Gli approcci alla programmazione dinamica: alcuni esempi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Gli approcci alla programmazione dinamica: alcuni esempi"

Transcript

1 Gli approi alla programmazione dinamia: aluni esempi Franeso Menonin February, 2002 Ottimizzazione dinamia Il problema he qui si onsidera è quello di un soggetto he intende massimizzare (o minimizzare) il valore di una funzione obiettivo (qui hiamata U) perunerto periodo di tempo (qui supposto da t 0 fino a T on T>t 0 ). Si suppone he il mondo onsiderato nel problema sia desritto da alune variabili dette di stato ehequiinseriamonelvettorey. Il soggetto in questione può modifiare l evoluzione di dette variabili operando su altre variabili sotto il suo ontrollo (per iò dette di ontrollo ) he inseriamo nel vettore. Inpartiolare, la soluzione del problema è data dal valore di he massimizza la funzione obiettivo sull aro temporale onsiderato. Alla fine del periodo preso in esame (ioè in T ) si immagina he il soggetto valuti lo stato del sistema raggiunto (ioè il valore del vattore y al tempo T ) attraverso una funzione (K) hevienedefinita funzione terminale o, in termine anglosassone bequest funtion. Se il problema si studia in un ontesto disreto, l evoluzione delle variabili y è data da un sistema di equazioni alle differenze finitementre,inunonstesto ontinuo, l evoluzione di y è data da un sistema di equazioni differenziali. Si suppone he lo stato del mondo al momento iniziale (t 0 ) sia onosiuto on ertezza. Il problema di ottimo, dunque, si può srivere (per un aso di massimizzazione) nei due modi seguenti: Caso Disreto (P d ) Caso Continuo (P ) franeso.menonin@unipv.it TP ma tt 0 U (t, (t), y (t)) + K (T,y (T )) y (t +)f (t, y (t), (t)) y (t 0 )y 0 ma R T t 0 U (t, (t), y (t)) dt + K (T,y (T )) dy (t) f (t, y (t), (t)) dt y (t 0 )y 0

2 Nelle sezioni seguenti si analizzano i due approi utilizzati per la soluzione di detti problemi. 2 Approio di Bellman (asi disreto e ontinuo) Per entrambi i problemi si utilizza l approio di Bellman he si basa sull ipotesi he esista una funzione J (t, y) (detta funzione valore) tale da soddisfare la seguente ondizione: J (t, y) ma{u (t,, y) dt + J (t + dt, y (t + dt))}, () he, nel aso disreto, bisogna trasformare ponendo dt. Notiamohela ondizione al ontorno è data dalla funzione terminale K per la quale deve valere: J (T,y) K (T,y (T )). Nel aso disreto, dunque, si è di fronte ad una equazione alle differenze finite del primo ordine in J la quale viene, in genere, risolta tramite il metodo di iterazione he si vedrà in un esempio nelle sezioni seguenti. Continuando nel aso ontinuo la () si può semplifiare nel modo seguente: ma {U (t,, y) dt + J (t + dt, y (t + dt)) J (t, y)} 0, dividendo per dt si riava: ma ½ U (t,, y)+ e prendendone il limite per dt 0 si ha: ½ U (t,, y)+ ma ¾ J (t + dt, y (t + dt)) J (t, y) 0, dt ¾ dj (t, y) 0. (2) dt Riordiamo ora he il differenziale totale di J si può srivere: µ 0 dj (t, y) dt + dy, da ui: µ 0 dj (t, y) dy + dt dt. Sostituendo dj/dt nella (2), essa si può srivere ome: ( µ ) 0 dy ma U (t,, y) dt 2

3 Avendo a disposizione il valore di dy/dt (datonellastrutturastessadel problema P ) si può srivere: ( µ 0 ma U (t,, y)+ + f (t, y (t), (t))) 0, ( µ 0 +ma U (t,, y)+ f (t, y (t), (t))) 0, tale equazione alle derivate parziali viene definita equazione di Bellman mentre il termine da massimizzare viene definito Hamiltoniano. A questa equazione va poi aggiunta la ondizione finale: J (T,y) K (T,y (T )). E importante sottolineare he non esiste un metodo definito per risolvere questo tipo di equazione differenziale. Si proede, dunque, attraverso soluzioni di prova ed ipotesi partiolari riguardo la funzione J. In genere, tuttavia, si suppone he la funzione valore erediti una erta forma dalla funzione K e le soluzioni di prova partono da una generalizzazione proprio della funzione K. 3 Approio di Pontriagin (aso ontinuo) L approio di Potriagin viene utilizzato solo nel aso ontinuo e si basa sullo stesso prinipio della massimizzazione tramite lagrangiano. Viene dunque definito il moltipliatore λ, questa volte dipendente dal tempo, e viene sritto l hamiltoniano nel modo seguente: H U (t,, y)+λ (t) 0 f (t, y, ), dove l apie india trasposizione. Tale hamiltoniano va massimizzato rispetto ad ottenendo, quindi: H U (t,, y)+λ (t) 0 f (t, y, ). Sul valore ottimo dell hamiltoniano, quindi, si riavano le seguenti ondizioni di Pontriagin: λ H, H λ, λ (T ) K (T ), he vengono definite sistema di Hamilton-Jaobi. 4 Aluni esempi Nella presente sezione si mostrano aluni esempi di programmazione dinamia siaintempodisreto(approiodibellman)siaintempoontinuo(approidi Bellman e Pontriagin). 3

4 4. Caso disreto: l ottimizzazione del onsumo Si supponga di dover deidere quanto onsumare della propria rihezza in un mondo deterministio dove la rihezza si evolve nel modo seguente: W (t +)(W (t) ) R (t). Qui si onsiderano: l ammontare di rihezza onsumato ed R (t) il fattore di montante (deterministio) tra il periodo t ed il periodo t +. Per semplifiare al massimo i aloli si suppone R (t) R. Il onsumo entra in una funzione di utilità avente la forma seguente U (t, ) β t dove β è un fattore di sonto psiologio he india ome un onsumatore dia sempre meno utilità ai onumi sempre più distanti nel tempo. Il problema, dunque, si può srivere nella forma seguente: TP ma β t t 0 tt 0 t + β T t 0 W T W (t +)(W (t) (t)) R, W (0) W 0. Abbiamo allora la seguente funzione di Bellman he, per sempliità, si suppone anora da sontare: β t t0 J (t, W ) ma β t t 0 t + β t+ t0 J (t +,W (t +)) ª, J (t, W ) ma t + β J (t +,W (t +)) ª. Il problema, dunque, diviene quello di trovare la funzione J he soddisfa a questa equazione alle differenze finite del primo ordine. La ondizione del primo ordine per la massimizzazione rispetto a si può srivere: t + β J (t +, (W (t) ) R) 0, ( ) J (t +) t β R W (t +) 0. Poihè si onose (dalla ondizione al ontorno) quanto deve valere la funzione valore al tempo T, partendo dal tempo T si può srivere: J (T,W T ) ma T + β J (T,W (T )) ª, J (T,W T ) ma T + β W ª T. Utilizzando l equazione alle differenze he desrive l andamento della rihezza si può anhe srivere: n J (T,W T )ma T + β (W T T ) R o, 4

5 dauisiriavalaondizionedelprimoordine: ( ) T β R ( )(W T T ) 0, T β R (WT T ), T β R W +β T, R la quale si può srivere nel modo seguente: T A W T, A β R. +β R Tale valore va sostituito nella formula di J (T,W) per ottenere: J (T,W T ) n ma T + β R (W T T ) o, J (T,W T ) A W T + β R ( A ) W T ³, J (T,W T ) A + β R ( A ) W T, dauisipuòsemplifiare il termine tra parentesi: µ! A + β R ( A ) +β R A A A µ! +β R A A +β R +β R ottenendo: +β R β R! β R ³+β R A +β R β R β R +β R!! J (T,W T )A W T. 5 +! A β R β R +β R A!! A

6 Il proesso di iterazione, quindi, si ripete uguale al passaggio preedente on la variante di avere un β 2 A β. Si può dunque srivere: J (T 2,W T 2 )ma n T 2 + β 2R (W T 2 T 2 ) o. Anora una volta la ondizione del primo ordine è data da: dauisipuòporre: ( ) T 2 β 2R ( )(W T 2 T 2 ) 0, T 2 β 2 R (WT 2 T 2 ), T 2 β 2 R W +β T 2, 2 R e, quindi: T 2 A 2 W T 2, A 2 β 2 R +β 2 R, J (T 2,W T 2 ) (A 2 W T 2 ) + β 2 R (W T 2 A 2 W T 2 ), ³ J (T 2,W T 2 ) A 2 + β 2 R ( A 2 ) W T 2, da ui si riava, tramite gli stessi passaggi visti preedentemente: J (T 2,W T 2 )A 2 W T 2. E piuttosto faile apire he esistono le seguenti relazioni riorsive: J (T s, W T s ) A s W T s, A s Da qui, riordando he deve valere: β s R +β s R β s A s β s, T s A s W T s. W T s W T s T s R, si può srivere, sostituendovi il valore ottimo del onsumo: W T s ( A s ) RW T s, W T s+ ( A s ) RW T s., 6

7 Questa è un equazione alle differenze finite del primo ordine omogenea; si può appliare la formula risolutiva: T s Y W T s W 0 R T s ( A T k ), edaquisiriava: k0 T s Y T s W 0 A s R T s k0 ( A T k ). Si sottolinea he la soluzione del problema dipende solo dai parametri e dalle ondizioni iniziali (qui date sempliemente dal valore iniziale della rihezza W 0 ). 4.2 Caso ontinuo: un problema lineare-quadratio Un problema è detto lineare-quadratio se l equazione di stato è lineare e la funzione obiettivo è quadratia. In partiolare si suppone di dover risolvere il seguente problema: R T ma ³ 2 t ay (s)2 2 b (s)2 ds k 2 y (T )2 dy (s) gy (s)+f(s), y (t) y, dove a, b, k, f, g sono ostanti positive. Vediamo ora ome risolvere questo problema attraverso i due approi di Bellman e di Pontriagin Soluzione di Bellman L equazione alle derivate parziali di Bellman si srive nel modo seguente: ½ ma 2 ay2 ¾ 2 b2 + + (gy + f) 0, da ui si ottiene la ondizione del primo ordine: b + f 0, f. b Sostituendo tale valore di ottime nell equazione di Bellman si ottiene: µ µgy + f 2 2 ay2 f 2 2 b gy 2 ay2 + f 2 2 b 7 0, b µ 2 0,

8 alla quale va aggiunta la ondizione al ontorno: J (T,y) k 2 y (T )2. Supponendo he la funzione J erediti la forma quadratia, he deve avere al tempo T, una soluzione di prova può essere: dalla quale si riava: J (t, y) 2 (t) y2 + γ (t), (t) γ (t) y2 +, 2 (t) y, µ 2 (t) 2 y 2. Sostituendo tale valori nell equazione di Bellman si ottiene: (t) y2 + 2 µ (t) 2 γ (t) (t) gy 2 2 ay2 + f 2 2 f 2 b (t)2 y 2 + (t) g 2 a + 2 b (t)2 y 2 0, γ (t) 0. Due polinomi sono uguali solo se il oeffiiente di ogni termine del primo è uguale al oeffiiente del termine orrispondente del seondo. In questo aso, tutti i oeffiienti devono essere nulli, ovvero abbiamo un sistema di equazioni differenziali: ( (t) 2 γ(t) (t) g 2 a + 2 0, f 2 b (t)2 0, in ui le inognite sono le funzioni (t) e γ (t) e per ui deve valere la ondizione al ontorno: (T ) k, γ (T ) 0. Si nota he il vinolo sulla funzione γ èrispettatosoloseessaèugualea zero in ogni istante t. Dunque si può porre γ (t) 0. La prima equazione (in ) è indipendente può essere risolta utilizzando il metodo della separazione delle variabili srivendo: d f 2 b 2 2g a dt 8

9 da ui: d ( ω )( ω 2 ) dt, r g ± ω,2 b f 2 g 2 + f 2 a b!. Ora, integrando tra t e T si riava: ln (s) ω 2 ω 2 ω (s) ω T t T t, ottenendo: ln (t) ω 2 ln k ω 2 (ω 2 ω )(T t). (t) ω k ω Daquisiriavaimmediatamenteilvaloredi (t) he onsente di trovare la funzione valore e da qui il ontrollo ottimo: f b J Soluzione di Pontriagin Analizziamo ora ome si risolva lo stesso problema preedente attraverso l approio di Pontriagin. L hamiltoniano si srive nel modo seguente: da ui la ondizione del primo ordine: H 2 ay2 2 b2 + λ (gy + f), b + λf 0, fλ b. Sostituendo tale valore nell hamiltoniano si ha: H 2 ay2 + f 2 λ 2 + λgy. 2 b Da qui si può alolare il sistema delle ondizioni di Hamilton-Jaobi: λ ( ay + λg), f 2 λ b + gy, λ (T ) ky (T ), riordando anhe he deve valere y (0) y 0. 9

10 Tale sistema di equazioni differenziali è lineare e si può srivere nella forma matriiale seguente: λ g a λ f 2. b g y Oorre, adesso, alolare gli autovalori ed autovettori della matrie dei oeffiienti ottenendo: " # r (b(bg2 +af v v 2 ))+bg f 2 b (bg2 + af 2 )λ, " # r (b(bg v 2 v 2 2 +af 2 ))+bg f 2 b (bg2 + af 2 )λ 2. Poihé tutti i parametri del problema sono positivi, si osserva immediatamente ome un autovalore sia positivo ed uno negativo (si ha, ioè, il aso di un equilibrio di sella). Esiste, dunque, un solo sentiero lungo il quale si onverge all equilibrio. La soluzione di questo sistema è data da: λ (t) y (t) A v e λ t + A 2 v2 e λ 2t, da ui si possono riavare i valori delle ostanti A e A 2 riordando le ondizioni al ontorno: ½ λ (T ) ky (T ), y (0) y 0, dovendo risolvere il sistema: ½ A v e λt + A 2 v 2 e λ2t ky (T ), A + A 2 y 0, e, sostituendo il valore di y (T ) derivante dall inserimento di t T nella soluzione y (t) si ha: ½ A v e λt + A 2 v 2 e λ2t k A e λt + A 2 e λ2t, A + A 2 y 0, ovvero: ½ A (v + k) e λ T + A 2 (v 2 + k) e λ 2T 0, da ui: A + A 2 y 0, y 0 (v 2 + k) e λ 2T A (v + k) e λ T (v 2 + k) e λ 2T, A 2 y 0 (v + k) e λt (v + k) e λ T (v 2 + k) e λ 2T. 0

11 Da qui si riava il valore ottimo del moltipliatore he, sostituito nella relazione: fλ b, porge: f A v e λt + A 2 v 2 e λ 2t. b

Moto vario elastico: fenomeno del colpo d ariete

Moto vario elastico: fenomeno del colpo d ariete Moto vario elastio: fenomeno del olpo d ariete 1. Desrizione del fenomeno Si onsideri un semplie impianto ostituito da un serbatoio di grande ampiezza in modo tale he in esso il livello di ario rimanga

Dettagli

Università degli Studi di Teramo Facoltà di Scienze Politiche

Università degli Studi di Teramo Facoltà di Scienze Politiche Università degli Studi di Teramo Faoltà di Sienze Politihe Corso di Laurea in Statistia Lezioni del Corso di Matematia a ura di D. Tondini a.a. 3/4 CAPITOLO II LE EQUAZIONI DIFFERENZIALI. GENERALITÀ È

Dettagli

PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE.

PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE. PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE. DEF. Una funzione F() si die primitiva di una funzione y f() definita nell intervallo

Dettagli

Algoritmo di best-fit (o fitting) sinusoidale a 3 parametri ( ) ( )

Algoritmo di best-fit (o fitting) sinusoidale a 3 parametri ( ) ( ) Algoritmo di best-it (o itting) sinusoidale a 3 parametri Supponiamo di disporre della versione digitalizzata di un segnale sinusoidale di ampiezza di pio A, requenza nota, ase assoluta ϕ e on omponente

Dettagli

Esercizi sulle reti elettriche in corrente continua

Esercizi sulle reti elettriche in corrente continua serizi sulle reti elettrihe in orrente ontinua serizio 1: eterminare la P erogata generatore, e la P R assorita resistore R del iruito in figura 4 Ω Ω Ω 15 Ω 5 Ω Ω R Ω 10 Ω Soluzione: P = 150 W P R =.08

Dettagli

Spin. La hamiltoniana classica di una particella di massa m e carica q in presenza di un potenziale elettromagnetico (Φ, A) si scrive.

Spin. La hamiltoniana classica di una particella di massa m e carica q in presenza di un potenziale elettromagnetico (Φ, A) si scrive. Spin La hamiltoniana lassia di una partiella di massa m e aria q in presenza di un potenziale elettromagnetio Φ, A si srive Sviluppando il quadrato si ha H = H = p q A 2 + qφ p 2 + A 2 2q A p + qφ 2 Se

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

e del guadagno percentuale in conto capitale, dato da e v

e del guadagno percentuale in conto capitale, dato da e v Esame di Eonomia Politia - Istituzioni (A-K) Svolgimento della prova sritta del 8 aprile 2009 B questo è uno svolgimento ompleto, e potrebbe essere molto più sintetio FILA 3 1) (a) Si spieghi il signifiato

Dettagli

FACOLTÀ DI INGEGNERIA. ESAME DI MECCANICA RAZIONALE Corso di Laurea in Ingegneria Meccanica PROF. A. PRÁSTARO 21/01/2013

FACOLTÀ DI INGEGNERIA. ESAME DI MECCANICA RAZIONALE Corso di Laurea in Ingegneria Meccanica PROF. A. PRÁSTARO 21/01/2013 FACOLTÀ DI INGEGNERIA ESAME DI MECCANICA RAZIONALE Corso di Laurea in Ingegneria Meania PROF A PRÁSTARO /0/03 Fig Diso D, ruotante, on rihiamo elastio radiale in un piano vertiale π, e portatore di aria

Dettagli

TEORIA SUI LIMITI DEFINIZIONE DI LIMITE FINITO DI UNA FUNZIONE PER X CHE TENDE AD UN VALORE FINITO

TEORIA SUI LIMITI DEFINIZIONE DI LIMITE FINITO DI UNA FUNZIONE PER X CHE TENDE AD UN VALORE FINITO TEORIA SUI LIMITI DEFINIZIONE DI LIMITE FINITO DI UNA FUNZIONE PER X CHE TENDE AD UN VALORE FINITO Si die he, per he tende a, la funzione y=f() ha per ite l e si srive: l = l I( ) ESEMPIO DI VERIFICA DI

Dettagli

Espansione dell Universo e redshift

Espansione dell Universo e redshift Espansione dell Universo e redshift Primo Galletti Aldo Aluigi Roma, 21 Settembre 2002 In un Universo in ui avviene ontinuamente la nasita e la morte della materia 1 l ipotesi di una grande esplosione

Dettagli

CHIMICA FISICA I. Le leggi dei gas

CHIMICA FISICA I. Le leggi dei gas A.A. 2014-2015 Corso di Laurea in CHIMICA INDUSTRIALE CHIMICA FISICA I Le leggi dei gas Lezioni di Chimia Fisia I A.A. 2014-2015 Leggi dei gas - Pagina 1 Un sistema ostituito da un gas puro si omporta

Dettagli

16 L INTEGRALE INDEFINITO

16 L INTEGRALE INDEFINITO 9. Integrali immediati 6 L INTEGRALE INDEFINITO Riassumiamo le puntate preedenti: si die INTEGRALE INDEFINITO di una funzione f ( ), la famiglia di tutte e sole quelle funzioni la ui derivata è uguale

Dettagli

Esercitazioni di Elettrotecnica

Esercitazioni di Elettrotecnica Eseritazioni di Elettrotenia a ura dell Ing ntonio Maffui Parte III: iruiti in eoluzione dinamia 00/003 Eseritazioni di Elettrotenia 00/003 Maffui ESEITZIONE N0: eti dinamihe del primo ordine ESEIZIO 0

Dettagli

Pag. 1. Esercizi sui Diagrammi di Flusso. Stampa di alcuni numeri interi

Pag. 1. Esercizi sui Diagrammi di Flusso. Stampa di alcuni numeri interi Università degli studi di Parma Dipartimento di Ingegneria dell Informazione Informatia a.a. 202/ Stampa di aluni numeri interi Informatia Faoltà di Mediina Veterinaria a.a. 202/ prof. Stefano Cagnoni

Dettagli

Note sulla correttezza di RSA e sulla complessità degli attacchi

Note sulla correttezza di RSA e sulla complessità degli attacchi Note sulla orrettezza di RSA e sulla omplessità degli attahi P. Bonatti 21 novembre 2016 1 Rihiami elementari di algebra Elevamento a potenza di binomi Riordiamo la definizione di oeffiiente binomiale:

Dettagli

Nome Cognome: RICERCA OPERATIVA (a.a. 2010/11) 6 o Appello 2/9/ Corso di Laurea: L Sp Matricola:

Nome Cognome: RICERCA OPERATIVA (a.a. 2010/11) 6 o Appello 2/9/ Corso di Laurea: L Sp Matricola: o Appello /9/ RICERCA OPERATIVA (a.a. /) Nome Cognome: Corso di Laurea: L- Sp Matriola: ) Si individui un albero dei ammini minimi di radie sul grafo in figura 8-7 utilizzando l algoritmo più appropriato

Dettagli

Cenni di ottimizzazione dinamica

Cenni di ottimizzazione dinamica Cenni di ottimizzazione dinamica Testi di riferimento: K. Dixit Optimization in Economic Theory. Second Edition, 1990, Oxford: Oxford University Press. A. C. Chiang Elements of Dynamic Optimization, 1992,

Dettagli

Proprietà globali delle funzioni continue

Proprietà globali delle funzioni continue Proprietà globali delle funzioni ontinue Tramite i limiti, abbiamo studiato il omportamento di una funzione nell intorno di un punto (proprietà loali). Ora i oupiamo di funzioni ontinue su tutto un intervallo,

Dettagli

Unità Didattica 1. Sistemi di Numerazione

Unità Didattica 1. Sistemi di Numerazione Unità Didattia Sistemi di Numerazione Sistemi di Numerazione Posizionali Criterio per la rappresentazione di un insieme infinito di numeri mediante un insieme limitato di simoli. Un sistema di numerazione

Dettagli

1 La Lagrangiana di una particella in una campo di forze potenziale

1 La Lagrangiana di una particella in una campo di forze potenziale Introduzione alle equazioni di Eulero-Lagrange e ai potenziali generalizzati G.Falqui, Dipartimento di Matematia e Appliazioni, Università di Milano Bioa. Corso di Sistemi Dinamii e Meania Classia, a.a.

Dettagli

NOTE SULLE EQUAZIONI DI MAXWELL E IL CORPO NERO

NOTE SULLE EQUAZIONI DI MAXWELL E IL CORPO NERO NOTE SULLE EQUAZIONI DI MAXWELL E IL CORPO NERO G. Martinelli Abstrat Questi appunti ostituisono un sommario delle prinipali formule relative alla trattazione del orpo nero. 1 Le Equazioni di Maxwell Le

Dettagli

Enrico Borghi LE VARIABILI DINAMICHE DEL CAMPO SCALARE REALE

Enrico Borghi LE VARIABILI DINAMICHE DEL CAMPO SCALARE REALE Enrio Borghi LE VARIABILI DINAMICHE DEL CAMPO SCALARE REALE E. Borghi - Variabili dinamihe del ampo salare reale Rihiami a studi presenti in fisiarivisitata Leggendo Le variabili dinamihe del ampo salare

Dettagli

Lagrangiana del campo elettromagnetico. Il campo elettromagnetico nel vuoto è descritto dalle equazioni di Maxwell (in unità MKSA)

Lagrangiana del campo elettromagnetico. Il campo elettromagnetico nel vuoto è descritto dalle equazioni di Maxwell (in unità MKSA) Lagrangiana del ampo elettromagnetio Il ampo elettromagnetio nel vuoto è desritto dalle equazioni di Maxwell (in unità MKSA) B = 0 () E = B (2) E = ϱ (3) ɛ 0 B = µ 0 j + µ 0 ɛ 0 E L equazione di ontinuità

Dettagli

TEOREMA DEL CAMPIONAMENTO

TEOREMA DEL CAMPIONAMENTO 1 TEOREMA DEL CAMPIONAMENTO nota per il orso di Teleomuniazioni a ura di F. Benedetto G. Giunta 1. Introduzione Il proesso di ampionamento è di enorme importanza ai fini della realizzazione dei dispositivi

Dettagli

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE CBM a.s. 212/213 PROBLEMA DELLE SCORTE Chiamiamo SCORTA ogni riserva di materiali presente all interno del sistema produttivo in attesa di essere sottoposto ad un proesso di trasformazione o di distribuzione.

Dettagli

ESERCIZI ELEMENTARI DI FLUIDODINAMICA

ESERCIZI ELEMENTARI DI FLUIDODINAMICA ISTITUZIONI I INGEGNERI EROSPZILE ESERCIZI ELEMENTRI I FLUIOINMIC ESERCIZI ELEMENTRI I FLUIOINMIC RICHIMI INTROUTTII Il fluido viene onsiderato ome un ontinuo, ossia vengono identifiate alune grandezze

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

MATEMATICA CORSO A COMPITINO DI RECUPERO (Tema 2) 13 Febbraio 2014

MATEMATICA CORSO A COMPITINO DI RECUPERO (Tema 2) 13 Febbraio 2014 MATEMATICA CORSO A COMPITINO DI RECUPERO (Tema 2) 13 Febbraio 2014 Soluzioni 1. In un sahetto i sono 9 palline olorate: 2 rosse, 4 verdi e 3 gialle. Si fanno 3 estrazioni on rimessa. a) Calola la probabilità

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p =

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p = 5. Rette e piani in R 3 ; sfere. In questo paragrafo studiamo le rette, i piani e le sfere in R 3. Ci sono due modi per desrivere piani e rette in R 3 : mediante equazioni artesiane oppure mediante equazioni

Dettagli

Modelli di assegnazione (cenni)

Modelli di assegnazione (cenni) Corso di Trasporti e Ambiente http://www.uniroma.it/didattia/ta_ ing. Antonio Comi novembre Modelli di assegnazione (enni) Struttura del sistema di modelli per la simulazione dei sistemi di trasporto OFFERTA

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Antonino Polimeno Università degli Studi di Padova Equazioni differenziali - 1 Un equazione differenziale è un equazione la cui soluzione è costituita da una funzione incognita

Dettagli

AIMETA. Studio di lastre forate mediante il Metodo delle Celle

AIMETA. Studio di lastre forate mediante il Metodo delle Celle AIMEA XII Convegno Italiano di Meania Computazionale Bresia, -5 novembre 000 Studio di lastre forate mediante il Metodo delle Celle Franesa COSMI Dipartimento di Energetia, Università di rieste, via A.

Dettagli

Prova scritta di FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Vicenza, 27 giugno 2011 TEMA 1

Prova scritta di FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Vicenza, 27 giugno 2011 TEMA 1 Vicenza, 27 giugno 20 TEMA. Determinare, al variare del parametro reale a, una base del nucleo e una dell immagine dell endomorfismo L a di R definito da L a (x, y, z) = (x 2y + az, 2x + 4y + z, ( a)x

Dettagli

GEOMETRIA ANALITICA 8 LE CONICHE

GEOMETRIA ANALITICA 8 LE CONICHE GEOMETRIA ANALITICA 8 LE CONICHE Tra tutte le urve, ne esistono quattro partiolari he vengono hiamate onihe perhé sono ottenute tramite l intersezione di una superfiie i-onia on un piano. A seonda della

Dettagli

Equazioni di secondo grado intere letterali

Equazioni di secondo grado intere letterali Equazioni di seondo grado intere letterali Esempio. k ) x k + )x + k + 0 a k b k + ) k + Disussione. Se k 0 k l equazione si abbassa di grado. Disutiamo il aso a 0 aso in ui l equazione diventa di primo

Dettagli

CONTROLLI AUTOMATICI (01AKS, 02FSQ) ATM, INF Soluzione della tipologia di compito del 3/IX/2002

CONTROLLI AUTOMATICI (01AKS, 02FSQ) ATM, INF Soluzione della tipologia di compito del 3/IX/2002 CONTROLLI AUTOMATICI (0AKS, 0FSQ) ATM, INF Soluzione della tipologia di ompito del 3/IX/00 Eserizio Progetto di un ontrollore Sia dato il sistema di ontrollo riportato in figura on: 0.65 G p ( s) =, Tp

Dettagli

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI ESERCIZI SULLE EQUAZIONI DIFFERENZIALI 1. Generalità 1.1. Verifica delle soluzioni. Verificare se le funzioni date sono soluzioni delle equazioni differenziali. xy = 2y, y = 5x 2. y = x 2 + y 2, y = 1

Dettagli

1 Integrale multiplo di una funzione limitata su di un rettangolo

1 Integrale multiplo di una funzione limitata su di un rettangolo INTEGLE DELLE FUNZIONI DI PIÙ VIBILI INTEGLE MULTIPLO DI UN FUNZIONE LIMITT SU DI UN ETTNGOLO Integrale delle funzioni di più variabili Indie Integrale multiplo di una funzione limitata su di un rettangolo

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

La traduzione dei problemi: dal linguaggio naturale al linguaggio dell algebra

La traduzione dei problemi: dal linguaggio naturale al linguaggio dell algebra Livello solare: 1 biennio La traduzione dei problemi: dal linguaggio naturale al linguaggio dell algebra Abilità Interessate In situazioni problematihe, individuare relazioni signifiative tra grandezze

Dettagli

Proprietà delle operazioni sui numeri naturali. Introduzione geometrica alle proprietà delle operazioni = 11 = 8 + 3

Proprietà delle operazioni sui numeri naturali. Introduzione geometrica alle proprietà delle operazioni = 11 = 8 + 3 Proprietà delle operazioni sui numeri naturali 1. Le proprietà delle operazioni possono essere introdotte geometriamente in modo da fornirne una giustifiazione intuitiva e una visualizzazione : 2. Le proprietà

Dettagli

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà Prof. Adolfo Santini - Dinamica delle Strutture 1 Vibrazioni libere non smorzate 1/6 Le equazioni del moto di un sistema

Dettagli

M. Usai Circuiti digitali 8_2 1. Figura 8.4 Risposte di ampiezza per filtri a fase lineare del I e II tipo di Chebyshev con N=4

M. Usai Circuiti digitali 8_2 1. Figura 8.4 Risposte di ampiezza per filtri a fase lineare del I e II tipo di Chebyshev con N=4 I modelli di Chebyshev Si può ottenere una veloità di aduta più rapida in prossimità della frequenza di taglio rispetto a quella del modello di Butterworth, a disapito di una diminuzione di monotoniità

Dettagli

MOMENTI E CENTRAGGIO DEL VELIVOLO

MOMENTI E CENTRAGGIO DEL VELIVOLO x 1 x ISTITUZIONI DI INGEGNERIA AEROSAZIALE OENTI E CENTRAGGIO VELIVOLO OENTI E CENTRAGGIO DEL VELIVOLO er il alolo delle prestazioni in volo orizzontale rettilineo ed uniforme, il velivolo può essere

Dettagli

Modelli matematici ambientali a.a. 2015/16 Introduzione alle equazioni differenziali

Modelli matematici ambientali a.a. 2015/16 Introduzione alle equazioni differenziali Modelli matematici ambientali a.a. 2015/16 Introduzione alle equazioni differenziali Argomenti trattati Introduzione ai modelli Equazioni differenziali del primo ordine Metodi risolutivi:integrazione diretta

Dettagli

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 28 Febbraio 2013

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 28 Febbraio 2013 Fisia dei mezzi trasmissivi Prof. G. Mahiarella Prova del 8 Febbraio 013 1 3 4 non srivere nella zona soprastante COGNOME E NOME MTRICO FIRM Eserizio 1 Un generatore, la ui tensione varia nel tempo ome

Dettagli

7. Equazioni differenziali

7. Equazioni differenziali 18 Sezione 7. Equazioni differenziali 7. Equazioni differenziali [versione: 25/5/2012] Richiamo delle nozioni fondamentali In un equazione differenziale l incognita da determinare è una funzione (e non

Dettagli

TEORIE RELATIVISTICHE. Dispensa N. 2 CINEMATICA E DINAMICA RELATIVISTICHE

TEORIE RELATIVISTICHE. Dispensa N. 2 CINEMATICA E DINAMICA RELATIVISTICHE TEORIE RELATIVISTICHE Dispensa N. CINEMATICA E DINAMICA RELATIVISTICHE . CINEMATICA RELATIVISTICA. Trasformazione delle veloità In questo paragrafo useremo le trasformazioni di Lorentz per mettere in relazione

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Vedremo tra breve un metodo per studiare il problema di trovare il minimo e il massimo di una funzione su di un sottoinsieme dello spazio ambiente che non sia un aperto. Abbiamo

Dettagli

CIRCUITI IN CORRENTE CONTINUA

CIRCUITI IN CORRENTE CONTINUA IUITI IN ONT ONTINUA Un induttanza e tre resistenze 2 J J 2 L Il circuito sta funzionando da t = con l interruttore aperto. Al tempo t = 0 l interruttore viene chiuso. alcolare le correnti. Per t 0 circola

Dettagli

Operazioni tra matrici e n-uple

Operazioni tra matrici e n-uple CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,

Dettagli

Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale.

Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale. Definizione Si dice equazione differenziale di ordine n nella funzione incognita y = y (x) una relazione fra y, le sue derivate y,..., y (n), e la variabila indipendente x Risolvere o integrare una e.d.

Dettagli

Sistemi di Equazioni Differenziali

Sistemi di Equazioni Differenziali Sistemi di Equazioni Differenziali Nota introduttiva: Lo scopo di queste dispense non è trattare la teoria riguardo ai sistemi di equazioni differenziali, ma solo dare un metodo risolutivo pratico utilizzabile

Dettagli

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea)

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea) ESERCIZIO n. 1 - La produzione ed i costi di produzione (1 ) Un impresa utilizza una tecnologia descritta dalla seguente funzione di produzione: I prezzi dei fattori lavoro e capitale sono, rispettivamente,

Dettagli

Derivata di una funzione

Derivata di una funzione Derivata di una funzione Derivabilità e derivata in un punto Sia y = f x una funzione reale di variabile reale di dominio D(f), e sia D(f). Si die he la funzione è derivabile in se esiste ed è finito il

Dettagli

Equazioni differenziali lineari a coefficienti costanti

Equazioni differenziali lineari a coefficienti costanti Equazioni differenziali lineari a coefficienti costanti Generalità Il modello matematico di un qualsiasi sistema fisico in regime variabile conduce alla scrittura di una o più equazioni differenziali.

Dettagli

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Si determini se i sistemi lineari tempo invarianti ẋ(t) = Ax(t) + Bu(t), Σ c : y(t) = Cx(t) + Du(t). x(k + ) = Ax(k) + Bu(k), Σ d : y(k)

Dettagli

Sommario CAPITOLO 1. Introduzione CAPITOLO 2. Trattazione analitica CAPITOLO 3. Trattazione tramite elementi finiti CAPITOLO 4. Risultati CAPITOLO

Sommario CAPITOLO 1. Introduzione CAPITOLO 2. Trattazione analitica CAPITOLO 3. Trattazione tramite elementi finiti CAPITOLO 4. Risultati CAPITOLO Sommario CAPITOLO 1. Introduzione... 3 CAPITOLO. Trattazione analitia... 7.1 Inastro ideale... 7. Inastro reale... 8..1 Inastro shematizzato tramite utilizzo di molle equivalenti... 8.. Inastro shematizzato

Dettagli

Accoppiatore direzionale

Accoppiatore direzionale Aoppiatore direzionale 1 Rete 4 porte 3 4 Un aoppiatore direzionale ideale è un giunzione a 4 bohe on Adattamento alle porte quando sono hiuse sul ario di riferimento (ioè S 11 =S =S 33 =S 44 =) Due oppie

Dettagli

LA STRUTTURA ELETTRONICA DEGLI ATOMI

LA STRUTTURA ELETTRONICA DEGLI ATOMI LA STRUTTURA ELETTRONICA DEGLI ATOMI 127 Possiamo trattare insieme l atomo di idrogeno e gli atomi idrogenoidi He +, Li 2+, ecc., in quanto differiscono l uno dall altro solo per la carica nucleare. Protone

Dettagli

Tutorato di Algoritmi e Strutture Dati AA

Tutorato di Algoritmi e Strutture Dati AA Tutorato di Algoritmi e Strutture Dati AA 00-03 Maron Giulio 1 maggio 005 Indie 1 Invarianti 1 1.1 Invarianti e onvenzioni per la srittura del odie........ 1 1. Correttezza Insertion-Sort....................

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

Il reddito di equilibrio

Il reddito di equilibrio IL Moltipliatore Il reddito di equilibrio Riordiamo gli agenti: Famiglie, he onsumano (e risparmiano) Imprese, he investono e produono Stato, he spende G e riava T Il reddito di equilibrio: Y = [ 0 + I

Dettagli

Accoppiatore direzionale

Accoppiatore direzionale Aoppiatore direzionale 1 Rete 4 porte 3 4 Un aoppiatore direzionale ideale è un giunzione a 4 bohe on Adattamento alle porte quando sono hiuse sul ario di riferimento (ioè S 11 =S =S 33 =S 44 =) Due oppie

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

TRASFORMATA DI HILBERT

TRASFORMATA DI HILBERT TRASFORMATA DI ILBERT La Trasformata di ilbert è una partiolare rappresentazione he, ontrariamente ad altre trasformate (Fourier, Laplae, Z, ) non realizza un ambiamento del dominio di definizione. In

Dettagli

BIBLIOGRAFIA: Joseph. E. Bowles Fondazioni Ed. Mc Graw Hill Renato Lancellotta Geotecnica Ed. Zanichelli

BIBLIOGRAFIA: Joseph. E. Bowles Fondazioni Ed. Mc Graw Hill Renato Lancellotta Geotecnica Ed. Zanichelli COIZIOI GEERALI I UTILIZZO ELL APPLICAZIOE La presente appliazione è stata realizzata implementando formule e modelli matematii propri della geotenia, della sienza e della tenia delle fondazioni. Con l

Dettagli

Appunti di matematica per le Scienze Sociali Parte 1

Appunti di matematica per le Scienze Sociali Parte 1 Appunti di matematica per le Scienze Sociali Parte 1 1 Equazioni 1.1 Definizioni preliminari 1.1.1 Monomi Si definisce monomio ogni prodotto indicato di fattori qualsiasi, cioè uguali o diseguali, numerici

Dettagli

proiezione della Terra su un cilindro che, per non far torto a nessun paese, conserva le aree). Indubbiamente tutte

proiezione della Terra su un cilindro che, per non far torto a nessun paese, conserva le aree). Indubbiamente tutte CATE NAUTICHE Sono sempre stato attratto dalla artografia: ogni arta ha la propria aratteristia he dipende dall uso he uno deve farne (per esempio la arta dell ONU o proiezione di Gall-Peters è un partiolare

Dettagli

Applicazione del principio di conservazione dell energia a sistemi aventi un gran numero di particelle.

Applicazione del principio di conservazione dell energia a sistemi aventi un gran numero di particelle. PRIMO PRINCIPIO DLLA RMODINAMICA In una trasformazione adiabatia: In una trasformazione isoora: L In una trasformazione generia: L (7) (Primo riniio della termodinamia) Aliazione del riniio di onservazione

Dettagli

G. Griva. 9529P - Macchine e Azionamenti Elettrici

G. Griva. 9529P - Macchine e Azionamenti Elettrici G. Griva 959 - Mahine e Azionamenti Elettrii rova di Esonero del 7 giugno 000. on proposta di soluzione 1 NTODUONE Questa proposta di soluzione è rivolta agli studenti he, avendo seguito il tutorato del

Dettagli

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema.

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema. Introduzione al Metodo agli Elementi Finiti (FEM) Consideriamo come problema test l equazione di Poisson 2 u x 2 + 2 u = f(x, y) u = f y2 definita su un dominio Ω R 2 avente come frontiera la curva Γ,

Dettagli

Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A Prof. R. Sestini SCHEMA DELLE LEZIONI DELLA QUINTA E SESTA SETTIMANA

Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A Prof. R. Sestini SCHEMA DELLE LEZIONI DELLA QUINTA E SESTA SETTIMANA Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A. 2013-2014. Prof. R. Sestini SCHEMA DELLE LEZIONI DELLA QUINTA E SESTA SETTIMANA In sintesi, una tecnologia costituisce un insieme di piani

Dettagli

L offerta della singola impresa: le curve di costo

L offerta della singola impresa: le curve di costo L offerta della singola impresa: le urve di osto La funzione di osto totale è di un impresa orrispondono alla somma dei osti fissi e dei osti variabili I osti fissi F sono quelli he sono sostenuti indipendentemente

Dettagli

Disequazioni in una incognita. La rappresentazione delle soluzioni

Disequazioni in una incognita. La rappresentazione delle soluzioni Disequazioni in una incognita Una disequazione in una incognita è una disuguaglianza tra due espressioni contenenti una variabile (detta incognita) verificata solo per particolari valori attribuirti alla

Dettagli

RICERCA OPERATIVA (a.a. 2015/16) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2015/16) Nome: Cognome: Matricola: o Appello //6 RICERCA OPERATIVA (a.a. /6) Nome: Cognome: Matriola: ) Si rappresenti il ono finitamente generato C = ono,, R ome ono poliedrio, giustifiando algebriamente le risposta fornita. Per derivare

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

Elementi di matematica - dott. I. GRASSI

Elementi di matematica - dott. I. GRASSI Gli assi cartesiani e la retta. Il concetto di derivata. È ormai d uso comune nei libri, in televisione, nei quotidiani descrivere fenomeni di varia natura per mezzo di rappresentazioni grafiche. Tali

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Seconda prova in itinere 31 gennaio 2011

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Seconda prova in itinere 31 gennaio 2011 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Seconda prova in itinere 3 gennaio Cognome: Nome: Matricola: Compito A Es. : 8 punti Es. : 8 punti Es. 3: 8 punti Es. 4: 8 punti Es. 5:

Dettagli

TEORIE DI CAMPO MEDIO

TEORIE DI CAMPO MEDIO EORIE DI CAMPO MEDIO A ausa della impossibilità di trovare sempre una soluzione analitia esatta per gran parte dei modelli disussi nel apitolo MODELLI è neessario riorrere a metodi approssimati per la

Dettagli

determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione.

determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione. ANALISI VETTORIALE Soluzione esercizi 4 febbraio 2011 10.1. Esercizio. Assegnata l equazione lineare omogenea di primo ordine y + a y = 0 determinare le soluzioni di tale equazione in corrispondenza ai

Dettagli

1 Equazioni Differenziali

1 Equazioni Differenziali Equazioni Differenziali Un equazione differenziale è un equazione che esprime un legame tra una variabile indipendente x (o t, quando ci riferiamo al tempo) una variabile dipendente y o incognita che sta

Dettagli

Polinomio di Taylor del secondo ordine per funzioni di due variabili

Polinomio di Taylor del secondo ordine per funzioni di due variabili Esercitazioni del 15 aprile 2013 Polinomio di Taylor del secondo ordine per funzioni di due variabili Sia f : A R 2 R una funzione di classe C 2. Fissato un p unto (x 0, y 0 A consideriamo il seguente

Dettagli

PROFILI DI CORRENTE IN MOTO PERMANENTE

PROFILI DI CORRENTE IN MOTO PERMANENTE PROFILI DI CORRENTE IN MOTO PERMANENTE I lassii approi relativi al dimensionamento ed alla verifia delle analizzazioni per fognatura e, più in generale, delle orrenti a pelo libero, muovono dall'ipotesi

Dettagli

MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PRIMA PARTE. Esercizio 1. (Testo B) Determina, motivando la risposta, se la funzione f : R R

MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PRIMA PARTE. Esercizio 1. (Testo B) Determina, motivando la risposta, se la funzione f : R R ANNO ACCADEMICO 25 6 SCIENZE GEOLOGICHE E SCIENZE NATURALI E AMBIENTALI MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PROFF MARCO ABATE E MARGHERITA LELLI-CHIESA PRIMA PARTE Esercizio (Testo

Dettagli

Equazioni di Primo grado

Equazioni di Primo grado Equazioni di Primo grado Definizioni Si dice equazione di primo grado un uguaglianza tra due espressioni algebriche verificata solo per un determinato valore della variabile x, detta incognita. Si chiama

Dettagli

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI ANALISI DEI SISTEMI LTI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Scuola Sec. Secondo Grado Gara 6 IND. - 14/15 ESERCIZIO1

Scuola Sec. Secondo Grado Gara 6 IND. - 14/15 ESERCIZIO1 ESERCIZIO1 PREMESSA Per risolvere prolemi spesso esistono delle reole he, dai dati del prolema, permettono di alolare o dedurre la soluzione. Questa situazione si può desrivere ol termine reola(,

Dettagli

o~~~~~~~~~~~~~~~~ S0OKM

o~~~~~~~~~~~~~~~~ S0OKM Cap. 5 legge di Hubble e redshift A ELATION BETWEEN DISTANCE AND ADIAL VELOCITY AMONG EXTA-GALACTIC NEBULAE By EDWIN HUBBLB Hubble, 199: MOUNT WILSON OBSUVATOY, CANSGIS INSTITUTION OF WASHINGTON Communiated

Dettagli

A Analisi Matematica 2 (Corso di Laurea in Informatica) Simulazione compito d esame

A Analisi Matematica 2 (Corso di Laurea in Informatica) Simulazione compito d esame COGNOME NOME Matr. Firma dello studente A Analisi Matematica (Corso di Laurea in Informatica) Simulazione compito Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

Enrico Borghi LE VARIABILI DINAMICHE DEL CAMPO DI MAXWELL

Enrico Borghi LE VARIABILI DINAMICHE DEL CAMPO DI MAXWELL Enrio Borghi LE VARIABILI DINAMICHE DEL CAMPO DI MAXWELL E. Borghi - Le variabili dinamihe del ampo di Maxwell Rihiami a studi presenti in fisiarivisitata Leggendo Le variabili dinamihe del ampo di Maxwell

Dettagli

Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori

Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori Esercizio 1 Corso di Matematica II Anno Accademico 29 21. Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori May 7, 21 Commenti e correzioni sono benvenuti. Mi scuso se ci fosse qualche

Dettagli

FUNZIONI CONTINUE. funzioni di una variabile: def : Una funzione f(x) definita in un insieme D R si dice continua in un punto c D se risulta.

FUNZIONI CONTINUE. funzioni di una variabile: def : Una funzione f(x) definita in un insieme D R si dice continua in un punto c D se risulta. FUNZIONI CONTINUE funzioni di una variabile: def : Una funzione f(x) definita in un insieme D R si die ontinua in un punto D se risulta Analizza bene la definizione: lim x f ( x) = f ( ) Il punto deve

Dettagli

Alcuni esercizi sulle equazioni di erenziali

Alcuni esercizi sulle equazioni di erenziali Alcuni esercizi sulle equazioni di erenziali Calcolo dell integrale generale Per ciascuna delle seguenti equazioni di erenziali calcolare l insieme di tutte le possibili soluzioni. SUGGERIMENTO: Ricordatevi

Dettagli

COME CALCOLARE LA COMBINAZIONE DI MINIMO COSTO DEI FATTORI

COME CALCOLARE LA COMBINAZIONE DI MINIMO COSTO DEI FATTORI COME CALCOLARE LA COMBINAZIONE DI MINIMO COSTO DEI FATTORI In questa Appendice, mostreremo come un impresa possa individuare la sua combinazione di minimo costo dei fattori produttivi attraverso il calcolo

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. CAPITOLO OTTAVO LE RELAZIONI VERTICALI FRA IMPRESE Sommario: 1. Relazioni vertiali e integrazione: il problema della doppia marginalizzazione. - 2. Gli effetti delle restrizioni vertiali sul benessere

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 9 - EQUAZIONI DIFFERENZIALI ORDINARIE valori iniziali Valori iniziali Ci occuperemo della soluzione numerica di equazioni del prim ordine

Dettagli