Popolazione e Campione

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Popolazione e Campione"

Transcript

1 Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f x; = costate icogita Qual è il valore di? E verosimile u ipotesi sul valore di? CAMPIONE: Sottoisieme della popolazioe Come devoo essere scelte le uità apparteeti al campioe? CAMPIONE CASUALE Ciascua uità ha probabilità > 0 di essere estratta

2 Il pricipio di base dell ifereza Pricipio del campioameto ripetuto Le coclusioi ifereziali, basate sull uico campioe osservato, devoo essere giudicate sulla base della distribuzioe di probabilità dei possibili campioi che potevao essere geerati e dei quali quello osservato costituisce ua realizzazioe particolare

3 I 3 elemeti dell ifereza Popolazioe Campioe casuale Campioe osservato Spazio campioario: isieme di tutti i possibili campioi X ~ f x; Prima dell estrazioe, il campioe è costituito da ua -pla di variabili casuali X,X,,X x, x,, x Se il campioe è formato da elemeti, ogi suo elemeto può essere cosiderato come la realizzazioe della variabile casuale X i, idicado co X i la i-esima estrazioe della v.c. X. Variabili casuali osservazioi campioarie X ~ f x; i =,,, i Ciascua variabile X i ha la stessa distribuzioe della variabile casuale che descrive la popolazioe

4 I pratica, data la popolazioe: X~f(x,, ) X =00 X = Mi(X i )=50 Max(X i )=80 Se: C = umero dei possibili campioi estraibili da X = 8 = ampiezza di ogi campioe Si avrao 8 v.c. X i osservazioe campioaria : X X X 3 X 4 X 5 X 6 X 7 X 8 a oss. a oss. 3 a oss. 4 a oss. 5 a oss. 6 a oss. 7 a oss. 8 a oss. campioe x x x 3 x 4 x 5 x 6 x 7 x 8 campioe x x x 3 x 4 x 5 x 6 x 7 x 8 3 campioe : x 3 x 3 x 33 x 34 x 35 x 36 x 37 x 38 C campioe x C x C x C3 x C4 x C5 x C6 x C7 x C8 I questo seso: Prima dell estrazioe il campioe è ua -pla di variabili casuali (i questo caso = 8): X,, X 8 Ciascu campioe x,, x 8 e costituisce ua determiazioe Le determiazioi di ogi X i soo i totale C (pari al umero di possibili campioi)

5 Ciascua v.c. osservazioe campioaria, X i, ha la stessa distribuzioe e gli stessi parametri della variabile X ella popolazioe. Se: X~f(x, ) X =00 X = Mi(X i )=50 Max(X i )=80 i si ha: X i ~f(x, ) X i =00 Xi = Mi(X i)=50 Max(X i )=80 X~f(x, ) X X X 3 X 4 X 5 X 6 X 7 X 8 a oss. a oss. 3 a oss. 4 a oss. 5 a oss. 6 a oss. 7 a oss. 8 a oss. campioe campioe 3 campioe : C campioe

6 Statistiche e parametri Poiché ciascua osservazioe campioaria X i è ua variabile casuale, ogi fuzioe f(x,, X ) delle osservazioi campioarie sarà essa stessa ua variabile casuale ed è detta statistica Esempi: f X,, X = x = x x x i i f X,, X = x = x x x i i f X,, X x x x x = = i i Quidi, i valori otteuti attraverso ua qualsiasi trasformazioe dei valori osservati vegoo chiamate statistiche, metre i rispettivi valori della popolazioe, che soo delle costati, vegoo defiiti parametri. Esempi: Media campioaria X = x x x Statistica Media della popolazioe Parametro

7 Statistiche e statistiche calcolate Si defiisce statistica T = T(X, X,, X ) ua qualsiasi fuzioe a valori reali del campioe casuale (X, X,, X ) che o dipede da quatità icogite. Il valore della statistica T calcolata sul campioe osservato (x, x,, x ) costituisce la statistica calcolata t = T(x, x,, x ). T statistica Variabile casuale t statistica calcolata Realizzazioe della variabile casuale T

8 La distribuzioe campioaria Ogi statistica è, duque, ua sitesi delle variabili casuali campioarie media campioaria X = Xi i= variaza campioaria variaza campioaria corretta S X X = i i= S X X = i i= Dato u campioe casuale (X, X,, X ), defiita la statistica T = T(X, X,, X ), fuzioe delle osservazioi campioarie, la distribuzioe di probabilità della statistica T(X, X,, X ) al variare del campioe viee defiita distribuzioe campioaria di T.

9 La media campioaria La variabile casuale media campioaria, X, è ua combiazioe lieare delle variabili casuali osservazioi campioarie X i, i=,..,. X = Xi i= Le variabili casuali X, X,, X soo idipedeti e ideticamete distribuite alla variabile X ella popolazioe, co media e variaza. E importate defiire la distribuzioe di X, ma prima acora determiare il valore atteso e la variaza. EX = Var X = Idetificao il valore cetrale e la variabilità di ua variabile casuale I geerale, data ua v.c. X cooscere E(X) e Var(X) sigifica cooscere due parametri cruciali della distribuzioe di X, ossia due caratteristiche fodametali della v.c.

10 Distribuzioe di probabilità di ua v.c. X Descrive come varia la probabilità al variare dei possibili valori della X (di tutte le uità statistiche della popolazioe) Distribuzioe campioaria di ua statistica T (fuzioe delle x i ) Descrive come varia la probabilità al variare dei possibili risultati di T calcolata (i teoria) su tutti i possibili campioi proveieti dalla popolazioe Esempio: distribuzioe campioaria della media campioaria Descrive come varia la probabilità al variare dei possibili valori della media calcolata (ipoteticamete) i tutti i possibili campioi estraibili dalla popolazioe

11 Somma di variabili casuali X,X,,X = i = i= S X X X X EX i =, i Var X =, i i i X idipedeti E S = E Xi = i= Var S = Var X = i= Media di variabili casuali X X X X X = i = i= i E X = E X = EX EX EX = = Var X = Var X = Var X Var X Var X = = =

12 U esempio Estrazioe co reitroduzioe Popolazioe: X N=3 = 7,33 = 4, Campioe: = = Xi i= campioe X X X 5 5 5, , , , , , , , ,0 Media 7,33 7,33 7,33 Variaza 4, 4,, Media di variabili casuali E X = E X E X E X = = Var X = Var X Var X Var X = = =

13 U esempio Estrazioe seza reitroduzioe Popolazioe: X N=3 = 7,33 = 4, Campioe: = = Xi i= campioe X X 5 7 6, , , , , ,5 Media 7,33 7,33 7,33 Variaza 4, 4,,06 X Media di variabili casuali E X Var X = N = N Ma quado N è grade: N N Var X

14 Qualche osservazioe Campioameto co reitroduzioe (CCR) ; Var X E X = = Campioameto seza reitroduzioe (CSR) ; Var X E X N = = N =: i risultati otteuti co lo schema di CCR coicidoo co quelli otteuti el CSR; =N: la variaza della media campioaria ello schema di CSR è ulla. I questo caso, ifatti, il campioe coicide co la popolazioe e o si ha più alcua icertezza legata al campioameto; <N: il fattore di correzioe utilizzato ello schema di CSR è <. Questo vuol dire che la variaza della media campioaria el CSR è miore di quella che si ottiee el CCR; molto piccola rispetto alla umerosità della popolazioe N: il fattore di correzioe per lo schema di CSR è prossimo a. La differeza tra i due schemi può quidi essere cosiderata trascurabile.

15 La distribuzioe della media campioaria!!! Se è oto che: X ~ N(, )!!! Allora si sa ache: i= X i ~ N(, ) i X = X ~ N?,? i Campioameto co reitroduzioe Campioameto seza reitroduzioe Var X E X = = Var X E X N = = N X ~ N0, X N N ~ N 0, Ma se o si coosce la distribuzioe di X???

16 Teorema limite cetrale Lideberg-Levy Data ua successioe X di variabili casuali X, X,, X, idipedeti e ideticamete X X X = distribuite co media e variaza costati, defiita la variabile casuale X E X e la sua stadardizzazioe Z =, al crescere di si ha che Z N(0, ) (Z tede Var X ad ua Normale stadardizzata) Lideberg-Cramer Il teorema limite cetrale resta valido ache quado la successioe X è formata da variabili casuali che o soo ideticamete distribuite, purché ciascua v.c. X i sia idipedete dalle altre e abbia mometi primi e secodi fiiti ( e o ecessariamete costati). Ioltre: Sotto codizioi molto geerali, la somma di v.c. idipedeti è asitoticamete Normale, e questo è vero qualuque sia il tipo di distribuzioe di ciascua delle X i. I altre parole Tutte le volte che u feomeo reale può essere iterpretato come la somma, oppure la media, di u gra umero di cause idipedeti, idipedetemete dai modelli probabilistici che geerao le sigole variabili casuali è ragioevole attedersi che la distribuzioe di probabilità di quel feomeo possa essere approssimabile mediate la v.c. Normale. S E S Z = N0, Var S X

17 Esempio U produttore di cosmetici ha 500 veditori porta a porta che, mediamete, ell ultimo mese hao realizzato vedite per u valore pari a = 300 $ e co s.q.m. = 450 $. Si estrae u campioe di 64 veditori. Qual è la probabilità che questo gruppo abbia realizzato, i media ell ultimo mese, vedite per u valore iferiore a 3000 $? Soluzioe X = vedite idividuali, distribuzioe o ota N = 500 = 300 $ = 450 $ = 64 P X 3000 =? 64 Teorema limite cetrale X E X Z = N0, Var X X P X = P = P Z = P Z,78 =

18 Esempio U produttore di cosmetici ha 500 veditori porta a porta che, mediamete, ell ultimo mese hao realizzato vedite per u valore pari a = 300 $ e co s.q.m. = 450 $. Si estrae u campioe di 64 veditori, seza reimmissioe. Qual è la probabilità che questo gruppo abbia realizzato, i media ell ultimo mese, vedite per u valore iferiore a 3000 $? Soluzioe X = vedite idividuali, distribuzioe o ota N = 500 = 300 $ = 450 $ = 64 P X 3000 =? 64 Teorema limite cetrale X E X Z = N0, Var X X P X = P N N = P Z = P Z, 8 = , 035

19 Esempio Le fui di sostego di u pote soo formate da cavi di acciaio. La resisteza alla trazioe di ogi cavo è ua variabile casuale co media = 0, toellate e s.q.m. = 0,06 toellate. Assumedo che ua fue abbia ua resisteza alla trazioe uguale alla somma delle resisteze dei cavi che la compogoo, si calcoli: a) La probabilità che ua fue costituita da 00 cavi sopporti ua trazioe di 9 toellate; b) Il umero di cavi ecessario affiché ua fue sopporti u carico di 0 toellate co probabilità 0,99. Soluzioe X i = resisteza del cavo i X i : = 0, = 0,06 X i iid; distribuzioe o ota X = resisteza della fue composta da cavi Teorema limite cetrale S E S Z = N0, Var S a) 00 X = X = = 00 0, = 0 00 i = P X 9 =? 00 X 00 = = 00 0, 0036 = 0,36 X 00 X N 0; P X00 9 = P Z00 = P Z00,67 = 0,955 0,6

20 b) P X 0 = 0,99 Cerchiamo quel valore di tale che: 0 P Z = 0, , 0 0, = = = 0,06 0,06 0 0, P Z = 0, 99 0,06 0 0, 0,06 =,33 -,33 0 0,,33 = 0 0,06 0 0,,33 0,06 = 0 0 0, 0,398 = 0 0 0, 0,398 = 0 0 0, 0,398 = 0 y = 0, y 0,398 y 0 = 0 y = b b 4ac a y 0, 0,398 0, , 0 = = - 9,35 = 0,73 = 5 + 0,73

21 Distribuzioi campioarie di uso frequete Distribuzioe (chi quadro) (Somma di v.c. Normali stadardizzate al quadrato) Date v.c. X, X,, X idipedeti e ogua distribuita secodo ua Normale di parametri i e, allora la i variabile casuale defiita come: X i i = i= i segue ua distribuzioe co g = gradi di libertà g= x f(x;g) = exp x g g g=4 g= g La variabile è cotiua, o può essere egativa e varia tra zero e ifiito. La sua forma e il suo cetro dipedoo dal umero di gradi di libertà. Y ~ Relazioe tra e Normale: E Y = g ; Var Y = g ; se ua v.c. Z segue ua distribuzioe Normale stadardizzata, la trasformata Y=Z secodo ua v.c. co grado di libertà. si distribuirà

22 Distribuzioe t di Studet (Rapporto tra ua v.c. Normale stadardizzata e la radice quadrata di ua v.c. c divisa per i suoi gradi di libertà) Data ua v.c. Z, distribuita secodo la legge Normale stadardizzata, e la v.c. Y, distribuita secodo u co gradi di libertà, co Z e Y tra loro idipedeti, la variabile casuale t defiita dal rapporto deomiata t di Studet co gradi di libertà: g x f(x;g) = g g g g= g=0 g Y ~ t segue ua distribuzioe t = Z Y Z Y ~ t () La distribuzioe t di Studet ha ua forma simmetrica che dipede dal valore di, parametro che idica i gradi di libertà e che deriva dalla variabile, al deomiatore della formula. E Y = 0 ; Var Y = ; Relazioe co la Normale: g=3 g= Quado, la v.c. t coverge alla Normale. Quidi, quado è elevato, la f(t) può essere approssimata dalla N(0,).

23 Distribuzioe F di Fisher (Rapporto di due v.c. idipedeti, ciascua divisa per il proprio umero di gradi di libertà.) Date due v.c. X e Y tra loro idipedeti, ogua delle quali distribuita secodo u rispettivamete co g e g gradi di libertà, il rapporto distribuzioe F co g e g gradi di libertà. g / g / = (g g ) / B(g /,g / ) g f(x;g,g ) (g / g ) x.0 g =0, g =0 0.8 x g Xg Yg Xg ~F g,g Yg segue la La distribuzioe F di Fisher è cotiua e, essedo otteuta come rapporto tra due v.c., è defiita ell itervallo (0, +). 0.6 Y ~ F g =5, g =5 g =5, g = E Y Var Y = = m m

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice Esercitazioe 12 Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () 1 / 15 Outlie 1 () 2 / 15 Outlie 1 2 () 2 / 15 Outlie 1 2 3 () 2 / 15 Outlie 1 2 3 4 () 2 / 15 Outlie 1 2 3 4 5

Dettagli

Inferenza statistica. Popolazione. Camp. Statistiche campionarie basate sulle osservazioni del campione. Estrazione casuale. Parametro e statistica

Inferenza statistica. Popolazione. Camp. Statistiche campionarie basate sulle osservazioni del campione. Estrazione casuale. Parametro e statistica 6/0/0 Corso di Statistica per l impresa Prof. A. D Agostio Ifereza statistica Per fare ifereza statistica si utilizzao le iformazioi raccolte su u campioe per cooscere parametri icogiti della popolazioe

Dettagli

INFERENZA o STATISTICA INFERENTE

INFERENZA o STATISTICA INFERENTE INFERENZA o STATISTICA INFERENTE Le iformazioi sui parametri della popolazioe si possoo otteere sia mediate ua rilevazioe totale (o rilevazioe cesuaria) sia mediate ua rilevazioe parziale (o rilevazioe

Dettagli

Statistica. Lezione 5

Statistica. Lezione 5 Uiversità degli Studi del Piemote Orietale Corso di Laurea i Ifermieristica Corso itegrato i Scieze della Prevezioe e dei Servizi saitari Statistica Lezioe 5 a.a 2011-2012 Dott.ssa Daiela Ferrate daiela.ferrate@med.uipm.it

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Titolo della lezione. Campionamento e Distribuzioni Campionarie

Titolo della lezione. Campionamento e Distribuzioni Campionarie Titolo della lezioe Campioameto e Distribuzioi Campioarie Itroduzioe Itrodurre le idagii campioarie Aalizzare il le teciche di costruzioe dei campioi e di rilevazioe Sviluppare il cocetto di distribuzioe

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Itervalli di cofideza Prof. Livia De Giovai statistica@dis.uiroma1.it Esercizio 1 La fabbrica A produce matite colorate. Ua prova su 100 matite scelte a caso ha idicato u peso

Dettagli

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno Uiversità degli Studi di Cassio, Ao accademico 004-005 Corso di Statistica, Prof.. uro Esercitazioe del 01/03/005 dott. Claudio Coversao Esercizio 1 Si cosideri il seguete campioe casuale semplice estratto

Dettagli

Proprietà asintotiche stimatori OLS e statistiche collegate

Proprietà asintotiche stimatori OLS e statistiche collegate Proprietà asitotiche stimatori OLS e statistiche collegate Eduardo Rossi 2 2 Uiversità di Pavia (Italy) Maggio 2014 Rossi Proprietà asitotiche Ecoometria - 2014 1 / 30 Sommario Risultati prelimiari Distribuzioe

Dettagli

Stimatori, stima puntuale e intervalli di confidenza Statistica L-33 prof. Pellegrini

Stimatori, stima puntuale e intervalli di confidenza Statistica L-33 prof. Pellegrini Lezioe 3 Stimatori, stima putuale e itervalli di cofideza Statistica L-33 prof. Pellegrii Oggi studiamo le proprietà della stima che ricaviamo da u campioe. Si chiama teoria della stima. La stima statistica

Dettagli

Appunti di STATISTICA

Appunti di STATISTICA Apputi di STATISTICA! Distribuzioe espoeziale X v.a. cotiua, R X = (0,+ ) Si dice che X ha distribuzioe espoeziale a parametro f X = >0 E (X) = 1/ Var (X) = 1/ e - x x>0 0 altrove (umero reale) se la p.d.f.

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

STATISTICA INFERENZIALE

STATISTICA INFERENZIALE STATISTICA INFERENZIALE 6 INFERENZA STATISTICA Isieme di metodi che cercao di raggiugere coclusioi sulla popolazioe, sulla base delle iformazioi coteute i u campioe estratto da quella popolazioe. INFERENZA

Dettagli

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a Corso di Statistica Test per differeza tra medie e proporzioi Prof.ssa T. Laureti a.a. -3 Corso di Statistica a.a. -3 DEIM, Uiv.TUSCIA - Prof.ssa Laureti Test basati su campioi idipedeti proveieti da due

Dettagli

STATISTICA 1 ESERCITAZIONE 5

STATISTICA 1 ESERCITAZIONE 5 STATISTICA ESERCITAZIONE 5 Dott. Giuseppe Padolfo 28 Ottobre 203 VARIABILITA IN TERMINI DI DISPERSIONE DA UN CENTRO Cetro Me o μ La dispersioe viee misurata come sitesi delle distaze tra le uità statistiche

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13

Teoria dei Fenomeni Aleatori AA 2012/13 Statistica Matematica: Cocetti Fodametali Nell esperieza quotidiaa e ella pratica della professioe dell igegere occorre: predere decisioi e ciò ormalmete richiede la dispoibilità di specifiche iformazioi

Dettagli

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96 STATISTICA A K (60 ore Marco Riai mriai@uipr.it http://www.riai.it : stima della percorreza media delle vetture diesel di u certo modello al primo guasto 400 X34.000 Km; s cor 9000 Km Livello di cofideza

Dettagli

Costo manutenzione (euro)

Costo manutenzione (euro) Esercitazioe 05 maggio 016 ESERCIZIO 1 Ua società di servizi possiede u parco auto di diverse età. I dirigeti ritegoo che il costo degli iterveti di mautezioe per le auto più vecchie sia geeralmete più

Dettagli

STATISTICA INFERENZIALE - SCHEDA N. 1 CAMPIONAMENTO E STIMA

STATISTICA INFERENZIALE - SCHEDA N. 1 CAMPIONAMENTO E STIMA Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) STATISTICA INFERENZIALE

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

Argomenti trattati: Stima puntuale e stimatore Proprietà degli stimatori Stima puntuale della media della

Argomenti trattati: Stima puntuale e stimatore Proprietà degli stimatori Stima puntuale della media della 1 La stima putuale Argometi trattati: Stima putuale e stimatore Proprietà degli stimatori Stima putuale della media della popolazioe e sua distribuzioe Stima putuale di ua proporzioe e sua distribuzioe

Dettagli

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti:

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti: Quesito. I segueti dati si riferiscoo ai tempi di reazioe motori a uo stimolo lumioso, espressi i decimi di secodo, di u gruppo di piloti: 2, 6 3, 8 4, 8 5, 8 2, 6 4, 0 5, 0 7, 2 2, 6 4, 0 5, 0 7, 2 2,

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli Titolo della lezioe Dal campioe alla popolazioe: stima putuale e per itervalli Itroduzioe Itrodurre il cocetto di itervallo di cofideza Stima di parametri per piccoli e gradi campioi Stimare la proporzioe

Dettagli

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1 ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE ESERCIZIO. Si vuole verificare l ipotesi, a livello di sigificatività α, che la media μ di ua variabile aleatoria X abbia u valore fissato μ. Si effettuao

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

Confronto di due misure Campioni indipendenti

Confronto di due misure Campioni indipendenti Statistica7 /11/015 Cofroto di due misure Campioi idipedeti o meglio.. rispodere al quesito Due serie di misure soo state estratte dalla stessa popolazioe (popolazioe comue o idetica) o soo state estratte

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel:

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel: UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Doatella Siepi doatella.siepi@uipg.it tel: 075 5853525 05 dicembre 2014 6 LEZIONE Statistica descrittiva STATISTICA DESCRITTIVA Rilevazioe dei

Dettagli

Intervalli di Fiducia

Intervalli di Fiducia di Fiducia Itroduzioe per la media Caso variaza ota per la media Caso variaza o ota per i coefficieti di regressioe per la risposta media i per i coefficieti i di regressioe multilieare - Media aritmetica

Dettagli

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti.

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti. AROSSIMAZIONE NORMALE 1. Si tirao 300 dadi o truccati. Sia X la somma dei puteggi. Calcolare approssimativamete le probabilità segueti. (a (X 1000; (b (1000 X 1100. 2. La quatità di eve, che cade al gioro,i

Dettagli

PROBLEMI DI INFERENZA SU MEDIE

PROBLEMI DI INFERENZA SU MEDIE PROBLEMI DI INFERENZA SU MEDIE STIMA PUNTUALE Il problema della stima di ua media si poe allorchè si vuole cooscere, sulla base di osservazioi campioarie, il valore medio μ che u dato carattere preseta

Dettagli

Anemia. Anemia - percentuali

Anemia. Anemia - percentuali 1 emia emoglobia 1-13 Data la distribuzioe dell emoglobia i u gruppo di pazieti maschi sottoposti a trattameto: - Circa u paziete su 3 era fortemete aemico (emogl. meo di 1) - La mediaa era fra 13 e 14

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2005/06

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2005/06 PROVE SCRITTE DI MTEMTIC PPLICT, NNO 5/6 Esercizio 1 Prova scritta del 14/1/5 Sia X ua successioe I.I.D. di variabili aleatorie co distribuzioe uiforme cotiua, X U(, M), ove M = umero lettere del cogome.

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a. 9 Esame del -6- Statistica ESERCIZIO Relazioi tra Variabili (totale puti: ) Ad ua riuioe del circolo Amati dell acquario, i soci preseti

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati Esercitazioe parte Medie e medie per dati raggruppati el file dati0.xls soo coteute alcue distribuzioi di dati. Calcolare di ogua. Media aritmetica o Mostrare, co u calcolo automatico, che la somma degli

Dettagli

Lezione 5. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 5. A. Iodice.

Lezione 5. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 5. A. Iodice. La Statistica Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () Statistica 1 / 26 Outlie La 1 2 La 3 4 () Statistica 2 / 26 Trimmed mea - La aritmetica risete della preseza di valori

Dettagli

Appunti complementari per il Corso di Statistica

Appunti complementari per il Corso di Statistica Apputi complemetari per il Corso di Statistica Corsi di Laurea i Igegeria Edile e Tessile Ilia Negri 24 settembre 2002 1 Schemi di campioameto Co il termie campioameto si itede l operazioe di estrazioe

Dettagli

Traccia delle soluzioni degli esercizi del fascicolo 6

Traccia delle soluzioni degli esercizi del fascicolo 6 Traccia delle soluzioi degli esercizi del fascicolo 6 Esercizio Vegoo geerati umeri casuali tra 0 e, co distribuzioe uiforme. Quati umeri è ecessario geerare affiché la probabilità che la somma di essi

Dettagli

Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli

LE MISURE DI TENDENZA CENTRALE

LE MISURE DI TENDENZA CENTRALE STATISTICA DESCRITTIVA LE MISURE DI TENDENZA CENTRALE http://www.biostatistica.uich.itit OBIETTIVO Esempio: Nella tabella seguete soo riportati i valori del tasso glicemico rilevati su 0 pazieti: Idividuare

Dettagli

Legge Gamma e Legge Chi quadro

Legge Gamma e Legge Chi quadro Legge Gamma e Legge Chi quadro Sia G ua variabile aleatoria di legge Gamma di parametri a e λ reali positivi, G Γ(a, λ, la cui fuzioe di desità è: f G (x = λa Γ(a e λx x a per x 0 dove Γ( è la fuzioe Gamma

Dettagli

Programma (orientativo) secondo semestre 32 ore - 16 lezioni

Programma (orientativo) secondo semestre 32 ore - 16 lezioni Programma (orietativo) secodo semestre 32 ore - 6 lezioi 3 lezioi: successioi e serie 4 lezioi: itegrali 2-3 lezioi: equazioi differeziali 4 lezioi: sistemi di equazioi e calcolo vettoriale e matriciale

Dettagli

Cenni di topologia di R

Cenni di topologia di R Cei di topologia di R. Sottoisiemi dei umeri reali Studieremo le proprietà dei sottoisiemi dei umeri reali, R, che hao ad esempio la forma: = (, ) (,) 6 8 = [,] { ;6;8} { } = (, ) (,) [, + ) Defiizioe:

Dettagli

Esercizio 1. Si supponga di aver assegnato ad una popolazione di N = 4 dattilografe un test e di aver ottenuto i seguenti risultati:

Esercizio 1. Si supponga di aver assegnato ad una popolazione di N = 4 dattilografe un test e di aver ottenuto i seguenti risultati: Esercizio 1 Si suppoga di aver assegato ad ua popolazioe di N = 4 dattilografe u test e di aver otteuto i segueti risultati: Dattilografa N. Errori A 3 B C 1 D 4 La variabile, il umero di errori commessi

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli

VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE. Psicometria 1 - Lezione 12 Lucidi presentati a lezione AA 2000/2001 dott.

VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE. Psicometria 1 - Lezione 12 Lucidi presentati a lezione AA 2000/2001 dott. VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE Psicometria - Lezioe Lucidi presetati a lezioe AA 000/00 dott. Corrado Caudek Il caso più comue di disego sperimetale è quello i cui i soggetti vegoo

Dettagli

Esercitazione 6 del corso di Statistica 2

Esercitazione 6 del corso di Statistica 2 Esercitazioe 6 del corso di Statistica Dott.ssa Paola Costatii 7 marzo Decisioe vera falsa è respita Errore di I tipo Decisioe corretta o è respita Probabilità = Decisioe corretta Probabilità = - Probabilità

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Trieale i Matematica Calcolo delle Probabilità I doceti G. Nappo, F. Spizzichio Prova di martedì luglio tempo a disposizioe: 3 ore. Scrivere su ogi foglio NOME e COGNOME. Le risposte devoo

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

1.5 - Variabilità, concentrazione e asimmetria

1.5 - Variabilità, concentrazione e asimmetria .5 - Variabilità, cocetrazioe e asimmetria G. Alleva - Statistica - Parte.5 Obiettivo: Misura della variabilità di ua distribuzioe statistica Mutabilità, Dispersioe, Variabilità, Eterogeeità E l attitudie

Dettagli

Convergenza di variabili aleatorie

Convergenza di variabili aleatorie Covergeza di variabili aleatorie 1 Covergeza quasi certa Ua successioe (X ) 1 di v.a. coverge quasi certamete alla v.a. X se: X X (P-q.c.), cioè P(X X) = 1, ove {X X} = {ω : X (ω) X(ω)} è l issieme di

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a Esame del STATISTICA

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a Esame del STATISTICA FACOLTÀ DI SOCIOLOGIA a. a. 011 01 Esame del 11-01-01 STATISTICA ESERCIZIO 1 U idagie sulle abitudii alimetari dei requetatori di u cetro itess ha moitorato il umero di caè cosumati i u gioro ormale e

Dettagli

Stimatori corretti, stimatori efficaci e disuguaglianza di Cramer Rao

Stimatori corretti, stimatori efficaci e disuguaglianza di Cramer Rao Stimatori corretti stimatori efficaci e disuguagliaza di Cramer Rao Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche Defiizioe. Sia {X X 2... X } u

Dettagli

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto Calcolo I - Corso di Laurea i Fisica - Geaio 08 Soluzioi Scritto Data la fuzioe f = 8 + / a Calcolare il domiio, puti di o derivabilità ed asitoti; b Calcolare, se esistoo, estremi relativi ed assoluti.

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO Che cosa sigifica cotare Tutti coosciamo la successioe dei umeri iteri Naturali N = {0, 1,,, } si tratta di ua struttura metale fodametale, chiaramete presete alla ostra ituizioe che

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

converge in probabilità alla v.a. X e si scrive: converge in media quadratica alla v.a. X e si scrive: m n

converge in probabilità alla v.a. X e si scrive: converge in media quadratica alla v.a. X e si scrive: m n 98 Covergeza i probabilità Si dice che la successioe X coverge i probabilità alla v.a. X e si scrive: se, per qualsiasi ε > 0, si ha: X p X oppure plim X = X limp( X X < ε)= Covergeza i media quadratica

Dettagli

16 - Serie Numeriche

16 - Serie Numeriche Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 6 - Serie Numeriche Ao Accademico 03/04 M. Tummiello, V. Lacagia, A. Cosiglio, S.

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

INTRODUZIONE ALLA INFERENZA STATISTICA

INTRODUZIONE ALLA INFERENZA STATISTICA INTRODUZIONE ALLA INFERENZA STATISTICA 1) CONCETTO DI INFERENZA STATISTICA E SCOPI : L ifereza statistica è il procedimeto iduttivo che, avvaledosi del calcolo delle probabilità, cosete di estedere all

Dettagli

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z)

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z) Uiversità di Napoli Federico II, DISES, A.a. 215-16, CLEC, Corso di Statistica (L-Z) Corso di laurea i Ecoomia e Commercio (CLEC) Ao accademico 215-16 Corso di Statistica (L-Z) Maria Mario Lezioe: 22 Argometo:

Dettagli

LEGGE DEI GRANDI NUMERI

LEGGE DEI GRANDI NUMERI LEGGE DEI GRANDI NUMERI E. DI NARDO 1. Legge empirica del caso e il teorema di Beroulli I diverse occasioi, abbiamo mezioato che la ozioe ituitiva di probabilità si basa sulla seguete assuzioe: se i sperimetazioi

Dettagli

Y = ln X è normalmente distribuita. (y) = dg(x) dx. f Y. (x) = dy dx f Y. f X. (g(x)) & exp$ dx x - $ % ( x) DISTRIBUZIONE LOG-NORMALE.

Y = ln X è normalmente distribuita. (y) = dg(x) dx. f Y. (x) = dy dx f Y. f X. (g(x)) & exp$ dx x - $ % ( x) DISTRIBUZIONE LOG-NORMALE. DISTRIBUZIONE LOG-NORMALE. La variabile si dice log-ormalmete distribuita se: l è ormalmete distribuita g( l g ( e 0 +. uzioe di desità di probabilità: f ( d d f ( dg( d f (g( dg( d f (. & ep$ - / $ %,

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

5. INDICI DI VARIABILITA'

5. INDICI DI VARIABILITA' UNIVERSITA DEGLI STUDI DI PERUGIA DIPARTIMENTO DI FILOSOFIA SCIENZE SOCIALI UMANE E DELLA FORMAZIONE Corso di Laurea i Scieze per l'ivestigazioe e la Sicurezza. INDICI DI VARIABILITA' Prof. Maurizio Pertichetti

Dettagli

Esercitazioni di Statistica Dott. Danilo Alunni Fegatelli

Esercitazioni di Statistica Dott. Danilo Alunni Fegatelli Esercitazioi di Statistica Dott. Dailo Alui Fegatelli dailo.aluifegatelli@uiroma.it Esercizio. Su 0 idividui soo stati rilevati la variabile X (geere) e (umero di auto possedute) X F F M F M F F M F M

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione Aritmetica 06/07 Esercizi svolti i classe Secoda lezioe Dare ua formula per 3 che o coivolga sommatorie Dato che sappiamo che ( + e ( + ( + 6 vogliamo esprimere 3 mediate, e poliomi i U idea possibile

Dettagli

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag.

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag. Spazi vettoriali Sottospazi associati a ua matrice Dimesioe e basi co riduzioe Sottospazi e sistemi 2 Pag. 1 2006 Politecico di Torio 1 Spazi delle righe e delle coloe Sia A M m, ua matrice m x. Allora

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere

Dettagli

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE STATISTICA parte / U test statistico è ua regola di decisioe Effettuare u test statistico sigifica verificare IPOTESI sui parametri. STATISTICA INFERENZIALE STIMA PUNTUALE STIMA PER INTERVALLI TEST PARAMETRICI

Dettagli

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che 1 Il Teorema di Marov 1.1 Aalisi spettrale della matrice di trasizioe Il teorema di Marov afferma che Teorema 1.1 Ua matrice di trasizioe regolare P su u isieme di stati fiito E ha ua uica distribuzioe

Dettagli

ELEMENTI DI STATISTICA. Giancarlo Zancanella 2015

ELEMENTI DI STATISTICA. Giancarlo Zancanella 2015 ELEMENTI DI STATISTICA Giacarlo Zacaella 2015 2 Itroduzioe I termii statistici soo molto utilizzati el liguaggio correte 3 Cos è la STATISTICA STATISTICA = scieza che studia i feomei collettivi o di massa

Dettagli

1 Successioni numeriche

1 Successioni numeriche Aalisi Matematica 2 Successioi umeriche CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 5 SERIE NUMERICHE Chiamiamo successioe di umeri reali ua fuzioe a valori reali defiita su N oppure

Dettagli

Esercizi di Calcolo delle Probabilità e Statistica Matematica

Esercizi di Calcolo delle Probabilità e Statistica Matematica Esercizi di Calcolo delle Probabilità e Statistica Matematica Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche 1. Esercizio (31 marzo 2012. 1). Al

Dettagli

Lezione III: Variabilità. Misure di dispersione o di variabilità. Prof. Enzo Ballone. Lezione 3a- Misure di dispersione o di variabilità

Lezione III: Variabilità. Misure di dispersione o di variabilità. Prof. Enzo Ballone. Lezione 3a- Misure di dispersione o di variabilità Lezioe III: Variabilità Cattedra di Biostatistica Dipartimeto di Scieze Biomediche, Uiversità degli Studi G. d Auzio di Chieti Pescara Prof. Ezo Balloe Lezioe a- Misure di dispersioe o di variabilità Misure

Dettagli

Argomenti trattati: Capitolo 12 libro di testo. Statistica - Metodologie per le scienze economiche e sociali A. Di Ciaccio, S.

Argomenti trattati: Capitolo 12 libro di testo. Statistica - Metodologie per le scienze economiche e sociali A. Di Ciaccio, S. 1 GLI INTERVALLI DI CONFIDENZA Argometi trattati: Stima per itervallo Aalogie tra la stima putuale e per itervallo Itervallo di cofideza per la media Itervallo di cofideza per la proporzioe Itervallo di

Dettagli

Esercizi di econometria: serie 2

Esercizi di econometria: serie 2 Esercizi di ecoometria: serie Esercizio Per quali delle segueti uzioi di desità cogiuta le variabili casuali ed soo idipedeti?......3.4.5..5 (a) (b) 3 4....3.6.9..4...5..5 3.. 3.8..4.6 (c) (d) Nel caso

Dettagli

PREMESSA. = η valore medio della popolazione = σ deviazione standard della popolazione. Descrizione parametrica di una popolazione

PREMESSA. = η valore medio della popolazione = σ deviazione standard della popolazione. Descrizione parametrica di una popolazione PREMESSA Descrizioe parametrica di ua popolazioe Sappiamo che u famiglia parametrica di fuzioi desità di probabilità è defiita da uo o più parametri Θ = {θ, θ,., θ }. Ad esempio, la d.d.p. di tipo espoeziale

Dettagli

La dinamica dei sistemi - intro

La dinamica dei sistemi - intro La diamica dei sistemi - itro Il puto materiale rappreseta ua schematizzazioe utile o solo per descrivere situazioi di iteresse diretto ma è ache il ecessario presupposto alla meccaica dei sistemi materiali

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso itegrato di Matematica per le scieze aturali ed applicate Materiale itegrativo Paolo Baiti Lorezo Freddi Dipartimeto di Matematica e Iformatica, Uiversità di Udie, via delle Scieze 206, 3300 Udie,

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

STATISTICA 1 ESERCITAZIONE 4

STATISTICA 1 ESERCITAZIONE 4 STATISTICA 1 ESERCITAZIONE 4 Dott. Giuseppe Padolfo 21 Ottobre 2013 Percetili: i valori che dividoo la distribuzioe i ceto parti di uguale umerosità. Esercizio 1 La seguete tabella riporta la distribuzioe

Dettagli

Domande di teoria. Chiorri, C. (2014). Fondamenti di psicometria - Risposte e soluzioni Capitolo 3

Domande di teoria. Chiorri, C. (2014). Fondamenti di psicometria - Risposte e soluzioni Capitolo 3 Chiorri, C. (0). Fodameti di psicometria - Risposte e soluzioi Capitolo Domade di teoria. Per le caratteristiche geerali vedi paragrafo. p. 79. Per le procedure di calcolo vedi per la moda pp. 79-8, per

Dettagli

(sqm ottenuto dividendo per n-1 ) =

(sqm ottenuto dividendo per n-1 ) = STATISTICA PER L ANALISI ORGANIZZATIVA AA 006-007 Per casa Soluzioi Esercizio.. Durate ua ricerca soo state rilevate le lughezze di tre differeti variabili ecoomiche per ciascuo di 50 paesi i via di sviluppo.

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioi a.a. 2006/2007 C.d.L.: Igegeria per l Ambiete ed il Territorio, Igegeria Civile, Igegeria Gestioale, Igegeria dell Iformazioe C.d.L.S.: Igegeria Civile Estrazioi-II

Dettagli

6 Stima di media e varianza, e intervalli di confidenza

6 Stima di media e varianza, e intervalli di confidenza Si può mostrare che, per ogi fissato α, t,α z α, e t,α z α per + I pratica t,α e z α soo idistiguibili per 200. 6 Stima di media e variaza, e itervalli di cofideza Lo scopo esseziale della Statistica ifereziale

Dettagli