenee di secondo grado in seno e eno. 8. Equazioni riconducibili ad equazioni goniomeriche omogenee di secondo grado. 9. Equazioni che si risolvono con le formule di prosaferesi.. Sisemi di equazioni goniomeriche.. Calcolo del dominio di alcune funzioni goniomeriche.. Calcolo del periodo delle funzioni goniomeriche.. Le inersezioni delle funzioni goniomeriche con gli assi caresiani.. Esercizi vari e problemi di applicazione.. Generalià sulle equazioni goniomeriche. Le equazioni goniomeriche sono equazioni che conengono l incognia all inerno di qualche funzione goniomerica (seno, eno, angene, secane, ecane, coangene). Risolvere l equazione goniomerica significa ricavare l angolo incognio (in radiani) oppure (in gradi) che verifica l uguaglianza ra il primo membro e il secondo membro. Le equazioni goniomeriche servono per risolvere problemi di Geomeria o di Fisica in cui le incognie sono degli angoli. Ci sono vari ipi di equazioni goniomeriche le più frequeni sono le segueni: a- equazioni goniomeriche elemenari b- equazioni riconducibili ad equazioni goniomeriche elemenari c- equazioni lineari in seno e eno d- equazioni omogenee di secondo grado in seno e eno e- equazioni riconducibili ad equazioni omogenee di secondo grado f- equazioni che si risolvono con le formule di prosaferesi.

2 . Equazioni goniomeriche elemenari con seno, eno, angene e coangene. Sono equazioni goniomeriche molo semplici che si possono risolvere in due modi: a- ricordando i valori delle funzioni goniomeriche di alcuni angoli paricolari e ricordando la periodicià di quese funzioni goniomeriche. Può essere uile usare la circonferenza goniomerica. b- uilizzando la calcolarice scienifica, in paricolare i asi sin -, -, an -. Esempio sen Osservando la circonferenza goniomerica si può noare che il seno di un angolo è uguale ad quando l angolo vale oppure quando l angolo vale. Le soluzioni perano si possono scrivere in queso modo: Esempio Osservando la circonferenza goniomerica si può noare che il eno di un angolo è uguale a quando l angolo vale oppure quando l angolo vale. Le soluzioni perano si possono scrivere in queso modo: 9 9 Esempio g Osservando la circonferenza goniomerica si può noare che la angene di un angolo è uguale ad quando l angolo vale. Le soluzioni perano si possono scrivere in queso modo: Esempio co g Osservando la circonferenza goniomerica si può noare che la coangene di un angolo è uguale a quando l angolo vale. Le soluzioni perano si possono scrivere in queso modo:

3 . Alri ipi di equazioni goniomeriche elemenari. Sono equazioni del ipo: sen seny y g gy co g co gy sen y g co gy Esempio sen sen Il seno di un angolo è uguale al seno di un alro angolo quando: il secondo angolo è uguale al primo, a meno di mulipli di oppure quando: il secondo angolo è uguale al supplemenare del primo, a meno di mulipli di Imponendo che gli angoli siano uguali si oiene: prima soluzione Imponendo che gli angoli siano supplemenari si oiene: seconda soluzione. 9 Esempio Il eno di un angolo è uguale al eno di un alro angolo quando: il secondo angolo è uguale al primo, a meno di mulipli di oppure quando: il secondo angolo è uguale all opposo del primo, a meno di mulipli di Imponendo che gli angoli siano uguali si oiene: prima soluzione Imponendo che gli angoli siano opposi si oiene: seconda soluzione. Esempio g g Affinché l equazione abbia significao devono esisere le angeni e perciò deve risulare: per l esisenza della prima angene: per l esisenza della seconda angene: Se le soluzioni dell equazione goniomerica coincidono con quesi valori, ali soluzioni non sono acceabili e perano l equazione non ha soluzioni, cioè è impossibile. Per risolvere l equazione osserviamo che la angene di un angolo è uguale alla angene di un alro angolo se i due angoli sono uguali, a meno di mulipli di. Quindi deve risulare: Soluzione acceabile.

4 Esempio g g co co Affinché l equazione abbia significao devono esisere le coangeni e perciò deve risulare: per l esisenza della prima coangene: per l esisenza della seconda angene: Se le soluzioni dell equazione goniomerica coincidono con quesi valori, ali soluzioni non sono acceabili e perano l equazione non ha soluzioni, cioè è impossibile. Per risolvere l equazione osserviamo che la coangene di un angolo è uguale alla coangene di un alro angolo se i due angoli sono uguali, a meno di mulipli di. Quindi deve risulare: Soluzione acceabile. Esempio sen Il secondo membro si può rasformare in seno, poiché il eno di un angolo α è uguale al seno dell angolo complemenare. Perciò l equazione divena: sen sen e si riconduce ad un ipo di equazione precedene. Imponendo che gli angoli siano uguali si oiene: prima soluzione Imponendo che gli angoli siano supplemenari si oiene: seconda soluzione. Esempio co g g Il secondo membro si può rasformare in angene, poiché la coangene di un angolo α è uguale alla angene dell angolo complemenare. Perciò l equazione divena: g g e si riconduce ad un ipo di equazione precedene. Affinché l equazione abbia significao devono esisere le angeni e perciò deve risulare: per l esisenza della prima angene: per l esisenza della seconda angene: Se le soluzioni dell equazione goniomerica coincidono con quesi valori, ali soluzioni non sono acceabili e perano l equazione non ha soluzioni, cioè è impossibile. Per risolvere l equazione osserviamo che la angene di un angolo è uguale alla angene di un alro angolo se i due angoli sono uguali, a meno di mulipli di. Quindi deve risulare: Soluzione acceabile.

5 . Le funzioni inverse areno, arcoeno, arcoangene e arcocoangene.. Equazioni riconducibili ad equazioni goniomeriche elemenari. Quese equazioni si risolvono rasformando ue le funzioni goniomeriche in funzione di una sola di esse, porando ui i ermini al primo membro e scomponendo il primo membro nel prodoo di più faori di primo grado o di secondo grado. Applicando la legge di annullameno del prodoo si può uguagliare a zero ciascun faore oenendo varie equazioni goniomeriche elemenari che si risolvono singolarmene. A vole, prima di risolvere l equazione, è necessario imporre alcune condizioni di acceabilià. Esempio sen sen sen sen sen sen sen sen sen sen sen sen Esempio sen sen sen sen sen sen sen sen sen sen 8 9 sen sen sen

6 . Equazioni lineari in seno e eno. Sono equazioni in cui si rovano sia il seno che il eno di un angolo come funzioni di primo grado, e perciò si dicono lineari. Hanno quesa forma: a sen b c dove a,b,c sono numeri reali qualsiasi. Nel caso paricolare in cui c l equazione divena: a sen b che si può risolvere dividendo ambo i membri per (che è ceramene diverso da zero) oenendo: b a g b g a che è un equazione goniomerica elemenare con la funzione angene. Esempio. sen sen g Se invece c l equazione risula complea: a sen b c e si può risolvere uilizzando le formule parameriche razionali rasformando sen e in ipoizzando che g esisa, cioè ipoizzando che e quindi. g, Se invece g non esise, cioè, e quindi, non si possono usare le formule parameriche. Si deve allora sosiuire l angolo nell equazione daa e conrollare se anche queso angolo è soluzione dell equazione. Esempio sen Se g esise, cioè e quindi, si possono usare le formule parameriche razionali e l equazione divena: ( ) g g Se invece g non esise, cioè e quindi, non si possono usare le formule parameriche ma bisogna sosiuire queso valore di nell equazione daa e si oiene: sen ( ) ( ) cioè sen ( ) ( ) ( ) L uguaglianza non è verificaa per cui l angolo non è soluzione dell equazione.

7 Esempio. sen Se g esise, cioè se e quindi, si possono usare le formule parameriche razionali e l equazione divena: g Se invece g non esise, cioè e quindi non si possono usare le formule parameriche razionali ma bisogna sosiuire queso valore di nell equazione daa e si oiene: sen ( ) ( ) cioè sen ( ) ( ) ( ). L uguaglianza è verificaa per cui l angolo è anche soluzione dell equazione. 7. Equazioni omogenee di secondo grado in seno e eno. Sono equazioni in seno e eno che hanno ui i ermini di secondo grado e perciò si dicono omogenee. In generale hanno la forma: a sen b sen c Si possono risolvere dividendo ambo i membri per, che è sicuramene diverso da zero, oenendo un equazione del ipo: a g bg c che è riconducibile ad equazioni elemenari. Esempio. sen ( ) sen sen g sen g g g g

8 8. Equazioni riconducibili ad equazioni goniomeriche omogenee di secondo grado. Sono equazioni del ipo: a sen b sen c d che non sono omogenee per la presenza del ermine d che non è di secondo grado. Tuavia si possono ricondurre ad equazioni omogenee di secondo grado moliplicando il ermine d per il numero sen oenendo: asen bsen c ( a d) sen d( sen bsen ( c d) ) che è un equazione omogenea di secondo grado in seno e eno. Esempio ( ) sen ( ) sen ( ) sen ( ) sen sen sen ( ) sen g g ( ) g g g

9 9. Equazioni che si risolvono con le formule di prosaferesi. Quese equazioni si risolvono applicando le formule di prosaferesi e riducendole ad equazoni goniomeriche elemenari. Esempio. sen sen sen sen sen sen sen sen sen sen ( ) sen sen. Sisemi di equazioni goniomeriche. Sono sisemi che conengono più equazioni, di cui almeno una è goniomerica. Si risolvono generalmene col meodo di sosiuzione. Esempio y y sen y sen y y Risolviamo a pare la seconda equazione: y sen y seny y y seny y si moliplica per y seny y si sommano i ermini simili seny y si divide per seny y si razionalizza il denominaore seny y y y Si possono usare le formule parameriche se g esise, cioè se cioè se y In al caso l equazione divena:

10 (9 ) 7 8 ( )( ) 7 7 Prima soluzione: ( )( ) 9 7 y y cioè g arcg Dalla abella pag 9 si vede che alla angene corrisponde l angolo e quindi possiamo dedurre 8 che alla angene corrisponde l angolo. 8 y Quindi avremo: arcg y e y cioè 8 ( )( ) Seconda soluzione: ( )( ) y cioè g 7 Dalla abella a pag 9 si vede che queso valore di angene non corrisponde ad alcun angolo noo, per cui la soluzione rimane scria ì. y arcg y arcg e y cioè arcg Volendo calcolare l angolo in gradi possiamo uilizzare la calcolarice imposaa in DEG. Avremo: y g g (,879 ),99 8,89 y 8,89, 89 7 Se invece y risula che g non esise e non si possono usare le formule parameriche. In al caso bisogna sosiuire queso valore di y nell equazione daa e vedere se anche ques angolo è soluzione dell equazione. Si oiene che: seny y sen ( ) NO Risolviamo lo sesso sisema goniomerico ricavando dalla prima equazione non la ma la y avremo uno svolgimeno più semplice. y y y sen y sen sen sen sen Risolviamo a pare la seconda equazione: sen sen sen sen sen

11 ( ) g e g y y Dalla abella a pag 9 si vede che queso valore di angene non corrisponde ad alcun angolo noo, per cui la soluzione rimane scria ì. arcg arcg e y cioè y arcg Volendo calcolare l angolo in gradi possiamo uilizzare la calcolarice imposaa in DEG. Avremo: g,9,899 e y,899 8, 89. Calcolo del dominio di alcune funzioni goniomeriche. Il Dominio D di una funzione reale di variabile reale è l insieme di ui i valori della variabile per i quali si può calcolare il valore corrispondene della funzione f (). Per deerminare il dominio delle funzioni goniomeriche bisogna imporre le segueni condizioni: - che le funzioni goniomeriche si possano calcolare - che evenuali denominaori siano diversi da zero - che evenuali radici con indice pari abbiano il radicando maggiore o uguale a zero. Esempio Calcolare il dominio della funzione: f ( ) sen La funzione sen si può calcolare R e perciò non bisogna imporre alcuna condizione La funzione si può calcolare R e perciò non bisogna imporre alcuna condizione Quindi il dominio della funzione f () è uguale all insieme di ui i numeri reali e si scrive: D R Esempio Calcolare il dominio della funzione: f ( ) sen g La funzione sen si può calcolare R e perciò non bisogna imporre alcuna condizione La funzione g si può calcolare con la condizione che Quindi il dominio della funzione f () risula: D R Esempio Calcolare il dominio della funzione: f ( ) g co g

12 La funzione g si può calcolare con la condizione che La funzione co g si può calcolare con la condizione che Si possono sineizzare quese due condizioni in una sola condizione scrivendo Quindi il dominio della funzione f () risula: D R Esempio Calcolare il dominio della funzione: f ( ) sen La funzione sen si può calcolare R e perciò non bisogna imporre alcuna condizione Il denominaore deve essere diverso da zero e perciò bisogna imporre la condizione: sen sen sen Quindi il dominio della funzione f () risula: D R. Calcolo del periodo delle funzioni goniomeriche. Sia y f () una funzione reale di variabile reale, avene Dominio D. Si dice che la funzione f () è periodica di periodo T se: D : T D e inolre f ( T ) f ( ) Una funzione periodica di periodo T ha il grafico idenico in ogni inervallo di ampiezza T. Le funzioni goniomeriche seno, eno, angene e le loro funzioni reciproche ecane, secane, coangene, sono le ipiche funzioni periodiche. La funzione f ( ) sen e la sua funzione reciproca f ( ) ec hanno il periodo T= sen La funzione f ( ) e la sua funzione reciproca f ( ) sec hanno ha il periodo T= La funzione f ( ) g e la sua funzione reciproca f ( ) co g hanno ha il periodo T= g Le funzioni goniomeriche più complesse hanno un periodo che si può calcolare come nei segueni esempi. Esempio Deerminare il periodo della funzione f ( ) sen Affinché la funzione sia periodica di periodo T deve risulare f ( T ) f ( ), cioè: sen ( T ) sen sen T sen 8 Per = si oiene il periodo principale: T T T Esempio Deerminare il periodo della funzione f ( ) g Affinché la funzione sia periodica di periodo T deve risulare f ( T ) f ( ), cioè: T 8

13 g T g g T g T T T Per = si oiene il periodo principale: T Esempio Deerminare il periodo della funzione f ( ) sen Per calcolare il periodo bisogna rasformare la funzione in modo che conenga una sola funzione goniomerica. La sruura della funzione ci ricorda la formula: sen sen che modificheremo opporunamene per oenere la nosra funzione f () sen sen sen sen sen sen Ad ambo i membri si sosiuisce l angolo con l angolo e si oiene: sen sen Quindi la funzione f () si può scrivere: f ( ) sen Per rovare il suo periodo bisogna porre: f ( T ) f ( ) cioè: sen( T) sen sen T sen T T T Per = si oiene il periodo principale: T Esempio Deerminare il periodo della funzione f ( ) sen Per calcolare il periodo bisogna rasformare la funzione in modo che non conenga il quadrao. La sruura della funzione ci ricorda la formula: sen che modificheremo opporunamene per oenere la nosra funzione f (). sen sen sen sen Ad ambo i membri si sosiuisce l angolo con l angolo e si oiene: sen sen Quindi la funzione f () si può scrivere: f ( ) Per rovare il suo periodo bisogna porre: f ( T ) f ( ) cioè: ( T ) e semplificando opporunamene si oiene: T T Per = si oiene il periodo principale: T T T 7 Esempio Deerminare il periodo della funzione f ( ) Per calcolare il periodo bisogna rasformare la funzione in modo che non conenga il quadrao.

14 La sruura della funzione ci ricorda la formula: che modificheremo opporunamene per oenere la nosra funzione f (). 7 Ad ambo i membri si sosiuisce l angolo con l angolo e si oiene: Quindi la funzione f () si può scrivere: f ( ) 7 Per rovare il suo periodo bisogna porre: f ( T ) f ( ) cioè: e semplificando opporunamene si oiene: 7( T) 7 7 7T 7 7 7T 7 7T T Per = si oiene il periodo principale: T 7 7 Esempio Daa la funzione f ( ) f( ) f( ) con f ( ) periodica di periodo T f ( ) periodica di periodo T deerminare il periodo della funzione somma f ) f ( ) f ( ) ( Se f ( ) ha periodo di essa si ripee dopo 9 ecc. Se f ( ) ha periodo di essa si ripee dopo 8 ecc. La funzione somma f ( ) f( ) f( ) si ripee quando si ripeono enrambe le funzioni ( ) Osservando ui i mulipli del primo periodo e ui i mulipli del secondo periodo si osserva che le due funzioni si ripeono enrambe in corrispondenza del più piccolo muliplo comune:. Possiamo generalizzare dicendo che: se una funzione f () è daa dalla somma algebrica di più funzioni: f ) f ( ) f ( ) f ( )... ( con f ( ) periodica di periodo T f ( ) periodica di periodo T f ( ) periodica di periodo T ecc. allora la funzione somma f () ha come periodo il minimo comune muliplo ra ui i periodi delle singole funzioni.. Le inersezioni di una funzione goniomerica con gli assi caresiani. Sono i puni in cui una funzione goniomerica inconra gli assi caresiani. Servono per disegnare in modo più preciso il grafico di una funzione goniomerica. Si ricavano risolvendo il sisema ra l asse con la funzione goniomerica e il sisema ra l asse y con la funzione goniomerica.. Esercizi vari e problemi di applicazione.

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE.

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE. UNITA. LE DISEQUAZIONI GONIOMETRICHE.. Generalià sulle disequazioni goniomeriche.. Disequazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Disequazioni riconducibili a disequazioni goniomeriche

Dettagli

Anno 4 Equazioni goniometriche lineari e omogenee

Anno 4 Equazioni goniometriche lineari e omogenee Anno 4 Equazioni goniomeriche lineari e omogenee Inroduzione In quesa lezione descriveremo le equazioni goniomeriche lineari e omogenee. Esamineremo le definizioni e illusreremo i meodi risoluivi per ogni

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

EQUAZIONI GONIOMETRICHE

EQUAZIONI GONIOMETRICHE EQUAZIONI GONIOMETRICHE. EQUAZIONI ELEMENTARI: A FUNZIONE SENO: m con m x arcsin m k6 x 8 arcsin m k6 x k6 x 5 k6 sin(f (x)) sin(g(x)) f (x) g(x) k6 o f(x) 8 g(x) k6 sin(x ) sin(x ) x x k6 o x 8 (x ) k6

Dettagli

EQUAZIONI GONIOMETRICHE

EQUAZIONI GONIOMETRICHE EQUAZIONI GONIOMETRICHE. EQUAZIONI ELEMENTARI: A FUNZIONE SENO: sin x = m con m x = arcsin m + k6 x = 8 arcsin m + k6 sin x = x = + k6 x = 5 + k6 sin(f (x)) = sin(g(x)) f(x) = g(x) + k6 o f (x) = 8 g(x)

Dettagli

Calcolo di integrali - svolgimento degli esercizi

Calcolo di integrali - svolgimento degli esercizi Calcolo di inegrali - svolgimeno degli esercizi Calcoliamo una primiiva di cos(e 5. Inegriamo due vole per pari, scegliendo e 5 d come faore differenziale e cos( come faore finio. Si ha cos(e 5 d e5 5

Dettagli

Funzioni goniometriche

Funzioni goniometriche 0 oobre 008. Trigonomeria. Misura degli angoli e cerchio rigonomerico. Definizione di seno, coseno, angene. Idenià fondamenali 5. Valori delle funzioni circolari 6. Formule rigonomeriche 7. Inverse delle

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica:

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica: Sessione sraordinaria LS_ORD 7 Soluzione Si consideri la figura soosane, ce rappresena la quesione geomerica: Il riangolo APB, essendo inscrio in una semicirconferenza è reangolo, per cui AP r sin, PB

Dettagli

Esercizi 5. Sistemi lineari

Esercizi 5. Sistemi lineari Esercizi 5 10\04\017 Sisemi lineari David Barbao Esercizio 1 (Appello 014-015 ese 3). Dao il sisema lineare: x 1 + x + 3x 3 + 4x 4 = 0 x + x 3 + 3x 4 = 0 x 1 x x 3 x 4 = 0 (1) sia T lo spazio delle soluzioni

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

27 DERIVATE DI ORDINI SUCCESSIVI

27 DERIVATE DI ORDINI SUCCESSIVI 27 DERIVATE DI ORDINI SUCCESSIVI Definizione Sia f derivabile sull inervallo I. Se esise la derivaa della funzione x f (x) in x, allora (f ) (x) si dice la derivaa seconda di f in x, e si denoa con f (x)

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

Esercizi svolti. Geometria analitica: curve e superfici

Esercizi svolti. Geometria analitica: curve e superfici Esercizi svoli. Curve nel piano. Si rovi l equazione della circonferenza di cenro (,) e raggio. Applicando la definizione di circonferenza come luogo di puni equidisani dal cenro si ha ( ) ( y ) 4.. Si

Dettagli

UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA. - Seconda prova scritta di ANALISI MATEMATICA 1 - APPELLO DEL 9 settembre 2013

UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA. - Seconda prova scritta di ANALISI MATEMATICA 1 - APPELLO DEL 9 settembre 2013 UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA - Seconda prova scria di ANALISI MATEMATICA - APPELLO DEL 9 seembre 0 COGNOME... NOME... MATRICOLA... IMPORTANTE Al ermine della prova

Dettagli

Circuiti dinamici. Circuiti del primo ordine. (versione del ) Circuiti del primo ordine

Circuiti dinamici. Circuiti del primo ordine.  (versione del ) Circuiti del primo ordine ircuii dinamici ircuii del primo ordine www.die.ing.unibo.i/pers/masri/didaica.hm (versione del 4-5- ircuii del primo ordine ircuii del primo ordine: circuii il cui sao è definio da una sola variabile

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.maefilia.i SESSIONE SUPPLETIVA - 26 PROBLEMA 2 Fissao k R, la funzione g k :R R è così definia: g k = e kx2. Si indica con Γ k il suo grafico, in un riferimeno caresiano Oxy. ) Descrivi, a seconda

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti Esercizi di Maemaica Finanziaria - Corso Par Time scheda - soluzioni - Leggi finanziarie, rendie ed ammorameni. Le soluzioni sono: (a) M 3 = 00 ( + 3) = 5, M 8 = 5 ( + 5) = 43.75. (b) Va risola l equazione

Dettagli

Soluzioni di reti elettriche lineari PAS Introduzione

Soluzioni di reti elettriche lineari PAS Introduzione Soluzioni di rei eleriche lineari PAS Inroduzione Domanda: Cosa sono le rei eleriche lineari in regime Periodico Alernao Sinusoidali PAS? Risposa: Sono rei lineari in cui i generaori hanno dipendenza dal

Dettagli

Regime di capitalizzazione: una famiglia di funzioni fattore di montante che dipende da uno o più parametri.

Regime di capitalizzazione: una famiglia di funzioni fattore di montante che dipende da uno o più parametri. 5. Teoria generale Regimi finanziari Nel capiolo precedene abbiamo inrodoo alcuni parameri in grado di descrivere ualsiasi ipo di regime. Ciò ci permee di definire in generale i regimi finanziari. Regime

Dettagli

Esercizi aggiuntivi Unità A1

Esercizi aggiuntivi Unità A1 Esercizi aggiunivi Unià A Esercizi svoli Esercizio A Concei inroduivi Daa la grandezza impulsiva periodica la cui forma d onda è rappresenaa nella figura A., calcolarne il valore medio nel periodo, il

Dettagli

ESERCIZI SUL CALCOLO DI LIMITI CON GLI SVILUPPI DI TAYLOR

ESERCIZI SUL CALCOLO DI LIMITI CON GLI SVILUPPI DI TAYLOR ESERCIZI SUL CALCOLO DI LIMITI CON GLI SVILUPPI DI TAYLOR a cura di Michele Scaglia SVILUPPI DI MACLAURIN DELLE PRINCIPALI FUNZIONI Ricordiamo nella abella che segue gli sviluppi di Taylor per x 0 delle

Dettagli

( ) I METODI DI INTEGRAZIONE. f x da integrare nella somma di più. x,..., f n x che si sappiano già integrare. Ne segue che:

( ) I METODI DI INTEGRAZIONE. f x da integrare nella somma di più. x,..., f n x che si sappiano già integrare. Ne segue che: I METODI DI INTEGRAZIONE In queso paragrafo verranno illusrai i vari meodi di inegrazione che, pur non cosiuendo un procedimeno generale per effeuare l'inegrazione indefinia, permeono senz'alro di calcolare

Dettagli

Il modello di crescita deriva dalla logica del tasso di interesse semplice

Il modello di crescita deriva dalla logica del tasso di interesse semplice Eserciazione 7: Approfondimeni sui modelli di crescia. Crescia arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Viviana Amai 03/06/2009 Modelli di crescia Nella prima

Dettagli

4 appartengono alla traiettoria di γ. 1, C = 2. ( v) Determinare in quali punti il piano normale alla curva è parallelo all asse z. π cos π 2.

4 appartengono alla traiettoria di γ. 1, C = 2. ( v) Determinare in quali punti il piano normale alla curva è parallelo all asse z. π cos π 2. Soluzioni Esercizi 6. () Sia γ: R R 3 la curva definia da γ() = cos. e (i) Deerminare se A =, B =, C = 4 apparengono alla raieoria di γ. 8 (ii) Deerminare re puni P, Q, R sulla raieoria di γ. (iii) Deerminare

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione.. Funzioni iniettive, suriettive e biiettive.. Le funzioni

Dettagli

Processo di Arrivi di Poisson

Processo di Arrivi di Poisson CALCOLO DELLE PROBABILITA Processo di Arrivi di Poisson Per arrivo riferimeno. si inende un qualsiasi eveno casuale che si realizza in un deerminao sisema di Un processo di arrivi è un flusso di eveni

Dettagli

Il Value at Risk secondo l approccio parametrico: un esempio semplificato

Il Value at Risk secondo l approccio parametrico: un esempio semplificato Universià degli Sudi di Napoli Federico II Caedra di Economia delle Aziende di Assicurazione Il Value a Risk secondo l approccio paramerico: un esempio semplificao Domenico Curcio, Ph. D. Value a Risk

Dettagli

CAMPO ROTANTE DI GALILEO FERRARIS.doc pag. 1 di 5

CAMPO ROTANTE DI GALILEO FERRARIS.doc pag. 1 di 5 CAPO ROANE DI GALILEO FERRARIS. È noo che un solenoide percorso da correne elerica dà origine nel suo inerno a un campo magneico che ha come direzione quella del suo asse come mosrao in fig.. Se esso e

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione. 3. Le funzioni reali di variabile reale. 4. L espressione

Dettagli

PIL NOMINALE, PIL REALE E DEFLATORE

PIL NOMINALE, PIL REALE E DEFLATORE PIL NOMINALE, PIL REALE E DEFLATORE Il PIL nominale (o a prezzi correni) Come sappiamo il PIL è il valore di ui i beni e servizi finali prodoi in un cero periodo all inerno del paese. Se per calcolare

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

Soluzione degli esercizi del Capitolo 3

Soluzione degli esercizi del Capitolo 3 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Ricordando dal Paragrafo A.6 dell Appendice A che è facile oenere ẋ () d d ( (e A e A x + Ae (e A A x + ( A e A( ) x + Ax () + Bu () d ( e

Dettagli

ESERCIZI di TEORIA dei SEGNALI. La Correlazione

ESERCIZI di TEORIA dei SEGNALI. La Correlazione ESERCIZI di TEORI dei SEGNLI La Correlazione Correlazione Si definisce correlazione (o correlazione incrociaa o cross-correlazione) ra i due segnali di energia, in generale complessi, x() e y() la quanià:

Dettagli

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente:

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente: 1. omanda La funzione di coso oale di breve periodo (con il coso espresso in euro) di un impresa è la seguene: eerminare il coso oale, il coso oale medio, il coso marginale, i cosi oali fissi e i cosi

Dettagli

Corso di Misure Geodeiche Esercizio posizionameno relaivo Versione:. Jun. 00 Creao da Marco Scurai. remessa. La presene eserciazione risolve in modo compleo e deagliao un problema di sima della posizione

Dettagli

sedimentazione Approfondimenti matematici

sedimentazione Approfondimenti matematici sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE CONTROLLI AUTOMATICI Ingegneria della Gesione Indusriale e della Inegrazione di Impresa hp://www.auomazione.ingre.unimore.i/pages/corsi/conrolliauomaicigesionale.hm Trasformae di Laplace Gli esempi visi

Dettagli

1 Catene di Markov a stati continui

1 Catene di Markov a stati continui Caene di Markov a sai coninui In queso caso abbiamo ancora una successione di variabili casuali X 0, X, X,... ma lo spazio degli sai è un insieme più che numerabile. Nel seguio supporremo che lo spazio

Dettagli

MACCHINE ELETTRICHE. - Campo rotante - Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a.

MACCHINE ELETTRICHE. - Campo rotante - Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a. MACCINE ELETTRICE - Campo roane - Sefano Pasore Diparimeno di Ingegneria e Archieura Corso di Eleroecnica (IN 043) a.a. 01-13 Inroduzione campo magneico con inensià cosane che ruoa aorno ad un asse con

Dettagli

Esercizi di Teoria dei Segnali. La Trasformata di Fourier

Esercizi di Teoria dei Segnali. La Trasformata di Fourier Esercizi di Teoria dei Segnali La Trasformaa di Fourier 1 Esercizio 1 Calcolare la rasformaa di Fourier del segnale di fig. 1.1. x() A B - T/ T/ fig.1.1 Per calcolare la rasformaa di queso segnalesi può

Dettagli

GENERALITA SULLE MACCHINE ELETTRICHE

GENERALITA SULLE MACCHINE ELETTRICHE GENERALITA SULLE MACCHINE ELETTRICHE Una macchina è un organo che assorbe energia di un deerminao ipo e la rasforma in energia di un alro ipo. Energia in Energia in MACCHINA ingresso uscia Energia dispersa

Dettagli

Lavorazioni per asportazione di truciolo: usura utensile. Tecnologia Meccanica 1

Lavorazioni per asportazione di truciolo: usura utensile. Tecnologia Meccanica 1 Lavorazioni per asporazione di ruciolo: usura uensile Esercizio 1 In una lavorazione si desidera che la duraa T dell uensile sia di 15 minui. Assumendo per le cosani di Taylor i valori C = 250 e n = 0.122

Dettagli

Equazioni goniometriche risolvibili per confronto di argomenti

Equazioni goniometriche risolvibili per confronto di argomenti Equazioni goniometriche risolvibili per confronto di argomenti In questa dispensa si esaminano le equazioni goniometriche costituite dall uguaglianza di due funzioni goniometriche, nei cui argomenti compare

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondameni di Conrolli Auomaici Prova Parziale 8 Aprile 2 - A.A. 2/ Nome: Nr. Ma. Firma: a) Deerminare la rasformaa di Laplace X i (s) dei segueni segnali emporali x i (): x () = 4 + 2 e +5 cos(3 6), x

Dettagli

ANGOLI MAGGIORI DELL ANGOLO RETTO

ANGOLI MAGGIORI DELL ANGOLO RETTO ANGOLI MAGGIORI DELL ANGOLO RETTO Le equazioni trigonometriche sin θ = a, cos θ = b e tan θ = c possono avere tante soluzioni. I tasti delle funzioni inverse nelle calcolatrici (sin 1, cos 1 e tan 1 ),

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scienifico Pariario R. Bruni Padova, loc. Pone di Brena, 6/3/17 Verifica di Maemaica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Facciamo il pieno. Il serbaoio del carburane di

Dettagli

CM89sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica

CM89sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica 1 CM89se.ex COMPLEMENTI DI MATEMATICA a.a. 28-29 Laurea magisrale in Ingegneria Eleroecnica Nona seimana 24.11.28 - lunedì (2 ore) Commeno della prova parziale (vd. file CM8IcoA-B-C-D.pdf). Definizione

Dettagli

Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario

Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario www.maemaicamene.i N. De Rosa STR 6 p. Esame di sao di isruzione secondaria superiore Indirizzi: Scienifico e Scienifico opzione scienze applicae Tema di maemaica 6 Il candidao risolva uno dei due problemi

Dettagli

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza Nome..Cognome. classe D Gennaio 0 erifica: Parabola e circonferenza. Dai la definizione di parabola. Considera la parabola di fuoco F(,) e direrice r:, deermina: a) l equazione dell asse b) le coordinae

Dettagli

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) =

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) = Esercizio [puni 4] Prova scria di SEGNALI E SISTEMI 5 seembre 2003 Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 2002-2003) Teso e Soluzione (redaa da L. Finesso) Si racci il grafico dei segnali a. x

Dettagli

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010 Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove

Dettagli

(c) Determinare per quali valori di h la varietà lineare delle soluzioni del sistema ha dimensione 2:

(c) Determinare per quali valori di h la varietà lineare delle soluzioni del sistema ha dimensione 2: CORSO DI GEOMETRIA E ALGEBRA Cognome e Nome: Corso di Laurea: 8 gennaio 6 Maricola: Anno di corso: x. (6 p) Si consideri il sisema lineare AX = B, dovex = @ z A è i l v e o r e d e l l e incognie, A e

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura Inerruore ideale inerruore di chiusura { i() = 0 v() = 0 inerruore di aperura { v() = 0 i() = 0 per < 0 per > 0 per < 0 per > 0 v() i() = 0 v() i() = 0 Esempio: inerruore ideale di aperura Per < 0, i()

Dettagli

Minimi Quadrati Ricorsivi

Minimi Quadrati Ricorsivi Minimi Quadrai Ricorsivi Minimi Quadrai Ricorsivi Fino ad ora abbiamo sudiao due diversi meodi per l idenificazione dei modelli: - Minimi quadrai, uilizzao per l idenificazione dei modelli ARX, in cui

Dettagli

Outline. La trasformata di Laplace. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi

Outline. La trasformata di Laplace. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi Ouline La rasformaa di Laplace La rasformaa di Laplace (Meodi Maemaici e Calcolo per Ingegneria) Enrico Berolazzi DIMS Universià di reno anno accademico 28/29 (aggiornaa al 2/9/28) 2 Proprieà della rasformaa

Dettagli

Corso di Laurea in Disegno Industriale. Lezione 6 Novembre 2002 Derivate successive, derivate parziali e derivate di vettori. F.

Corso di Laurea in Disegno Industriale. Lezione 6 Novembre 2002 Derivate successive, derivate parziali e derivate di vettori. F. Corso di Laurea in Disegno Indusriale Corso di Meodi Numerici per il Design Lezione 6 Novembre Derivae successive, derivae parziali e derivae di veori F. Caliò I5 5 Derivazioni ripeue Derivaa della derivaa

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA GONIOMETRIA E TRIGONOMETRIA Dr. Erasmo Modica erasmo@galois.it RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice

Dettagli

P8 CIRCUITI SEQUENZIALI ELEMENTARI

P8 CIRCUITI SEQUENZIALI ELEMENTARI P8 CICUITI EUENZIALI ELEMENTAI P8. - Tracciare lo schema a blocchi di un sisema sequenziale secondo il modello di Moore. Nel modello di Moore di un sisema sequenziale, si suppone che lo sao successivo

Dettagli

sen ; e sul teorema del coseno. 2

sen ; e sul teorema del coseno. 2 Esercizi sul grafico di funzioni: Lunghezza di una corda ( ) sen e sul teorema del coseno Esercizi sulla equazione della circonferenza centrata in un generico punto (, ) R Il prodotto di una funzione pari

Dettagli

Il moto in una o più dimensioni

Il moto in una o più dimensioni Il moo in una o più dimensioni Rappresenazione Grafica e esempi Piccolo riepilogo Moo: posizione in funzione del empo (grafico P-). Necessia della scela di un sisema di riferimeno ( ) Velocià media v m

Dettagli

TRIGONOMETRIA PRECORSO DI MATEMATICA

TRIGONOMETRIA PRECORSO DI MATEMATICA PRECORSO DI MATEMATICA Angoli Trigonomeria Disosizione degli angoli rinciali riseo alla circonferenza rigonomerica 3i/4 i/3 PI/ Pi/3 Pi/4 Relazione er assare dalla misura in gradi alla misura in radiani

Dettagli

Il concetto di punto materiale

Il concetto di punto materiale Il conceo di puno maeriale Puno maeriale = corpo privo di dimensioni, o le cui dimensioni sono rascurabili rispeo a quelle della regione di spazio in cui può muoversi e degli alri oggei con cui può ineragire

Dettagli

ESEMPI DI ESERCIZI SU IRPEF ED IRES

ESEMPI DI ESERCIZI SU IRPEF ED IRES ESEMPI DI ESERCIZI SU IRPEF ED IRES 1. Irpef 1) Dopo avere definio il conceo di progressivià delle impose, si indichino le modalià per la realizzazione di un sisema di impose progressivo. ) Il signor A,

Dettagli

Equazioni di 2 grado

Equazioni di 2 grado Equazioni di grado Tipi di equazioni: Un equazione (ad una incognita) è di grado se può essere scritta nella forma generale (o forma tipica o ancora forma canonica): a b c con a, b e c numeri reali (però

Dettagli

Teoria in sintesi 10. Teoria in sintesi 14

Teoria in sintesi 10. Teoria in sintesi 14 Indice L attività di recupero Funzioni goniometriche Teoria in sintesi 0 Obiettivo Calcolare il valore di espressioni goniometriche in seno e coseno Obiettivo Determinare massimo e minimo di funzioni goniometriche

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi periodici Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/ Un carico p() si dice periodico quando assume indefiniamene

Dettagli

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T rao dal Corso di elecomunicazioni Vol. I ore Panella Giuseppe Spalierno dizioni Cupido 4. nergia e Poenza Dao un segnale di ampiezza s() si definisce energia oale il valore del seguene inegrale: + / /

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda Teoria dei Segnali La Convoluzione (esercizi) pare seconda 1 Esercizio n.8 Calcolare la convoluzione ra i due segnali : e x() = rec ( ) rec ( 2 ) y() = rec 2 ( ) Conviene inizialmene disegnare i due segnali

Dettagli

UNITÀ DIDATTICA 3 FUNZIONI GONIOMETRICHE

UNITÀ DIDATTICA 3 FUNZIONI GONIOMETRICHE UNITÀ DIDATTICA FUNZIONI GONIOMETRICHE 1 La misura degli angoli In ogni circonferenza è possibile definire una corrispondenza biunivoca tra angoli al centro e archi: a ogni angolo al centro corrisponde

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale x(, deo ingresso, generando

Dettagli

N09 (Quesito Numerico)

N09 (Quesito Numerico) N09 (Quesio Numerico): La "legge di graviazione universale" afferma che l'inerazione ra due oggei assimilabili a puni maeriali, di masse m 1 ed m 2 posi a disanza r 12 si esplica ramie una forza il cui

Dettagli

LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE

LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE 1. EQUAZIONI DIFFERENZIALI LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE ESEMPIO Della funzione y = f(x) si sa che y' 2x = 1. Che cosa si può dire della funzione

Dettagli

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1 Sisemi lineari: deinizioni e concei di base Teoria dei segnali Unià 2 Sisemi lineari Sisemi lineari Deinizioni e concei di base Concei avanzai 2 25 Poliecnico di Torino Sisemi lineari: deinizioni e concei

Dettagli

B8. Equazioni di secondo grado - Esercizi

B8. Equazioni di secondo grado - Esercizi B8. Equazioni di secondo grado - Esercizi Risolvere le seguenti equazioni di secondo grado utilizzando la legge di annullamento del prodotto o la formula risolvente (solo se necessario): 1) -8=0 [ 1= ;

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

Disequazioni goniometriche

Disequazioni goniometriche Disequazioni goniometriche Si definiscono disequazioni goniometriche le disequazioni nelle quali l angolo incognito è espresso mediante funzioni goniometriche (seno, coseno, tangente etc.). Per le disequazioni

Dettagli

U. D. 3 LE EQUAZIONI E LE DISEQUAZIONI GONIOMETRICHE

U. D. 3 LE EQUAZIONI E LE DISEQUAZIONI GONIOMETRICHE U. D. 3 LE EQUAZIONI E LE DISEQUAZIONI GONIOMETRICHE 1. Destinatari questa unità didattica è destinata a studenti del IV^ anno del liceo scientifico tradizionale. Le ore settimanali di matematica previste

Dettagli

ESERCITAZIONE 3 Analisi Classica - Reprise

ESERCITAZIONE 3 Analisi Classica - Reprise STATISTICA ECONOMICA ED ANALISI DI MERCATO Previsioni Economiche ed Analisi di Serie Soriche A.A. 2003 / 04 ESERCITAZIONE 3 Analisi Classica - Reprise di Daniele Toninelli D ORA IN POI LAVORARE SUI PRIMI

Dettagli

L impedenza. RIASSUNTO Richiamo: algebra dei numeri complessi I FASORI Derivate e integrali Esempio: circuito RC. Il concetto di impedenza :

L impedenza. RIASSUNTO Richiamo: algebra dei numeri complessi I FASORI Derivate e integrali Esempio: circuito RC. Il concetto di impedenza : L impedena RASSUNTO Richiamo: algebra dei numeri complessi FASOR Derivae e inegrali Esempio: circuio RC Transiene Soluione saionaria l conceo di impedena : Resisena: Z R R nduana: Z L ω L Capacia : Z C

Dettagli

Soluzione degli esercizi del Capitolo 1

Soluzione degli esercizi del Capitolo 1 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Il valore più opporuno ū di u è quello per cui, in condizioni nominali, la variabile conrollaa assume il valore desiderao; perciò si rova

Dettagli

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3 1 0.0.1 Esercizio Q1, ema d esame del 10 seembre 2009, prof. Dario d more 0.0.1.1 Teso E1 Il circuio di figura opera in regime sazionario. Sapendo che R 1 = 2 kω, = 4 kω, = 2 kω, = 2 kω E=12 V, =3 m Deerminare,

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

INTEGRAZIONE INDEFINITA DI ALCUNE CLASSI DI FUNZIONI

INTEGRAZIONE INDEFINITA DI ALCUNE CLASSI DI FUNZIONI Adolfo Scimoe FORMULE INTEGRAZIONE Pag INTEGRAZIONE INDEFINITA DI ALCUNE CLASSI DI FUNZIONI Iegrazioe delle fuzioi razioali frae Se la frazioe è impropria, cioè il grado del umeraore è maggiore o uguale

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Coniche

Dettagli

I confronti alla base della conoscenza

I confronti alla base della conoscenza I confroni alla ase della conoscenza Un dao quaniaivo rae significao dal confrono con alri dai Il confrono è la prima e più immediaa forma di analisi dei dai I confroni Daa una grandezza G, due suoi valori

Dettagli

Richiami sullo studio di funzione

Richiami sullo studio di funzione Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o

Dettagli

LE EQUAZIONI DI SECONDO GRADO

LE EQUAZIONI DI SECONDO GRADO LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere

Dettagli

PROBLEMA 1. Soluzione. ε = = =

PROBLEMA 1. Soluzione. ε = = = MOULO PROBLEMA 1 Una barra d acciaio di lunghezza l = m e sezione rasversale di area A = 50, è sooposa a una solleciazione di razione F = 900 da. Sapendo che l allungameno assoluo della barra è l = 1,5,

Dettagli

DISEQUAZIONI GONIOMETRICHE

DISEQUAZIONI GONIOMETRICHE Pagina 5 Disequazioni goniometriche elementari: DISEQUAZIONI GONIOMETRICHE Si definisce disequazione goniometrica elementare ed ha la forma sen < > m dove m è un qualsiasi numero reale poiché sen e cos,

Dettagli

L1 L2 L3 L4 L5 L6 L7 L8 L9. Esercizio. Determinare l insieme di disuguaglianze che descrive esattamente la regione di piano della figura

L1 L2 L3 L4 L5 L6 L7 L8 L9. Esercizio. Determinare l insieme di disuguaglianze che descrive esattamente la regione di piano della figura Determinare l insieme di disuguaglianze che descrive esattamente la regione di piano della figura [1] y x, x 1 [2] y x, x 1 [3] y x, x 1 [4] y x, x 1 [5] y x, x 1 L insieme è simmetrico rispetto all origine

Dettagli

EX 2 Una particella si muove su una retta con accelerazione a(t)=18t-8. Sapendo che la sua velocità all istante iniziale è v 0

EX 2 Una particella si muove su una retta con accelerazione a(t)=18t-8. Sapendo che la sua velocità all istante iniziale è v 0 CINEMATICA EX 1 Un puno nello spazio è definio dal veore posizione ˆr() = 3 3 î + ĵ + ˆk dove è il empo. Calcolare: a) velocià e accelerazione isananea, b) velocià veoriale media in un empo compreso fra

Dettagli

Esercizi di Analisi Matematica Equazioni differenziali

Esercizi di Analisi Matematica Equazioni differenziali Esercizi di Analisi Maemaica Equazioni differenziali Tommaso Isola 8 gennaio 00 Indice Generalià. Equazioni del primo ordine inegrabili 3. Teoria............................................ 3. Equazioni

Dettagli

Proprietà razionali per il prezzo

Proprietà razionali per il prezzo Proprieà razionali per il prezzo delle opzioni call 8/09/0 Corso di Finanza quaniaiva L aricolo di Rober Meronpubblicao nel 973, heoryofraionalopionpricing idenifica una serie di proprieà che devono valere

Dettagli