origine asse delle ascisse unità di misura e orientamento sull asse delle ascisse

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "origine asse delle ascisse unità di misura e orientamento sull asse delle ascisse"

Transcript

1 PIANO CARTESIANO Sia f: A R R, il grafico di f è un sottoinsieme del prodotto cartesiano RxR = R 2 Costruiamo una corrispondenza biunivoca tra i punti del piano euclideo e le coppie di numeri reali: 1- scelta di un punto O, origine, questo punto verrà associato alla coppia (0,0) 2- scelta di una retta r 1 qualsiasi passante per O, asse delle ascisse 3- scelta di un punto diverso da O su r 1 (unità di misura e orientamento sull asse delle ascisse)

2 PIANO CARTESIANO 4- scelta di una retta diversa da r 1 e passante per O, asse ordinate (usualmente scelto ortogonale all asse delle ascisse) 5- scelta di un punto diverso da O sull asse delle ordinate (unità di misura (può essere diversa da quella dell asse delle ascisse) e orientamento per l asse delle ordinate) Sistema di riferimento

3 PIANO CARTESIANO Scegliamo un punto P del piano, dobbiamo associare a P una coppia di numeri reali: 1- retta per P parallela all asse delle ordinate. Questa retta interseca l asse delle ascisse in un unico punto P 1 a cui corrisponde un unico numero reale x, ascissa del punto P 2- retta per P parallela all asse delle ascisse. Questa retta interseca l asse delle ordinate in un unico punto P 2 a cui corrisponde un unico numero reale y, ordinata del punto P P (x,y)

4 PIANO CARTESIANO:EQUAZIONI {(x,c) x R} = {(x,y) R 2 y=c} R 2 è una retta parallela all asse delle ascisse L asse delle ascisse è una retta di equazione y=0 Analogamente {(c,y) y R} = {(x,y) R 2 x=c} R 2 è una retta parallela all asse delle ordinate L asse delle ordinate è una retta di equazione x=0

5 PIANO CARTESIANO:EQUAZIONI f: A R R, il grafico G f della funzione f è G f ={(x,y) AxR y=f(x)} Esempi: f: R R, il polinomio f(x) = x 2 - x -2. Il grafico di f è l insieme di equazione y= x 2 - x -2, che è una parabola. f: [-1,1] R, la funzione (1-x 2 ). Il grafico di f è l insieme di equazione y = (1-x 2 ), che è la semicirconferenza superiore di centro l origine e raggio 1, dove x è compreso nell intervallo [-1,1].

6 PIANO CARTESIANO:EQUAZIONI Esercizio:Nei due esempi precedenti, determina per quali valori di c l equazione f(x)=c ha soluzione Primo esempio:il grafico della funzione f è la parabola y= x 2 - x -2; essa interseca l asse delle ascisse nei punti (-1,0) e (2,0) (dunque x=-1 ed x=2 sono soluzioni dell equazione f(x)=0). Essendo la parabola rivolta verso l alto, il grafico di f ha ordinata minima nel vertice (1/2,f(1/2)) = (1/2,-9/4). Dunque:

7 PIANO CARTESIANO:EQUAZIONI

8 PIANO CARTESIANO:EQUAZIONI Se c< -9/4, il grafico di f non interseca la retta y=c, di conseguenza l equazione f(x) =c non ha soluzioni Se c=-9/4, la retta y=-9/4 interseca il grafico di f in un sol punto, di conseguenza l equazione f(x) = -9/4 ha una sola soluzione Se c>-9/4, la retta y=c interseca il grafico di f in due punti, pertanto l equazione f(x) = c ha due soluzioni distinte.

9 PIANO CARTESIANO:EQUAZIONI Nel secondo esempio: f: [-1,1] R, la funzione (1-x 2 ). Poichè y = (1-x 2 ) è la semicirconferenza superiore di centro l origine e raggio 1, il grafico di f ha ordinata massima nel punto (0,f(0))=(0,1), inoltre f(x)=0 per x=- 1 oppure per x=1, per -1<x<1 f(x)>0. Dunque, l equazione f(x)=c per c<0 non ha soluzioni per 0 c<1 ha due soluzioni per c=1 ha una sola soluzione x=0 per c>1 non ha soluzione

10 PIANO CARTESIANO:EQUAZIONI

11 PIANO CARTESIANO:DISEQUAZIONI Il semipiano superiore è rappresentato dalla disequazione y>0 Le soluzioni della disequazione f(x)>0 sono le ascisse dei punti del grafico di f contenuti nel semipiano superiore Esempio: Risolvere x 2 - x -2 > 0. Posto f(x) = x 2 - x -2, risolvere la disequazione equivale a determinare f -1 (R + ) f -1 (R + )={x R x<-1 o x>2} = (-, -1) (2, + )

12 PIANO CARTESIANO: un problema di programmazione lineare In un laboratorio sono disponibili due contatori A, B di batteri. Il contatore A può essere azionato da un laureato che guadagna 20 euro per ora. In media il contatore A è in grado di stimare 6 campioni l ora. Il contatore B è più veloce, ma anche più perfezionato, solo una persona più esperta, che guadagni 50 euro per ora, può usarlo. Con la stessa precisione di A, il contatore B consente in media la stima di 10 campioni l ora. Si devono stimare 1000 campioni in un periodo di tempo non superiore a 80 ore. Come conviene procedere?

13 PIANO CARTESIANO: un problema di programmazione lineare Contatore Campioni stimati per ora Retribuzioni orarie in euro Numero di ore di funzionamento A 6 20 x B y Poiché il lavoro deve essere eseguito in 80 ore, si ha: 0 x 80, 0 y 80 Inoltre, 6x + 10y = 1000, con costo 20x + 50y che vorremmo minimo.

14 PIANO CARTESIANO: un problema di programmazione lineare Dobbiamo considerare i punti del piano che soddisfano a tutte le condizioni elencate. Abbiamo il quadrato[0, 80]x[0, 80], intersecato dalla retta 6x+10y=1000. Questa intersezione è data dal segmento di estremi i punti (100/3,80) e (80,52). Il costo totale 20x + 50y può essere espresso nella sola incognita x; infatti, dalla relazione 6x + 10y =1000, ricaviamo y=-0.6x + 100, quindi Costo= 20x + 50(-0.6x + 100)= -10x

15 PIANO CARTESIANO: un problema di programmazione lineare

16 PIANO CARTESIANO: un problema di programmazione lineare Costo= 20x + 50(-0.6x + 100)= -10x C(x) = x, il costo diminuisce all aumentare di x Per x= 100/3 il costo C(100/3) 4667 euro Per x=80 il costo C(80)=4200 euro La spesa minima si ottiene facendo lavorare il contatore A per 80 ore e il contatore B per 52 ore A controlla 480 campioni e B ne controlla 520 (da Batschelet, pag 81)

17 FUNZIONI LINEARI Una funzione è lineare se il suo valore varia in modo proporzionale alla variazione del suo argomento. Supponiamo che l argomento vari da x 0 a x, la variazione dell argomento è, dunque, Δx= x - x 0. Se f: R R è una funzione lineare, la variazione Δf = f(x) - f(x 0 ) deve essere proporzionale a x - x 0, vale a dire deve esistere una costante m tale che f(x) - f(x 0 ) = m (x - x 0 ), Δf = m Δx, dunque f(x) =mx + q, dove si è posto q= f(x 0 ) - m x 0

18 FUNZIONI LINEARI Viceversa, se f: R R è una funzione f(x) =mx + q, dove m e q sono costanti, allora f(x) - f(x 0 )=mx+q -(mx 0 +q)= m (x - x 0 ), quindi f è lineare. Le funzioni lineari sono tutte e sole le funzioni del tipo f(x) = mx + q, dove m e q sono opportune costanti reali.

19 FUNZIONI LINEARI: un problema di crescita Supponiamo di voler studiare la crescita di una radice di pianta di mais, la cui lunghezza verrà espressa in mm, in funzione del contenuto di saccarosio, espresso in gr/l, nel terreno di coltura. Per un contenuto di saccarosio (s) di 15 gr/l, si è ottenuto una lunghezza (l) di 62 mm, mentre con 25 gr/l si è ottenuto una lunghezza di 74 mm. Puoi determinare l(s), supponendo che la relazione sia lineare?

20 FUNZIONI LINEARI: un problema di crescita Vogliamo esprimere l(s)=ms +q Determiniamo m = m (25-15), da cui m=1.2 Determiniamo q q= = 44 l(s) = 1.2s + 44 Quale sarà la lunghezza della radice per un contenuto di saccarosio di 20 gr/l? l(20) = = 68 mm

21 FUNZIONI LINEARI: un problema di crescita l(s) = 1.2s + 44 Per quale contenuto di saccarosio la radice avrà una lunghezza di 80 mm? 80= 1.2s + 44, da cui s = (80-44)/1.2 = 30 gr/l

22 FUNZIONI LINEARI: un problema di crescita Le osservazioni di cui disponiamo danno per la variabile libera s i due valori 15 e 25, per cui 20 è un valore interno a questo intervallo, la predizione per l(20)=68 è frutto di una interpolazione dei dati; il valore s=30 ottenuto nella seconda domanda è esterno all intervallo dei dati, per cui la predizione l(30) =80 è frutto di una estrapolazione dei dati Attenzione! Per un contenuto 0 di saccarosio una lunghezza di 44 mm sarà ragionevole? Se mettessimo 100 gr/l la previsione di una lunghezza di 164 mm è ragionevole?

23 FUNZIONI LINEARI In generale: per una funzione f(x) = mx + q, assegnati due coppie di dati (x 1,y 1 ) e (x 2,y 2 ), per determinare m e q, si pone y 1 - y 2 = f(x 2 )-f(x 1 ) = m(x 2 -x 1 ) m=(y 1 - y 2 )/(x 2 -x 1 ) q= f(x 1 ) -m x 1 = f(x 2 )- mx 2 Due punti bastano per individuare una funzione lineare, viceversa data una funzione lineare, bastano due punti per disegnare il suo grafico.

24 FUNZIONI LINEARI I grafici delle funzioni lineari sono tutte le rette non parallele all asse delle ascisse. Per ottenere tutte le rette dobbiamo considerare, più in generale, l equazione ax + by = c Per b 0 otteniamo y = -(a/b) x + c/b, se a=0 allora y=c/b, vale a dire la retta parallela all asse delle ascisse passante per il punto (0, c/b) Per b=0, a 0 otteniamo x=c/a, vale a dire una retta parallela all asse delle ordinate passante per il punto (c/a,0)

25 FUNZIONI LINEARI Assegnata f(x)=mx+q, conoscendo un valore y=f(x) determinare x, si ottiene: per m 0 x= (y-q)/m, soluzione unica per m=0 se y q, non ci sono soluzioni per m=0 se y=q, ogni valore di x va bene, infinite soluzioni.

26 FUNZIONI MONOTONE Diremo che una funzione f: A R R è crescente se per ogni x 1, x 2 A con x 1 < x 2 allora f(x 1 ) f(x 2 ). Diremo che la funzione è strettamente crescente se se per ogni x 1, x 2 A con x 1 < x 2 allora f(x 1 ) < f(x 2 ). Diremo che la funzione f è decrescente se per ogni x 1, x 2 A con x 1 < x 2 allora f(x 1 ) f(x 2 ). Diremo che la funzione f è strettamente decrescente se per ogni x 1, x 2 A con x 1 < x 2 allora f(x 1 ) > f(x 2 ).

27 FUNZIONI LINEARI Sia f una funzione lineare f(x) = mx + q, come decidere se f è monotona? Sappiamo che m= Δf(x)/ Δx, possiamo quindi dire: se m > 0, quando Δx > 0 anche Δf(x) > 0 quindi f è strettamente crescente se m < 0, quando Δx > 0 allora Δf(x) < 0 quindi f è strettamente decrescente se m=0 la funzione è costante, si ha f(x)=q

28 MAX E MIN Sia f: [a, b] R diremo che x 0 [a, b] è un punto di minimo per f, se per ogni x [a, b] si ha f(x) f(x 0 ). f(x 0 ) è il valore minimo che la funzione f assume nell intervallo [a, b] Sia f: [a, b] R diremo che x 0 [a, b] è un punto di massimo per f, se per ogni x [a, b] si ha f(x) f(x 0 ). f(x 0 ) è il valore massimo che la funzione f assume nell intervallo [a, b]

29 Se f: [a, b] R è crescente MAX E MIN il punto di minimo è a (perché?) ( ed è unico se la funzione è strettamente crescente) ed il valore minimo è f(a); il punto di massimo è b (perché?) (ed è unico se la funzione è strettamente crescente) e il valore massimo assunto da f in [a, b] è f(b).

30 MAX E MIN Se f: [a, b] R è decrescente il punto di minimo è b (ed è unico se la funzione è strettamente decrescente) ed il valore minimo è f(b); il punto di massimo è a (ed è unico se la funzione è strettamente decrescente) e il valore massimo assunto da f in [a, b] è f(a).

31 FUNZIONI LINEARI Se f: [a, b] R è lineare f(x) = mx + q Per m>0 x=a punto di minimo, x=b punto di massimo Per m<0 x=a punto di massimo, x=b punto di minimo f: R R tale che f(x) = mx + q non ha né punti di massimo né punti di minimo

32 FUNZIONI LINEARI f: R R tale che f(x) = mx + q non ha né punti di massimo né punti di minimo Infatti se m>0, per ogni M>0, per quanto grande possiamo sceglierlo, esiste un valore x 0 tale che per ogni x x 0 f(x) M basta porre mx+q M e ricavare x 0 = (M-q)/m quindi non si può avere un punto di massimo

33 FUNZIONI LINEARI f: R R tale che f(x) = mx + q non ha né punti di massimo né punti di minimo Infatti se m>0, per ogni M<0, per quanto grande possiamo sceglierlo in valore assoluto, esiste un valore x 0 tale che per ogni x x 0 f(x) M basta porre mx+q M e ricavare x 0 = (M-q)/m quindi non si può avere un punto di minimo

34 LIMITI Sia f: R R Se per ogni M>0, per quanto grande possiamo sceglierlo, esiste un valore x 0 tale che per ogni x x 0 si ha f(x) M, diremo che la funzione f(x) ha limite + per x che tende (x + ) a + Se per ogni M<0, per quanto grande possiamo sceglierlo in valore assoluto, esiste un valore x 0 tale che per ogni x x 0 si ha f(x) M, diremo che la funzione f(x) ha limite per x che tende (x ) a.

35 Scriveremo rispettivamente: lim x + f(x) =+ lim x f(x) = A voi definire : lim x + f(x) = lim x f(x) =+ LIMITI

36 LIMITI: FUNZIONI LINEARI Se f(x) = mx +q, si ha per m>0 lim x + f(x) =+ lim x f(x) = Mentre, per m<0 lim x + f(x) = lim x f(x) =+ Dimostralo per esercizio

PIANO CARTESIANO:EQUAZIONI

PIANO CARTESIANO:EQUAZIONI PIANO CARTESIANO:EQUAZIONI {(x,c) x R} = {(x,y) R 2 y=c} R 2 è una retta parallela all asse delle ascisse L asse delle ascisse è una retta di equazione y=0 Analogamente {(c,y) y R} = {(x,y) R 2 x=c} R

Dettagli

PIANO CARTESIANO: un problema di programmazione lineare

PIANO CARTESIANO: un problema di programmazione lineare PIANO CARTESIANO: un problema di programmazione lineare In un laboratorio sono disponibili due contatori A, B di batteri. Il contatore A può essere azionato da un laureato che guadagna 20 euro per ora.

Dettagli

PIANO CARTESIANO:EQUAZIONI

PIANO CARTESIANO:EQUAZIONI PIANO CARTESIANO:EQUAZIONI {(x,c) x R} = {(x,y) R 2 y=c} R 2 è una retta parallela all asse delle ascisse L asse delle ascisse è una retta di equazione y=0 Analogamente {(c,y) y R} = {(x,y) R 2 x=c} R

Dettagli

PIANO CARTESIANO: un problema di programmazione lineare

PIANO CARTESIANO: un problema di programmazione lineare PIANO CARTESIANO: un problema di programmazione lineare In un laboratorio sono disponibili due contatori A, B di batteri. Il contatore A può essere azionato da un laureato che guadagna 20 euro per ora.

Dettagli

RELAZIONI E FUNZIONI

RELAZIONI E FUNZIONI Esprimendo la legge di Hardy -Weinberg, abbiamo utilizzato la lettera p per esprimere la probabilità, in senso frequentista, dell allele A nella popolazione. Abbiamo quindi calcolato la probabilità del

Dettagli

FUNZIONI QUADRATICHE

FUNZIONI QUADRATICHE f: R R si dice funzione quadratica se è del tipo f(x) =ax 2 +bx+c, dove a,b,c sono costanti Il grafico di una funzione quadratica è una curva detta parabola Abbiamo incontrato funzioni di questo tipo quando

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse: La retta Retta e le sue equazioni Equazioni di rette come luogo geometrico y = h h R equazione di una retta parallela all asse delle ascisse x = 0 equazione dell asse delle ordinate y = h h R equazione

Dettagli

LA PARABOLA E LA SUA EQUAZIONE

LA PARABOLA E LA SUA EQUAZIONE LA PARABOLA E LA SUA EQUAZIONE Prof. Giovanni Ianne CHE COS È LA PARABOLA DEFINIZIONE Parabola Scegliamo sul piano un punto F e una retta d. Possiamo tracciare sul piano i punti equidistanti da F e da

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

METODO DEI MINIMI QUADRATI

METODO DEI MINIMI QUADRATI METODO DEI MINIMI QUADRATI Torniamo al problema della crescita della radice di mais in funzione del contenuto di saccarosio nel terreno di coltura. Ripetendo varie volte l esperimento con diverse quantità

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

Ricordiamo. 1. Disegna una retta orientata, prendi un unità di misura e posiziona i seguenti punti: 1

Ricordiamo. 1. Disegna una retta orientata, prendi un unità di misura e posiziona i seguenti punti: 1 Geometria Analitica Piano Cartesiano Sistema di coordinate su una retta Presa una retta r orientata, su cui sono stati fissati un origine O e un unità di misura, definiamo sistema di coordinate su una

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

RELAZIONI e CORRISPONDENZE

RELAZIONI e CORRISPONDENZE RELAZIONI e CORRISPONDENZE Siano X e Y due insiemi non vuoti si chiama relazione tra X e Y un qualunque sottoinsieme del prodotto cartesiano: X x Y = {(x,y): x X, y Y} L insieme costituito dai primi (secondi)

Dettagli

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

METODO DEI MINIMI QUADRATI

METODO DEI MINIMI QUADRATI Vogliamo determinare una funzione lineare che meglio approssima i nostri dati sperimentali e poter decidere sulla bontà di questa approssimazione. Sia f(x) = mx + q, la coppia di dati (x i, y i ) appartiene

Dettagli

RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI. Angela Donatiello 1

RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI. Angela Donatiello 1 RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI Angela Donatiello 1 Una funzione del tipo f() = m + q, con m e q numeri reali, è una FUNZIONE LINEARE. Il numero q è detto INTERCETTA o ORDINATA ALL ORIGINE,

Dettagli

1.3. Logaritmi ed esponenziali

1.3. Logaritmi ed esponenziali 1.3. Logaritmi ed esponenziali 1. Rappresentazione sugli assi cartesiani 2. Relazione 3. Definizione di funzione 4. La funzione esponenziale 5. Il logaritmo 6. La funzione logaritma 1-3 1 Rappresentazione

Dettagli

1.1 Coordinate sulla retta e nel piano; rette nel piano

1.1 Coordinate sulla retta e nel piano; rette nel piano 1 Sistemi lineari 11 Coordinate sulla retta e nel piano; rette nel piano Coordinate sulla retta Scelti su una retta un primo punto O (origine) ed un diverso secondo punto U (unita ), l identificazione

Dettagli

1 Geometria analitica nel piano

1 Geometria analitica nel piano Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )

Dettagli

Argomento 2 IIparte Funzioni elementari e disequazioni

Argomento 2 IIparte Funzioni elementari e disequazioni Argomento IIparte Funzioni elementari e disequazioni Applicazioni alla risoluzione di disequazioni Disequazioni di I grado Per la risoluzione delle disequazioni di primo grado per via algebrica, si veda

Dettagli

Corso di Matematica II

Corso di Matematica II Corso di Matematica II Università degli Studi della Basilicata Dipartimento di Scienze Corso di laurea in Chimica e in Scienze Geologiche A.A. 2014/15 dott.ssa Vita Leonessa Elementi di geometria analitica

Dettagli

Distanza tra punti e punto medio di un segmento. x1 + x 2

Distanza tra punti e punto medio di un segmento. x1 + x 2 Distanza tra punti e punto medio di un segmento Siano P = (x 1, y 1 ) e Q = (x 2, y 2 ) due punti del piano cartesiano. La distanza di P da Q vale: P Q = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 (si utilizza il Teorema

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Lezione 3 Andrea Susa OPERATORE DI PRODOTTO Π 2 1 Operatore di prodotto Π Consideriamo un insieme numerico ={ =1, }. Definiamo prodotto degli elementi in, = Esempio: ={ =1, =2, =3,

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Esercitazione: 16 novembre 2009 SOLUZIONI

Esercitazione: 16 novembre 2009 SOLUZIONI Esercitazione: 16 novembre 009 SOLUZIONI Esercizio 1 Scrivere [ ] equazione vettoriale, parametrica [ ] e cartesiana della retta passante 1 per il punto P = e avente direzione d =. 1 x 1 Soluzione: Equazione

Dettagli

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A Scopo centrale, sia della teoria statistica che della economica, è proprio quello di esprimere ed analizzare le relazioni, esistenti tra le variabili statistiche ed economiche, che, in linguaggio matematico,

Dettagli

Argomento 7. Studio di funzione

Argomento 7. Studio di funzione Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I

Dettagli

Matematica classe 5 C a.s. 2012/2013

Matematica classe 5 C a.s. 2012/2013 Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.

Dettagli

1 Nozioni utili sul piano cartesiano

1 Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

Esercizi di Calcolo e Biostatistica con soluzioni

Esercizi di Calcolo e Biostatistica con soluzioni 1 Esercizi di Calcolo e Biostatistica con soluzioni 1. Date le funzioni f 1 (x) = x/4 1, f 2 (x) = 3 x, f 3 (x) = x 4 2x, scrivere a parole le operazioni che, dato x in modo opportuno, permettono di calcolare

Dettagli

II Università degli Studi di Roma

II Università degli Studi di Roma Versione preliminare gennaio TOR VERGATA II Università degli Studi di Roma Dispense di Geometria. Capitolo 3. 7. Coniche in R. Nel Capitolo I abbiamo visto che gli insiemi di punti P lineare di primo grado

Dettagli

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 016/017 Prof.ssa Migliaccio Gabriella CLASSE III Gli esercizi vanno svolti e consegnati, anche su un quaderno, il giorno dell esame per il

Dettagli

ESERCITAZIONE 9 : FUNZIONI QUADRATICHE

ESERCITAZIONE 9 : FUNZIONI QUADRATICHE ESERCITAZIONE 9 : FUNZIONI QUADRATICHE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 4 Dicembre 2012 L espressione

Dettagli

Matematica I, Funzione inversa. Funzioni elementari (II).

Matematica I, Funzione inversa. Funzioni elementari (II). Matematica I, 02.10.2012 Funzione inversa. Funzioni elementari (II). 1. Sia f : A B una funzione reale di variabile reale (A, B R); se f e biiettiva, allora la posizione f 1 (b) = unico elemento a A tale

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI 1 GEOMETRIA 2009/10 Esercizio 1.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle da un altra angolazione.. Determinare

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

ESERCITAZIONE 8 : FUNZIONI LINEARI

ESERCITAZIONE 8 : FUNZIONI LINEARI ESERCITAZIONE 8 : FUNZIONI LINEARI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 27 Novembre 2012 Le funzioni lineari

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

Unità Didattica N 9 : La parabola

Unità Didattica N 9 : La parabola 0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)

Dettagli

Cos'è una funzione? E' una legge che associa ad un numero x un altro numero y. Indichiamo questa corrispondenza con: y= f(x)

Cos'è una funzione? E' una legge che associa ad un numero x un altro numero y. Indichiamo questa corrispondenza con: y= f(x) 1 Funzioni Cos'è una funzione? E' una legge che associa ad un numero x un altro numero y. Indichiamo questa corrispondenza con: y= f(x) La corrispondenza tra x ed y è effettivamente una funzione se ad

Dettagli

GEOMETRIA ANALITICA. (*) ax+by+c=0 con a,b,c numeri reali che è detta equazione generale della retta.

GEOMETRIA ANALITICA. (*) ax+by+c=0 con a,b,c numeri reali che è detta equazione generale della retta. EQUAZIONE DELLA RETTA Teoria in sintesi GEOMETRIA ANALITICA Dati due punti A e B nel piano, essi individuano (univocamente) una retta. La retta è rappresentata da un equazione di primo grado in due variabili:

Dettagli

LE COORDINATE CARTESIANE

LE COORDINATE CARTESIANE CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni GEOMETRIA ANALITICA Prof. Erasmo Modica erasmo@galois.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate

Dettagli

y 5z = 7 y +8z = 10 +3z = 3

y 5z = 7 y +8z = 10 +3z = 3 Sistemi lineari Sistemi lineari in tre incognite; esempi tipici Tre equazioni incognite x, y, z Consideriamo il seguente sistema di tre equazioni lineari nelle tre x 2y +6z = 11 x +3y 11z = 18 2x 5y +20z

Dettagli

Esercitazioni di Geometria A: curve algebriche

Esercitazioni di Geometria A: curve algebriche Esercitazioni di Geometria A: curve algebriche 24-25 maggio 2016 Esercizio 1 Sia P 2 il piano proiettivo complesso munito delle coordinate proiettive (x 0 : x 1 : x 2 ). Sia r la retta proiettiva di equazione

Dettagli

Geometria analitica piana

Geometria analitica piana Geometria analitica piana 1. La geometria analitica Il metodo della geometria analitica consiste nell applicare gli strumenti dell algebra allo studio della geometria. Il legame tra enti algebrici ed enti

Dettagli

Corso di Analisi Matematica Funzioni di una variabile

Corso di Analisi Matematica Funzioni di una variabile Corso di Analisi Matematica Funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 24 1 Generalità 2 Funzioni reali

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle più volte.. Stabilire il tipo di

Dettagli

Funzioni lineari. Esercizi: Trova l espressione esplicita di una funzione lineare f:r R tale che la sua inversa sia f -1 (y)= 3y-4

Funzioni lineari. Esercizi: Trova l espressione esplicita di una funzione lineare f:r R tale che la sua inversa sia f -1 (y)= 3y-4 Funzioni lineari Trova l espressione esplicita di una funzione lineare f:r R tale che f(0)=2 ed f(1)=0 Sol:f(x)=mx+q, q=2, m=-2 La funzione è strettamente decrescente? Sol:Sì, è strettamente decrescente

Dettagli

Appunti ed esercizi sulle coniche

Appunti ed esercizi sulle coniche 1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi.

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. (1) Sia A l insieme dei numeri dispari minori di 56 e divisibili per 3. Quale delle seguenti affermazioni

Dettagli

Ripasso Formule sulle parabole:

Ripasso Formule sulle parabole: Ripasso Formule sulle parabole: Equazione generica: Y = ax 2 + bx + c a Apertura della parabola: 1/2p c Punto d incontro con l asse delle Y p Distanza focale: Fuoco direttrice (2 FV) Radici: Risoluzione

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

Esercizio L1 L2 L3 L4 L5 L6 L7 L8. Sia f (x) = 4 x. Allora f (x + 1) f (x) è uguale a. Risposta. Risulta immediatamente

Esercizio L1 L2 L3 L4 L5 L6 L7 L8. Sia f (x) = 4 x. Allora f (x + 1) f (x) è uguale a. Risposta. Risulta immediatamente Sia f (x) = 4 x. Allora f (x + 1) f (x) è uguale a [1] 4 [2] f (x) [3] 2f (x) [4] 3f (x) [5] 4f (x) Risulta immediatamente f (x 1) f (x) = 4 x+1 4 x = 4 x 4 1 4 x = 4 x (4 1) = 3 4 x = 3f (x). E noto che

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

Secondo parziale di Matematica per l Economia (esempio)

Secondo parziale di Matematica per l Economia (esempio) Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

La circonferenza nel piano cartesiano

La circonferenza nel piano cartesiano 6 La circonferenza nel piano cartesiano onsideriamo la circonferenza in figura in cui il centro è ; e il raggio 5 r : se indichiamo con P ; un punto della circonferenza avremo, per definizione, che la

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.

Dettagli

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE 1 Scrivi l equazione della retta tangente al grafico di f(x) = (1 + 2x) 4 nel suo punto di intersezione con l asse y 2 Scrivi l equazione della retta tangente

Dettagli

Appunti sulla circonferenza

Appunti sulla circonferenza 1 Liceo Falchi Montopoli in Val d Arno - Classe 3 a I - Francesco Daddi - 16 aprile 010 Appunti sulla circonferenza In queste pagine sono trattati gli argomenti riguardanti la circonferenza nel piano cartesiano

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

L equazione generica della funzione costante è y=k, il grafico è una retta parallela all asse x (asse delle ascisse). retta parallela all'asse x y

L equazione generica della funzione costante è y=k, il grafico è una retta parallela all asse x (asse delle ascisse). retta parallela all'asse x y La funzione costante L equazione generica della funzione costante è =k, il grafico è una retta parallela all asse (asse delle ascisse). Esempio di esercizio, dall equazione al grafico: =- retta parallela

Dettagli

Funzioni elementari. Funzioni lineari. 13. Funzioni elementari. Funzioni lineari.

Funzioni elementari. Funzioni lineari. 13. Funzioni elementari. Funzioni lineari. Funzioni elementari. Funzioni lineari. Funzioni elementari Per potere determinare le proprietà e quindi il grafico di una qualsiasi funzione a partire dalla sua espressione analitica, dobbiamo prima di

Dettagli

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione CONICHE Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oy sia data la conica C di equazione 7 2 + 2 3y + 5y 2 + 32 3 = 0. Calcolare le equazioni di una rototraslazione che riduce

Dettagli

GEOMETRIA ANALITICA

GEOMETRIA ANALITICA GEOMETRIA ANALITICA matematica@blogscuola.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un

Dettagli

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti Esercizio 1 (G. Ziglio). (6 punti) Calcolare il volume della porzione di spazio E interna alla sfera di equazione x 2 + y 2 + z 2 = 1 ed esterna al cono di equazione z 2 = x 2 + y 2 E = (x, y, z) R x 2

Dettagli

Geometria analitica dello spazio

Geometria analitica dello spazio Geometria analitica dello spazio Note per l insegnamento di Matematica per Scienze Naturali e Ambientali e Scienze Geologiche Marco Abate Dipartimento di Matematica, Università di Pisa Largo Pontecorvo

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli

1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli 1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli A) 1 2 B) [ A) 2 x 1; B) (-, - 3) ( - 3, 0) ( 0, + ) ] 2) Riferendoti al grafico rappresentato completa a) Il dominio

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

Lezione 5 Geometria Analitica 1

Lezione 5 Geometria Analitica 1 Lezione 5 Geometria Analitica 1 Donato A Ciampa In questa lezione richiameremo alcune nozioni della geometria analitica, quali le trasformazioni del piano in se stesso e le varie equazioni relative alla

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera? Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc

Dettagli

Richiami sugli insiemi numerici

Richiami sugli insiemi numerici Richiami sugli insiemi numerici denota l insieme vuoto cioè l insieme privo di elementi. N = {1, 2, 3,...} denota l insieme dei numeri naturali. Z = {..., 2, 1, 0, 1, 2,...} denota l insieme dei numeri

Dettagli

FUNZIONI LINEARI (Retta, punto di pareggio e relazioni lineari generalizzate)

FUNZIONI LINEARI (Retta, punto di pareggio e relazioni lineari generalizzate) FUNZIONI LINEARI (Retta, punto di pareggio e relazioni lineari generalizzate) Copyright SDA Bocconi, Milano La retta Una retta può essere espressa secondo due formulazioni: a. Forma esplicita b. Forma

Dettagli

Esercizi sulle superfici - aprile 2009

Esercizi sulle superfici - aprile 2009 Esercizi sulle superfici - aprile 009 Ingegneria meccanica 008/009 Esercizio 1. Scrivere l equazione della superficie ottenuta ruotando la retta s : x = y, y =z attorno alla retta r : x = y, x =3z. Soluzione:

Dettagli

Algebra Lineare (Matematica C.I.), 12.11.13. Sistemi di equazioni lineari. 1. Un equazione lineare in una incognita reale x e un equazione del tipo

Algebra Lineare (Matematica C.I.), 12.11.13. Sistemi di equazioni lineari. 1. Un equazione lineare in una incognita reale x e un equazione del tipo Algebra Lineare (Matematica C.I.), 12.11.13 Sistemi di equazioni lineari 1. Un equazione lineare in una incognita reale x e un equazione del tipo ax = b, dove a e b sono numeri reali dati; a e il coefficiente

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

Soluzione grafica di problemi PM in 2 variabili

Soluzione grafica di problemi PM in 2 variabili Capitolo 4 Soluzione grafica di problemi PM in 2 variabili In questo paragrafo si vuole fornire una interpretazione geometrica di un problema di Programmazione matematica. In particolare, quando un problema

Dettagli

X = x + 1. X = x + 1

X = x + 1. X = x + 1 CONICHE. Esercizi Esercizio. Classificare, ridurre a forma canonica (completando i quadrati), e disegnare le seguenti coniche: γ : x y + x = 0; γ : x + 4x y + = 0; γ 3 : x + y + y + 0 = 0; γ 4 : x + y

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

Coordinate cartesiane nel piano

Coordinate cartesiane nel piano Coordinate cartesiane nel piano O = (0, 0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008 Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto

Dettagli

, per cui le due curve f( x)

, per cui le due curve f( x) DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Pagina di 9 eas matematica http://spazioinwind.libero.it/adolscim DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Dal grafico della funzione f( x ) al grafico della funzione

Dettagli

Piano cartesiano e retta

Piano cartesiano e retta Piano cartesiano e retta Il punto, la retta e il piano sono concetti primitivi di cui non si da una definizione rigorosa, essi sono i tre enti geometrici fondamentali della geometria euclidea. Osservazione

Dettagli