La Pipeline Grafica. Vediamo come avviene il rendering, ovvero la visualizzazione di oggetti. Introduzione. La Pipeline Grafica.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La Pipeline Grafica. Vediamo come avviene il rendering, ovvero la visualizzazione di oggetti. Introduzione. La Pipeline Grafica."

Transcript

1 La Pipeline Grafica Vediamo come avviene il rendering, ovvero la visualizzazione di oggetti. Introduzione La Pipeline Grafica Spazio vista Spazio 3D-screen Shading Rasterizzazione Rimozione delle facce nascoste Aliasing Cenni sul colore

2 Grafica al Calcolatore La Pipeline Grafica - 1 Introduzione Cominciamo finalmente a parlare di pipeline grafica Il termine indica la serie di algoritmi, geometrici e non, a cui si sottopone una data descrizione di una serie di oggetti per ottenere una immagine Le descrizioni possono essere: mesh poligonali superfici parametriche superfici di suddivisione CSG Per ogni descrizione esistono tecniche ad hoc. Ci occuperemo nel dettaglio di mesh poligonali, perché: sono la rappresentazione piú diffusa le altre rappresentazioni si possono ricondurre a questa.

3 Grafica al Calcolatore La Pipeline Grafica - 2 La pipeline grafica L ingresso è una lista di poligoni, e l output è una immagine, ovvero una matrice di pixels a caiscuno dei quali è associato un colore. Local coordinate space World coordinate space View space 3D screen space Object definition Compose scene Define view reference Define lighting Culling Clipping Hidden surface removal Rasterization Shading

4 Grafica al Calcolatore La Pipeline Grafica - 3 Trasformazioni Geometriche Spazio Locale Definizione dell oggetto Spazio Mondo Composizione della scena Definizione delle luci Definizione della camera Spazio Vista Back-face culling Spazio 3D-Screen Clipping Shading Rimozione delle facce nascoste Rasterizzazione Spazio Immagine

5 Grafica al Calcolatore La Pipeline Grafica - 4 Spazio vista Il view space è un sistema di coordinate centrato sulla telecamera con l aggiunta della specifica di un volume di vista: un view point C, che stabilisce la posizione dell osservatore nel world space e definisce il centro della proiezione. un sistema di riferimento UVN centrato sull osservatore, che definisce la direzione di vista N e la direzione verticale V. un piano vista (view plane), ortogonale a N e distante d da C, sul quale viene proiettata la scena un volume di vista (o frustum), che definisce una finestra nel view plane e due piani di taglio (clipping) paralleli al view plane, il near plane ed il far plane.

6 Grafica al Calcolatore La Pipeline Grafica - 5 far plane y V view plane w z C x U N near plane h near = d far

7 Grafica al Calcolatore La Pipeline Grafica - 6 Eliminazione delle facce posteriori L eliminazione delle facce posteriori (o culling), elimina i poligoni che, a causa della loro orientazione, non possono essere visti. Se N è la direzione di vista ed N p è la normale al poligono, è facile rendersi conto che il poligono è visibile solo se: N p N < 0 Nota: se la scena è composta da un solo solido convesso, il culling risolve anche il problema della eliminazione delle faccie nasoste. Quest ultimo, in generale, richiede algoritmi più costosi (un oggetto può occluderne un altro).

8 Grafica al Calcolatore La Pipeline Grafica - 7 Proiezione In linea di principo, nel view space si potrebbe effettuare la proiezione prospettica, applicando ai punti P rappresentati in coordinate omogenee ( P = (x, y, z, 1)) la matrice: M = /d 0 dove d è la distanza tra C ed il piano vista (distanza focale). Si ottiene così una 4-pla P = (x, y, z, z/d), che viene poi normalizzata dividendo le sue componenti per la quarta ed ottenendo P = ( x, y, d, 1), le cui prime due (z/d) (z/d) componenti sono le coordinate nel piano vista (z = d). Invece la proiezione viene effettuata dopo la trasformazione nello spazio 3D-Screen per poter aggiungere informazione di profondit ai punti proiettati.

9 Grafica al Calcolatore La Pipeline Grafica - 8 Da notare che nella proiezione si perde l informazione di profondità di un punto, ovvero punti con z iniziale di partenza diversa vengono proiettati nello stesso punto sul piano proiettivo Vi è modo di recuperare tale informazione? Vedremo nel seguito che sarà molto importante poter stabilire dati due punti proiettati nella stessa posizione quale dei due ha profondità (distanza dal piano proiettivo) minore Iniziamo con l osservare che che la terza coordinata della proiezione è inutile, nel senso che è uguale a d per tutti i punti proiettati Il trucco è quindi di ottenere una trasformazione che abbia le stesse coordinate x ed y della proiezione standard, ma che metta nella coordinata z un valore dal quale si possa risalire all ordine di profondità dei punti A tal scopo sostituiamo la matrice M vista prima con la seguente matrice M prof = α β 0 0 1/d 0

10 Grafica al Calcolatore La Pipeline Grafica - 9 Applicando M prof a P si avrà quindi la 4-pla (x, y, αz + β, z/d) che, normalizzata con la quarta componente, fornisce P = ( x, y, dα dβ/z, 1) (z/d) (z/d) Le prime due componenti sono identiche alla proiezione standard Per valori opportuni di α e β la terza componente è una funzione monotona di z z s = dα dβ/z. la profondit vera viene distorta in modo non lineare, ma la relazione di ordinamento sulla profondit viene mantenuta.

11 Grafica al Calcolatore La Pipeline Grafica - 10 Spazio 3D-Screen Lo spazio 3D-Screen è legato al concetto di volume di vista canonico. La proiezione prospettica con profondit, se intesa come trasformazione dello spazio, mappa il view frustum in un parallelepipedo, distorcendo gli oggetti. Proiettando questo parallelepipedo ortogonalmente (si elimina la terza coordinata) si ottiene la proiezione prospettica desiderata. Il (canonical view volume) un cubo di lato unitario, in cui il far plane ha equazione z s = 1, ed il near plane z s = 0 Vogliamo dunque scegliere α e β in modo che l intervallo di profondità z [d, f] venga mappato in z s [0, 1].

12 Grafica al Calcolatore La Pipeline Grafica - 11 Una tale trasformazione è implementata dalla matrice M prof = 1/w /h α β 0 0 1/d 0 con f α = d(f d) β = f f d dove w è la larghezza della finestra nel piano vista determinata dal view frustum; h è l altezza della finestra nel piano vista determinata dal view frustum; d è la distanza dal centro del near plane (coincide con il piano vista); f è la distanza dal centro del far plane Si può verificare trasformando i vertici del view frustum.

13 Grafica al Calcolatore La Pipeline Grafica - 12 Clipping Il clipping consiste nella rimozione dei poligoni che cadono fuori dal volume di vista. Trasformando tutto nel volume di vista canonico, l operazione diventa banale. Esempio di uso del near clip plane per vedere all interno degli ogetti.

14 Grafica al Calcolatore La Pipeline Grafica - 13 Shading Abbiamo gi visto in precedenza come assegnare un colore (shade) ad ogni punto di una qualunque superficie (modello di riflessione locale di Phong e modifiche con mapping). Nella pratica abbiamo a che fare con superfici poligonali, e vogliamo poter calcolare in modo veloce il colore da assegnare a ciascun punto di un poligono. Sono essenzialmente schemi di interpolazione dei valori di intensità calcolati sui vertici dei poligoni. L interpolazione effettuata nello screen space è una approssimazione di un processo che andrebbe svolto nell world space. Per questo in alcuni casi compaiono artefatti.

15 Grafica al Calcolatore La Pipeline Grafica - 14 Flat shading A ciascun poligono è associato una sola intensità di colore, calcolata usando la sua normale ed il modello di riflessione locale. Vantaggio: semplicità e velocità Svantaggio: Si percepiscono distintamente i poligoni.

16 Grafica al Calcolatore La Pipeline Grafica - 15

17 Grafica al Calcolatore La Pipeline Grafica - 16 Gourand shading È la tecnica di shading più antica, e la più semplice (veloce) che produce una variazione dell intensità atraverso il poligono. si calcola la normale di vertice prendendo la media delle normali dei poligoni che condividono il vertice; si calcola l intensità luminosa di ogni vertice usando le normali così calcolate ed il modello di riflessione locale; si calcola l intensità luminosa dei punti interni al poligono con interpolazione bilineare Vantaggio: semplicità e velocità Svantaggio: Non elinina completamente la percezione dei poligoni.

18 Grafica al Calcolatore La Pipeline Grafica - 17

19 Grafica al Calcolatore La Pipeline Grafica - 18 Phong shading Il metodo di interpolazione di Phong (da non conforndersi con il modello di riflessione locale di Phong), prevede di: interpolare le normali dei vertici all interno del poligono; la normale interpolata viene usata nel modello di riflessione locale. Vantaggio: buon realismo. Svantaggio: é circa 5 volte più lento di Gourand. Spesso confinato all uso off-line.

20 Grafica al Calcolatore La Pipeline Grafica - 19

21 Grafica al Calcolatore La Pipeline Grafica - 20 Rimozione delle facce nascoste Ogni poligono si assume essere piatto ed opaco. Si vogliono disegnare solo i poligoni visibili. Back-face culling Visto precedentemente Algoritmo Depth-sorth: si disegnano i poligoni dal più lontano al più vicino, così quelli lontani vengono sovrascritti da quelli più vicini (algoritmo del pittore). Non sempre è possinile ordinare i poligoni per profondità. Algoritmo Depth-Buffer

22 Grafica al Calcolatore La Pipeline Grafica - 21 Depth-Buffer Opera nel 3D screen space Lavora sui poligoni si pu vedere come parte del processo di rasterizzazione Il depth-buffer o z-buffer è una matrice (grande come l immagine) che contiene, per ciascun pixel, il più piccolo valore di profondità (z) incontrato finora. Durante il rendering, per ciascun poligono che viene processato: si calcola la profondità (z) dei punti interni con interpolazione bilineare della z dei vertici (come l intensità in Gouraud shading). se la z del pixel è inferiore a quella contenuta nello z-buffer, allora la sua intensità viene scritta nell immagine e la z viene viene aggiornata. Vantaggio: semplicità di implementazione Svantaggio: occupazione di memoria: servono almeno bits per pixel per avere una discretizzazione accettabile delle profondità.

23 Grafica al Calcolatore La Pipeline Grafica - 22 Rasterizzazione La rasterizzazione (o scan conversion) consiste nel disegnare i poligoni sulla immagine, riempendoli con il colore determinato dallo shading. Questo equivale a risolvere i seguenti due problemi. Determinare i pixel interessati da un edge (Bresenham) Determinare i punti interni Non vedremo gli algoritmi, che sono comunque dei classici della Grafica.

24 Grafica al Calcolatore La Pipeline Grafica - 23 Aliasing Nella costruzione di una immagine per la natura discreta del raster display (o del frame buffer, che è lo stesso) è inevitabile la comparsa di artefatti che degradano la qualità dell immagine L esempio più tipico sono le scalette che si formano quando si disegnano linee rette Vi sono vari metodi di anti-aliasing e i più comuni sono basati sul calcolo di medie di shading tra pixel vicini (1) Aliasing (2) Anti aliasing

25 Grafica al Calcolatore La Pipeline Grafica - 24 Cenni sul colore Per prima cosa come si rappresenta il colore di un pixel? Ci sono essenzialmente due modi: 1. Indicizzato: viene costruita una tabella di colori predefiniti (la cosiddetta palette); ad ogni pixel si può quindi associare semplicemente un numero intero che indica una posizione nella palette. In genere la dimensione della palette è di 256 elementi a cui corrisponde un frame-buffer a 8-bit di profondità di colore. 2. True color: viene associato ad ogni pixel direttamente un colore parametrizzato dalla sue componenti RGB. In genere ciascuna componente può assumere 256 valori, da 0 a 255; si ha quindi un frame-buffer a 24-bit di profondità di colore. In genere si può associare una quarta componente ad ogni pixel, detta α. Si ha a che fare in tal caso con un frame-buffer RGBA a 32-bit; la componente α può essere usata per esempio per specificare un valore di opacità del pixel.

26 Grafica al Calcolatore La Pipeline Grafica - 25 Opacità In generale si può associare ad un punto oltre all intensità di colore calcolata anche un coefficente di opacità k o compreso tra zero ed uno Se in un punto k o è pari a uno, allora il punto è completamente opaco e si effettua uno shading normalmente con le tecniche che vedremo in questo capitolo. Se k o è pari a zero allora in quel punto l oggetto è completamente invisibile; lo shading di quel punto non conta e bisogna vedere come è colorato il punto che sta otticamente dietro Per valori di k o intermedi bisogna fare un blending del colore I associato a quel punto dal modello di shading ed il colore dietro. Esempio: si supponga che per un dato pixel si sia stabilito un colore c dopo aver disegnato una serie di poligoni in ordinamento del pittore; si supponga che disegnando un nuovo poligono la formula di shading assegni intensità I per quel pixel dovuta al nuovo poligono e che tale pixel risulti di opacità k o. Allora il dato pixel assumerà un colore pari a c = (1 k o )c + k o I

27 Grafica al Calcolatore La Pipeline Grafica - 26 Depth cueing Una tecnica usata per dare un senso di profondità all immagine è la seguente Si stabilisce una intensità di depth-cue (eventualmente per ogni componente di colore) pari a I dc Si calcola l intensità I con l equazione di Phong L intensità con cui si colora il punto P è allora data dalla formula I = (1 z s )I + z s I dc ovvero si interpola linearmente (usando la profondità nello spazio 3D screen) tra la vera intensità data da Phong e l intensità di depth-cue In tal modo oggetti vicini appaiono colorati normalmente (o quasi), oggetti lontani invece sfumano in I dc Se I dc è zero, per esempio, gli oggetti tendono a sparire man mano che si avvicinano al piano di far clipping (z s = 1) Se I dc è uno, invece, si ha un effetto nebbia

28 Grafica al Calcolatore La Pipeline Grafica - 27

Rendering. Dove si descrivono i principali metodi di alto livello utilizzati per ottenere una immagine a partire da una descrizione degli oggetti 3D

Rendering. Dove si descrivono i principali metodi di alto livello utilizzati per ottenere una immagine a partire da una descrizione degli oggetti 3D Rendering Dove si descrivono i principali metodi di alto livello utilizzati per ottenere una immagine a partire da una descrizione degli oggetti 3D Introduzione Rendering di mesh poligonali 3D Viewing

Dettagli

Grafica al calcolatore - Computer Graphics

Grafica al calcolatore - Computer Graphics Grafica al calcolatore - Computer Graphics 7 Pipeline di rasterizzazione 23/11/13 Grafica 2013 1 Rasterization pipeline Sappiamo implementare ray casting (o ray tracing). Abbiamo tuttavia già visto che

Dettagli

Rendering I - geometric processing

Rendering I - geometric processing Rendering I - geometric processing Dove si descrivono i principali metodi di alto livello utilizzati per ottenere una immagine a partire da una descrizione degli oggetti 3D Introduzione Trasformazioni

Dettagli

Processo di rendering

Processo di rendering Processo di rendering 1 Trasformazioni di vista Trasformazioni di vista Il processo di visione in tre dimensioni Le trasformazioni di proiezione I parametri della vista 3D I sistemi di coordinate 2 I parametri

Dettagli

Grafica al calcolatore - Computer Graphics

Grafica al calcolatore - Computer Graphics Grafica al calcolatore - Computer Graphics 8 Pipeline di rasterizzazione - 2 12/12/14 Grafica 2014 1 Riepilogo Operazioni geometriche Pixel processing 12/12/14 Grafica 2014 2 Rasterizzazione/scan connversion

Dettagli

Processo di rendering

Processo di rendering Processo di rendering Trasformazioni di vista Trasformazioni di vista Il processo di visione in tre dimensioni Le trasformazioni di proiezione 2 Rendering nello spazio 2D Il processo di rendering (visualizzazione)

Dettagli

Il campionamento. La digitalizzazione. Teoria e pratica. La rappresentazione digitale delle immagini. La rappresentazione digitale delle immagini

Il campionamento. La digitalizzazione. Teoria e pratica. La rappresentazione digitale delle immagini. La rappresentazione digitale delle immagini ACQUISIZIONE ED ELABORAZIONE DELLE IMMAGINI Teoria e pratica La digitalizzazione La digitalizzazione di oggetti legati a fenomeni di tipo analogico, avviene attraverso due parametri fondamentali: Il numero

Dettagli

Proiezioni Grafica 3d

Proiezioni Grafica 3d Proiezioni Grafica 3d Giancarlo RINALDO rinaldo@dipmat.unime.it Dipartimento di Matematica Università di Messina ProiezioniGrafica 3d p. 1 Introduzione Il processo di visualizzazione in 3D è intrinsecamente

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Grafica al Calcolatore Fotorealismo - 1. Introduzione

Grafica al Calcolatore Fotorealismo - 1. Introduzione Fotorealismo Dove si elecano trucchi sagaci ed effetti speciali che servono ad aumentare con poca spesa il fotorealismo. Introduzione Environment map Light map Ombre geometriche Trasparenza Multi-pass

Dettagli

Interazione luce - materia

Interazione luce - materia Interazione luce - materia 1 Modelli di illuminazione Il modello di illuminazione descrive l interazione tra la luce e gli oggetti della scena Descrive i fattori che determinano il colore di un punto della

Dettagli

Modelli per i materiali

Modelli per i materiali Texture mapping 1 Modelli per i materiali Il realismo visivo può essere ottenuto mediante i modelli di illuminazione e dei materiali Per modellare i materiali si possono utilizzare delle immagini dette

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Introduzione al 3D con Autocad

Introduzione al 3D con Autocad 2 Introduzione al 3D con Autocad Coso di CAD B condotto da Daniela Sidari a.a. 2012/2013 19.02.2013 Modellazione geometrica 3D wireframe superfici solidi Si distinguono tre tecniche principali di modellazione:

Dettagli

Luci/Ombre. YAFARAY motore di rendering Open Source. Federico Frittelli aka fredfrittella. SUTURA-studio di progettazione.

Luci/Ombre. YAFARAY motore di rendering Open Source. Federico Frittelli aka fredfrittella. SUTURA-studio di progettazione. Luci/Ombre YAFARAY motore di rendering Open Source Federico Frittelli aka fredfrittella SUTURA-studio di progettazione LinuxDay, 2010 fredfrittella (SUTURA-studio di progettazione) Luci/Ombre 23 Ottobre

Dettagli

VRay Map: VRayEdgesTex

VRay Map: VRayEdgesTex VRay Map: VRayEdgesTex INTRODUZIONE Uno dei classici impieghi della VRayEdgeTex consiste nella simulazione dell effetto filo di ferro, effetto simile a quello generato tramite l attivazione dell opzione

Dettagli

1.1 Modello di un Processo di Rendering. Gestore delle Geometrie (Ricostruzione delle Geoemtrie e Clipping)

1.1 Modello di un Processo di Rendering. Gestore delle Geometrie (Ricostruzione delle Geoemtrie e Clipping) Capitolo 1 Esercizi sulla Pipeline di Rendering 1.1 Modello di un Processo di Rendering Componenti dell Architettura di Rendering: Processore Bus di Comunicazione Scheda Grafica Moduli della Pipeline di

Dettagli

Pro e contro delle RNA

Pro e contro delle RNA Pro e contro delle RNA Pro: - flessibilità: le RNA sono approssimatori universali; - aggiornabilità sequenziale: la stima dei pesi della rete può essere aggiornata man mano che arriva nuova informazione;

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

Le ombre in OpenGl. Daniele Varin LS Ing. Informatica Corso di Elementi di Grafica Digitale http://varindaniele.altervista.org

Le ombre in OpenGl. Daniele Varin LS Ing. Informatica Corso di Elementi di Grafica Digitale http://varindaniele.altervista.org Le ombre in OpenGl Daniele Varin LS Ing. Informatica Corso di Elementi di Grafica Digitale http://varindaniele.altervista.org Punto di partenza In OpenGl le luci non proiettano ombre 2 Perché si introducono

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

Corso di Visione Artificiale. Stereopsi. Samuel Rota Bulò

Corso di Visione Artificiale. Stereopsi. Samuel Rota Bulò Corso di Visione Artificiale Stereopsi Samuel Rota Bulò Introduzione La stereopsi è il processo di inferenza della struttura 3D da una coppia di immagini di una stessa scena catturate da posizioni diverse.

Dettagli

Rappresentazione di oggetti 3D

Rappresentazione di oggetti 3D Rappresentazione di oggetti 3D 1 Modellazione geometrica La modellazione geometrica riguarda le tecniche di rappresentazione di curve e superfici Surface modeling Rappresentazione della superficie di un

Dettagli

Informatica Grafica. Prof. Massimiliano Dellisanti Fabiano Vilardi. (2a parte) a.a. 2011/2012

Informatica Grafica. Prof. Massimiliano Dellisanti Fabiano Vilardi. (2a parte) a.a. 2011/2012 Informatica Grafica (2a parte) a.a. 2011/2012 Prof. Massimiliano Dellisanti Fabiano Vilardi 1 Grafica 3D Con Grafica 3D si indicano quelle tecniche informatiche finalizzate alla descrizione (e rappresentazione

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S Teoria delle code Sistemi stazionari: M/M/1 M/M/1/K M/M/S Fabio Giammarinaro 04/03/2008 Sommario INTRODUZIONE... 3 Formule generali di e... 3 Leggi di Little... 3 Cosa cerchiamo... 3 Legame tra N e le

Dettagli

Capitolo V : Il colore nelle immagini digitali

Capitolo V : Il colore nelle immagini digitali Capitolo V : Il colore nelle immagini digitali Lavorare con il colore nelle immagini digitali L uso dei colori nella visione computerizzata e nella computer grafica implica l incorrere in determinate problematiche

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Soluzione di equazioni quadratiche

Soluzione di equazioni quadratiche Soluzione di equazioni quadratiche Soluzione sulla Retta Algebrica Inseriamo sulla Retta Algebrica le seguenti espressioni polinomiali x e x 3 e cerchiamo di individuare i valori di x per i quali i punti

Dettagli

Spline Nurbs. IUAV Disegno Digitale. Camillo Trevisan

Spline Nurbs. IUAV Disegno Digitale. Camillo Trevisan Spline Nurbs IUAV Disegno Digitale Camillo Trevisan Spline e Nurbs Negli anni 70 e 80 del secolo scorso nelle aziende si è iniziata a sentire l esigenza di concentrare in un unica rappresentazione gestita

Dettagli

Domande a scelta multipla 1

Domande a scelta multipla 1 Domande a scelta multipla Domande a scelta multipla 1 Rispondete alle domande seguenti, scegliendo tra le alternative proposte. Cercate di consultare i suggerimenti solo in caso di difficoltà. Dopo l elenco

Dettagli

r.berardi NOTE E SCHEDE OPERATIVE PER APPRENDERE LE PROIEZIONI ORTOGONALI

r.berardi NOTE E SCHEDE OPERATIVE PER APPRENDERE LE PROIEZIONI ORTOGONALI r.berardi NOTE E SCHEDE OPERATIVE PER APPRENDERE LE PROIEZIONI ORTOGONALI 1. Proiezioni Assonometriche e ortogonali 2. Teoria delle proiezioni ortogonali Pag. 1 Pag. 2. 3. SCHEDE OPERATIVE SULLE PROIEZIONI

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

Nuovi oggetti grafici per la Visualizzazione del Tracker

Nuovi oggetti grafici per la Visualizzazione del Tracker Chapter 4 Nuovi oggetti grafici per la Visualizzazione del Tracker In questo capitolo illustrerò i nuovi oggetti grafici che ho sviluppato ed implementato nel software di visualizzazione di CMS. Prima

Dettagli

Lunghezza ocale. Donato Di Bello

Lunghezza ocale. Donato Di Bello F Lunghezza ocale Donato Di Bello Cinepresa, telecamera, macchina fotografica: tre strumenti tecnologici che utilizziamo per registrare la realtà intorno a noi o per trasformare in immagini la nostra fantasia.

Dettagli

Corso di Visione Artificiale. Immagini digitali. Samuel Rota Bulò

Corso di Visione Artificiale. Immagini digitali. Samuel Rota Bulò Corso di Visione Artificiale Immagini digitali Samuel Rota Bulò Immagini digitali Un immagine viene generata dalla combinazione di una sorgente di energia e la riflessione o assorbimento di energia da

Dettagli

Open Source 3D Engine. OpenGL Rendering System. Il Framework

Open Source 3D Engine. OpenGL Rendering System. Il Framework Open Source 3D Engine OpenGL Rendering System Il Framework I moderni mezzi di programmazione, consentono a noi sviluppatori di utilizzare librerie avanzate e testate che si prestano eccellentemente allo

Dettagli

Corrispondenze e funzioni

Corrispondenze e funzioni Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei

Dettagli

Plate Locator Riconoscimento Automatico di Targhe

Plate Locator Riconoscimento Automatico di Targhe Progetto per Laboratorio di Informatica 3 - Rimotti Daniele, Santinelli Gabriele Plate Locator Riconoscimento Automatico di Targhe Il programma plate_locator.m prende come input: l immagine della targa

Dettagli

Computer Graphics. v 1. Rasterizer: lines (segmenti) la rasterizzazione from vertex to pixels. Rasterizzazione: lines (segmenti)

Computer Graphics. v 1. Rasterizer: lines (segmenti) la rasterizzazione from vertex to pixels. Rasterizzazione: lines (segmenti) Computer Graphics Università dell Insubria Corso di Laurea in Informatica la rasterizzazione from vertex to pixels Rasterizer: lines (segmenti) Vertici (punti in R 3 ) computazioni per vertice Z Vertici

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Tecniche di mappatura

Tecniche di mappatura Tecniche di mappatura Dove si discute l utile tecnica di texture mapping che consente di aggiungere dettagli alle superfici senza gravare sulla geometria. Introduzione Texture mapping Bump mapping Grafica

Dettagli

BDX 3D-EDITOR (autore: Marco Bedulli) Scopo del software. Caratteristiche fondamentali. Linguaggi utilizzati. Navigazione 3D

BDX 3D-EDITOR (autore: Marco Bedulli) Scopo del software. Caratteristiche fondamentali. Linguaggi utilizzati. Navigazione 3D BDX 3D-EDITOR (autore: Marco Bedulli) Scopo del software BDX 3D Editor è un programma che permette di navigare ed editare texture in un qualsiasi modello 3D.E compatibile con i software in grado di esportare

Dettagli

Misure di base su una carta. Calcoli di distanze

Misure di base su una carta. Calcoli di distanze Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle

Dettagli

Le immagini digitali. Le immagini digitali. Caterina Balletti. Caterina Balletti. Immagini grafiche. Trattamento di immagini digitali.

Le immagini digitali. Le immagini digitali. Caterina Balletti. Caterina Balletti. Immagini grafiche. Trattamento di immagini digitali. 1 Le immagini digitali Le immagini digitali Università IUAV di venezia Trattamento di immagini digitali immagini grafiche immagini raster immagini vettoriali acquisizione trattamento geometrico trattamento

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

SISTEMI DI NUMERAZIONE E CODICI

SISTEMI DI NUMERAZIONE E CODICI SISTEMI DI NUMERAZIONE E CODICI Il Sistema di Numerazione Decimale Il sistema decimale o sistema di numerazione a base dieci usa dieci cifre, dette cifre decimali, da O a 9. Il sistema decimale è un sistema

Dettagli

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D)

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D) ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI () Una immagine (digitale) permette di percepire solo una rappresentazione 2D del mondo La visione 3D si pone lo scopo di percepire il mondo per come è in 3 dimensioni

Dettagli

Librerie digitali. Video. Gestione di video. Caratteristiche dei video. Video. Metadati associati ai video. Metadati associati ai video

Librerie digitali. Video. Gestione di video. Caratteristiche dei video. Video. Metadati associati ai video. Metadati associati ai video Video Librerie digitali Gestione di video Ogni filmato è composto da più parti Video Audio Gestito come visto in precedenza Trascrizione del testo, identificazione di informazioni di interesse Testo Utile

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

Fig. 2. Proiezioni ortogonali di un parallelepipedo su piani esterni alla figura

Fig. 2. Proiezioni ortogonali di un parallelepipedo su piani esterni alla figura 3. LE PROIEZIONI ORTOGONALI Le proiezioni ortogonali sono originate dallo scopo di proiettare su un piano (il foglio della rappresentazione) un oggetto posto nello spazio, che conservi le stesse caratteristiche

Dettagli

Gestione Rapporti (Calcolo Aree)

Gestione Rapporti (Calcolo Aree) Gestione Rapporti (Calcolo Aree) L interfaccia dello strumento generale «Gestione Rapporti»...3 Accedere all interfaccia (toolbar)...3 Comandi associati alle icone della toolbar...4 La finestra di dialogo

Dettagli

La Visione Artificiale. La vis ione delle macchine La vis ione umana Acquis izione di immag ine

La Visione Artificiale. La vis ione delle macchine La vis ione umana Acquis izione di immag ine La Visione Artificiale La vis ione delle macchine La vis ione umana Acquis izione di immag ine Copyright Alcune slide sono tratte dal testo: Digital Image Processing Materiale didattico relativo si trova

Dettagli

4. Proiezioni del piano e dello spazio

4. Proiezioni del piano e dello spazio 4. Proiezioni del piano e dello spazio La visualizzazione di oggetti tridimensionali richiede di ottenere una vista piana dell'oggetto. Questo avviene mediante una sequenza di operazioni. Innanzitutto,

Dettagli

Si sa che la via più breve tra due punti è la linea retta. Ma vi siete mai chiesti, Qual è la via più breve tra tre punti? o tra quattro punti?

Si sa che la via più breve tra due punti è la linea retta. Ma vi siete mai chiesti, Qual è la via più breve tra tre punti? o tra quattro punti? Dov'è Moriart? Cerchiamo la via più breve con Mathcad Potete determinare la distanza più breve da tre punti e trovare Moriart? Si sa che la via più breve tra due punti è la linea retta. Ma vi siete mai

Dettagli

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile Elementi di ottica L ottica si occupa dello studio dei percorsi dei raggi luminosi e dei fenomeni legati alla propagazione della luce in generale. Lo studio dell ottica nella fisica moderna si basa sul

Dettagli

Applicazioni 3D avanzate

Applicazioni 3D avanzate Azienda Ospedaliera Card. G. Panico Applicazioni 3D avanzate VR e segmentazione delle articolazioni: campi applicativi Indice Applicazioni 3D avanzate Articolazioni e grandi macchine 1. Definizioni 2.

Dettagli

Come costruire una presentazione. PowerPoint 1. ! PowerPoint permette la realizzazione di presentazioni video ipertestuali, animate e multimediali

Come costruire una presentazione. PowerPoint 1. ! PowerPoint permette la realizzazione di presentazioni video ipertestuali, animate e multimediali PowerPoint Come costruire una presentazione PowerPoint 1 Introduzione! PowerPoint è uno degli strumenti presenti nella suite Office di Microsoft! PowerPoint permette la realizzazione di presentazioni video

Dettagli

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette: FASCI DI RETTE DEFINIZIONE: Si chiama fascio di rette parallele o fascio improprio [erroneamente data la somiglianza effettiva con un fascio!] un insieme di rette che hanno tutte lo stesso coefficiente

Dettagli

Dovremmo a questo punto incominciare a vedere la suddivisione della nostra superficie.

Dovremmo a questo punto incominciare a vedere la suddivisione della nostra superficie. Vediamo ancora come lavorare sulle superfici attraverso la loro parametrizzazione, e suddivisione progressiva. Alcune volte in Grasshopper ci sono diversi modi per fare le stesse cose. Abbiamo visto il

Dettagli

Introduzione alla Computer Graphics

Introduzione alla Computer Graphics Introduzione alla Computer Graphics Informatica Grafica CdLS a ciclo unico in Ingegneria Edile-Architettura a.a. 2008/09 Computer Graphics e Image Processing Image processing Insieme di teorie ed algoritmi

Dettagli

Esempi di algoritmi. Lezione III

Esempi di algoritmi. Lezione III Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni

Dettagli

Introduzione Computer Graphics

Introduzione Computer Graphics Knowledge Aided Engineering Manufacturing and Related Technologies Dipartimento di Ingegneria Industriale Università di Parma Introduzione Computer Graphics Cosa e la computer graphics Computer Graphics

Dettagli

Capitolo 11. Il disegno in 3D

Capitolo 11. Il disegno in 3D Capitolo 11 Il disegno in 3D o 11.1 Uso delle coordinate nello spazio o 11.2 Creazione di oggetti in 3D o 11.3 Uso dei piani di disegno in 3D (UCS) o 11.4 Creazione delle finestre di vista o 11.5 Definizione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

Le texture. Informatica Grafica I. Le texture. Le texture. Le texture. Le texture. Le texture

Le texture. Informatica Grafica I. Le texture. Le texture. Le texture. Le texture. Le texture Informatica Grafica I Per rendere realistici gli oggetti modellati occorre definire accuratamente l'aspetto delle loro superfici. Il modo piu' semplice consiste nel sovrapporre immagini alle superfici.

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2011-2012 Lezione 6 Indice 1 Il metodo bootstrap 2 Esercitazione 3 Interpolazione

Dettagli

LA GRAFICA E LA GEOMETRIA OPERATIVA

LA GRAFICA E LA GEOMETRIA OPERATIVA LA GRAFICA E LA GEOMETRIA OPERATIVA La geometria operativa, contrariamente a quella descrittiva basata sulle regole per la rappresentazione delle forme geometriche, prende in considerazione lo spazio racchiuso

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

PointCloud 7.0 Anno 2011

PointCloud 7.0 Anno 2011 PointCloud 7.0 Anno 2011 Compatibilità con AutoCAD 2007-2012 ed AutoCAD 2007-2012 Supporto del formato nativo delle nuvole di punti di AutoCAD (PCG) e miglioramento delle performance riguardo la velocità

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Ottimizzazione Multi Obiettivo

Ottimizzazione Multi Obiettivo Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo I problemi affrontati fino ad ora erano caratterizzati da una unica (e ben definita) funzione obiettivo. I problemi di ottimizzazione reali

Dettagli

Capitolo 3. L applicazione Java Diagrammi ER. 3.1 La finestra iniziale, il menu e la barra pulsanti

Capitolo 3. L applicazione Java Diagrammi ER. 3.1 La finestra iniziale, il menu e la barra pulsanti Capitolo 3 L applicazione Java Diagrammi ER Dopo le fasi di analisi, progettazione ed implementazione il software è stato compilato ed ora è pronto all uso; in questo capitolo mostreremo passo passo tutta

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria sede di Vicenza A.A. 2007/08

UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria sede di Vicenza A.A. 2007/08 UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria sede di Vicenza Corso di Disegno Tecnico Industriale per il Corso di Laurea triennale in Ingegneria Meccanica e in Ingegneria Meccatronica Tolleranze

Dettagli

Trasformazioni 2D. Grande differenza rispetto alla grafica raster!

Trasformazioni 2D. Grande differenza rispetto alla grafica raster! Trasformazioni 2D Il grande vantaggio della grafica vettoriale è che le immagini vettoriali descrivono entità matematiche È immediato manipolare matematicamente tali entità In quasi tutte le manipolazioni

Dettagli

Registratori di Cassa

Registratori di Cassa modulo Registratori di Cassa Interfacciamento con Registratore di Cassa RCH Nucleo@light GDO BREVE GUIDA ( su logiche di funzionamento e modalità d uso ) www.impresa24.ilsole24ore.com 1 Sommario Introduzione...

Dettagli

Messa in tavola di un modello tridimensionale

Messa in tavola di un modello tridimensionale 18 Messa in tavola di un modello tridimensionale Creare viste d insieme e di dettaglio, con sezioni e particolari di un modello tridimensionale. Introduzione In questo capitolo vedremo come documentare

Dettagli

Capitolo 2. Operazione di limite

Capitolo 2. Operazione di limite Capitolo 2 Operazione di ite In questo capitolo vogliamo occuparci dell operazione di ite, strumento indispensabile per scoprire molte proprietà delle funzioni. D ora in avanti riguarderemo i domini A

Dettagli

Sistemi Informativi Territoriali. Map Algebra

Sistemi Informativi Territoriali. Map Algebra Paolo Mogorovich Sistemi Informativi Territoriali Appunti dalle lezioni Map Algebra Cod.735 - Vers.E57 1 Definizione di Map Algebra 2 Operatori locali 3 Operatori zonali 4 Operatori focali 5 Operatori

Dettagli

risulta (x) = 1 se x < 0.

risulta (x) = 1 se x < 0. Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente

Dettagli

Guida all uso di Java Diagrammi ER

Guida all uso di Java Diagrammi ER Guida all uso di Java Diagrammi ER Ver. 1.1 Alessandro Ballini 16/5/2004 Questa guida ha lo scopo di mostrare gli aspetti fondamentali dell utilizzo dell applicazione Java Diagrammi ER. Inizieremo con

Dettagli

Lezione 9: Cambio di base

Lezione 9: Cambio di base Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire

Dettagli

Il rendering fotorealistico. Conferimento ad oggetti 3D di un aspetto particolarmente fotorealistico

Il rendering fotorealistico. Conferimento ad oggetti 3D di un aspetto particolarmente fotorealistico Il rendering fotorealistico Conferimento ad oggetti 3D di un aspetto particolarmente fotorealistico Rendering fotorealistico Gli oggetti sottoposti a rendering devono essere facce 3D o essere tridimensionali.

Dettagli

www.andreatorinesi.it

www.andreatorinesi.it La lunghezza focale Lunghezza focale Si definisce lunghezza focale la distanza tra il centro ottico dell'obiettivo (a infinito ) e il piano su cui si forma l'immagine (nel caso del digitale, il sensore).

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

Informatica grafica e Multimedialità. 4 Immagini grafiche

Informatica grafica e Multimedialità. 4 Immagini grafiche Immagini raster e vettoriali Le immagini grafiche si distinguono in due classi differenti: immagini raster e immagini vettoriali. Le immagini raster, dette anche pittoriche o pixel-oriented, dividono l

Dettagli

Strumenti informatici 2.1 - Realizzare grafici e tabelle con Excel e SPSS

Strumenti informatici 2.1 - Realizzare grafici e tabelle con Excel e SPSS Strumenti informatici 2.1 - Realizzare grafici e tabelle con Excel e SPSS Realizzare un grafico con Excel è molto semplice, e permette tutta una serie di varianti. Il primo passo consiste nell organizzare

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Terzo Appello del corso di Geometria e Algebra II Parte - Docente F. Flamini, Roma, 7/09/2007 SVOLGIMENTO COMPITO III APPELLO

Dettagli

la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali.

la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali. 1 y 4 CAMPO DI ESISTENZA. Poiché data è una irrazionale con indice di radice pari, il cui radicando è un polinomio, essa risulta definita solo per i valori della per i quali il radicando è positivo, ovvero

Dettagli

Logaritmi ed esponenziali

Logaritmi ed esponenziali Logaritmi ed esponenziali definizioni, proprietà ITIS Feltrinelli anno scolastico 2007-2008 A cosa servono i logaritmi I logaritmi rendono possibile trasformare prodotti in somme, quozienti in differenze,

Dettagli

Modellare un mouse - AutoCAD 2015 Si utilizzerà la visualizzazione Modellazione 3D

Modellare un mouse - AutoCAD 2015 Si utilizzerà la visualizzazione Modellazione 3D Modellare un mouse - AutoCAD 2015 Si utilizzerà la visualizzazione Modellazione 3D Per prima cosa attivare il pannello MESH e cambiare le impostazioni delle mesh elementari inserendo come valori: Lunghezza

Dettagli

LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry

LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry La costruzione di figure geometriche al computer con

Dettagli

SPECIFICHE E LIMITI DI EXCEL

SPECIFICHE E LIMITI DI EXCEL SPECIFICHE E LIMITI DI EXCEL Un "FOGLIO DI CALCOLO" è un oggetto di un programma per computer costituito da un insieme di celle, organizzate in righe e colonne, atte a memorizzare dati ed effettuare operazioni

Dettagli

Demo. La palette allinea. La palette Anteprima conversione trasparenza. Adobe Illustrator CS2

Demo. La palette allinea. La palette Anteprima conversione trasparenza. Adobe Illustrator CS2 Le Palette (parte prima) Come abbiamo accennato le Palette permettono di controllare e modificare il vostro lavoro. Le potete spostare e nascondere come spiegato nella prima lezione. Cominciamo a vedere

Dettagli

Le query di raggruppamento

Le query di raggruppamento Le query di raggruppamento Le "Query di raggruppamento" sono delle Query di selezione che fanno uso delle "Funzioni di aggregazione" come la Somma, il Conteggio, il Massimo, il Minimo o la Media, per visualizzare

Dettagli

Manuale Operativo per l utilizzo della piattaforma E-Learning@AQ. Versione 1.1

Manuale Operativo per l utilizzo della piattaforma E-Learning@AQ. Versione 1.1 Manuale Operativo per l utilizzo della piattaforma E-Learning@AQ Versione 1.1 Autore Antonio Barbieri, antonio.barbieri@gmail.com Data inizio compilazione 11 maggio 2009 Data revisione 14 maggio 2009 Sommario

Dettagli

Tutorial 17. Come creare un cancello personalizzato e inserirlo in libreria

Tutorial 17. Come creare un cancello personalizzato e inserirlo in libreria Tutorial 17. Come creare un cancello personalizzato e inserirlo in libreria Con questo tutorial imparerete velocemente come creare dei cancelli o, più genericamente, porte personalizzate e inserirle in

Dettagli

ColorSplitter. La separazione automatica dei colori di Colibri.. Perché ColorSplitter? Come opera ColorSplitter?

ColorSplitter. La separazione automatica dei colori di Colibri.. Perché ColorSplitter? Come opera ColorSplitter? ColorSplitter La separazione automatica dei colori di Colibri.. ColorSplitter è una nuova funzionalità aggiunta a Colibri, che permette di elaborare un immagine trasformandola in una separata in canali

Dettagli