Esempi di sintesi per tentativi con il luogo delle radici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esempi di sintesi per tentativi con il luogo delle radici"

Transcript

1 Esempi di sintesi per tentativi con il luogo delle radici Esempio 1 È dato il sistema di controllo: u + G(s) P(s) y in cui: P(s) = s(s ) Utilizzando la sintesi per tentativi con il luogo delle radici, progettare G(s) in modo che: il sistema a ciclo chiuso sia di tipo 1, con ẽ 1.1; tutti i poli a ciclo chiuso abbiano parte reale minore od uguale a. Soluzione La funzione di trasferimento in catena aperta F(s) = G(s)P(s) deve avere un polo in s =, affinché il sistema a ciclo chiuso sia di tipo 1. Dal momento che il processo P(s) ha un polo in s =, non è necessario introdurre alcun polo in s = nella funzione di trasferimento del controllore di primo tentativo Ĝ(s) Ĝ(s) = K. Si indichi con K P il guadagno del processo: dalla (1) si ha K P = 5. Si indichino inoltre con K G il guadagno del controllore e con K F = K G K P il guadagno di F(s). Dalla specifica su ẽ 1 si ha: ẽ K F = 1 K G K P.1 K G. () (1) Riassumendo, il controllore di primo tentativo Ĝ(s) è dato da: Ĝ(s) = K () Ricordando che nella sintesi si utilizza nella stragrande maggioranza dei casi il luogo positivo, si ha: K, dal momento che la costante K coincide a questo punto con il guadagno K G. Attenzione!!! Ciò non sarà vero in generale nel seguito della sintesi. Al controllore Ĝ(s) corrisponde: ˆF(s) = Ĝ(s)P(s) = K s(s ) = K s(s ) in cui K = K è il coefficiente di guadagno di ˆF(s), da non confondere col guadagno. Si ha ovviamente il vincolo: K. Il luogo delle radici associato a ˆF(s) (luogo delle radici iniziale) è il seguente: (4)

2 Luogo delle radici iniziale 8 poli a ciclo aperto asintoti 6 Asse Immaginario Asse reale Fig.1 Luogo delle radici di ˆF(s) (luogo iniziale) Si noti che il centro degli asintoti s è stato calcolato con la formula: s = n p j j=1 n m in cui n è il grado del denominatore di ˆF(s) (numero di poli di ˆF(s): n = ), m è il grado del numeratore di ˆF(s) (numero di zeri di ˆF(s): m = ), pj è il polo j-esimo di ˆF(s) (p1 =, p = ), z j è lo zero j-esimo di ˆF(s) ( ˆF(s) non ha zeri). È evidente che le specifiche a ciclo chiuso richieste non sono soddisfatte (i due rami del luogo si trovano sempre all esterno della regione desiderata per ogni valore di K le due radici a ciclo chiuso hanno parte reale maggiore di per ogni valore di K). Si osservi che: il polo p non è cancellabile, perché non è all interno della regione desiderata (è addirittura instabile); è sempre consigliabile, compatibilmente con la fisica realizzabilità del controllore, fare in modo che l eccesso poli-zeri della funzione di trasferimento a ciclo aperto, cioè n m, sia minimo, in modo che le direzioni degli asintoti, che dipendono appunto da n m, risultino più favorevoli in termini di appartenenza dei rami del luogo alla regione desiderata per K +. Ciò significa che il minimo eccesso poli-zeri ottenibile è quello del processo P(s), dal momento che il grado del numeratore del controllore G(s) deve essere minore od uguale al grado del denominatore di G(s): la scelta più favorevole quindi è una funzione G(s) propria ma non strettamente, cioè una funzione G(s) che ha il grado del numeratore uguale al grado del denominatore (cioè una funzione G(s) che ha un egual numero di zeri e poli). Tenendo conto delle due osservazioni precedenti, una scelta conveniente per G(s) la seguente: m j=1 z j (5)

3 Si noti che: G(s) = Ĝ(s)s z s p = K(s z) s p (6) il polo in p e lo zero in z devono essere scelti in modo che il centro degli asintoti si porti all interno della regione desiderata, col vincolo che lo zero z deve appartenere alla regione desiderata: se così non fosse, infatti, poiché per K + un ramo converge sullo zero, si avrebbe un ramo del luogo delle radici che per valori sufficientemente elevati di K esce dalla regione desiderata; K non coincide in questo caso con il guadagno K G del controllore, che è invece dato da: K G = zk (7) p a cui corrisponde il seguente vincolo derivante dalla condizione () su ẽ 1 : z K p K p z (8) Al controllore G(s) corrisponde: F(s) = G(s)P(s) = K(s z) s p s(s ) = K(s z) s(s )(s p) = K (s z) s(s )(s p) (9) Si ha ovviamente il vincolo: K p. Il centro degli asintoti associato a F(s) z è : s = + p z () e deve essere tale che: s <. Si può scegliere ad esempio s = 5, ottenendo: + p z = 5 (11) Poiché lo zero introdotto nel controllore deve appartenere alla regione desiderata, una scelta possibile è la seguente: z = 4, p = 16. Riassumendo: G(s) = K(s + 4) s + 16 (1) F(s) = K 8 (1) K(s + 4) s(s )(s + 16) = K (s + 4) s(s )(s + 16) (14) K 8 (15) Il luogo delle radici associato a F(s) (luogo delle radici finale) è il seguente:

4 Luogo delle radici finale 15 zeri a ciclo aperto poli a ciclo aperto asintoti Asse immaginario Asse reale Fig. Luogo delle radici di F(s) (luogo finale) dal quale si deduce che, a partire da un certo valore di K in poi, tutti i rami del luogo entrano nella regione desiderata. Ci si aspetta perciò di trovare un intervallo di valori di K, corrispondente al soddisfacimento delle specifiche, del tipo: K K. Per calcolare K, si consideri l equazione caratteristica del luogo, cioè il denominatore della funzione di trasferimento in catena chiusa: e si effettui la sostituzione s = s. Si ottiene: s(s )(s + 16) + K (s + 4) =, (16) s + 5s + (K 89)s + K = (17) Si costruisca la tabella di Routh associata all equazione (17): ) 1 K 89 ) 5 K K 64 1) 5 ) K Applicando il criterio di Routh, si può concludere che le specifiche a ciclo chiuso sono soddisfatte per 4K 64 K 16 K 16. Quest ultima condizione va confrontata con la (1): { K 16 K 8 K 8 Si può infine porre: e la sintesi è conclusa. (s + 4) G(s) = 8 s + 16 (18) 4

5 Esempi di sintesi per tentativi con il luogo delle radici Esempio È dato il sistema di controllo: u + G(s) P(s) y in cui: P(s) = (s + ) s(s + 1)(s + 6) Utilizzando la sintesi per tentativi con il luogo delle radici, progettare G(s) in modo che: il sistema a ciclo chiuso sia di tipo 1, con ẽ 1.5; tutti i poli a ciclo chiuso abbiano parte reale minore od uguale a. Soluzione La funzione di trasferimento in catena aperta F(s) = G(s)P(s) deve avere un polo in s =, affinché il sistema a ciclo chiuso sia di tipo 1. Dal momento che il processo P(s) ha un polo in s =, non è necessario introdurre alcun polo in s = nella funzione di trasferimento del controllore di primo tentativo Ĝ(s) Ĝ(s) = K. Si indichi con K P il guadagno del processo: dalla (1) si ha K P =. Si indichino inoltre con K G il guadagno del controllore e con K F = K G K P il guadagno di F(s). Dalla specifica su ẽ 1 si ha: ẽ K F = 1 K G K P.5 K G. () (1) Riassumendo, il controllore di primo tentativo Ĝ(s) è dato da: Ĝ(s) = K () Ricordando che nella sintesi si utilizza nella stragrande maggioranza dei casi il luogo positivo, si ha: K, dal momento che la costante K coincide a questo punto con il guadagno K G. Attenzione!!! Ciò non sarà vero in generale nel seguito della sintesi. Al controllore Ĝ(s) corrisponde: ˆF(s) = Ĝ(s)P(s) = K(s + ) s(s + 1)(s + 6) = K (s + ) s(s + 1)(s + 6) in cui K = K è il coefficiente di guadagno di ˆF(s), da non confondere col guadagno. Si ha ovviamente il vincolo: K 4. Il luogo delle radici associato a ˆF(s) (luogo delle radici iniziale) è il seguente: (4)

6 luogo delle radici iniziale 15 zeri in catena aperta poli in catena aperta asintoti Asse Immaginario Asse Reale Fig.1 Luogo delle radici di ˆF(s) (luogo iniziale) Si noti che il centro degli asintoti s è stato calcolato con la formula: s = n p j j=1 n m in cui n è il grado del denominatore di ˆF(s) (numero di poli di ˆF(s): n = ), m è il grado del numeratore di ˆF(s) (numero di zeri di ˆF(s): m = 1), pj è il polo j-esimo di ˆF(s) (p1 =, p = 1, p = 6), z j è lo zero j-esimo di ˆF(s) (z1 = ). È evidente che le specifiche a ciclo chiuso richieste non sono soddisfatte (due rami del luogo si trovano sempre all esterno della regione desiderata per ogni valore di K due radici a ciclo chiuso hanno parte reale maggiore di per ogni valore di K). Si osservi che: m j=1 il polo p è all interno della regione desiderata; è sempre consigliabile, compatibilmente con la fisica realizzabilità del controllore, fare in modo che l eccesso poli-zeri della funzione di trasferimento a ciclo aperto, cioè n m, sia minimo, in modo che le direzioni degli asintoti, che dipendono appunto da n m, risultino più favorevoli in termini di appartenenza dei rami del luogo alla regione desiderata per K +. Ciò significa che il minimo eccesso poli-zeri ottenibile è quello del processo P(s), dal momento che il grado del numeratore del controllore G(s) deve essere minore od uguale al grado del denominatore di G(s): la scelta più favorevole quindi è una funzione G(s) propria ma non strettamente, cioè una funzione G(s) che ha il grado del numeratore uguale al grado del denominatore (cioè una funzione G(s) che ha un egual numero di zeri e poli). Tenendo conto delle due osservazioni precedenti, una scelta conveniente per G(s) la seguente: z j (5) G(s) = Ĝ(s)s + 6 K(s + 6) = s p s p (6)

7 Si noti che: il polo in p deve essere scelto in modo che il centro degli asintoti si porti all interno della regione desiderata; il termine (s+6) al numeratore è stato introdotto nel controllore per cancellare il termine (s + 6) presente nel denominatore del processo e semplificare così i calcoli: in questo modo infatti il grado del denominatore di F(s), cioè n, è uguale a tre, e quindi ci sono tre poli a ciclo chiuso, ossia tre rami nel luogo delle radici finale; se si fosse scelto di non effettuare la cancellazione inserendo al numeratore di G(s) il termine (s z), con z 6, sarebbe risultato n = 4. Comunque anche in quest ultimo caso sia p che z andrebbero scelti in modo da spostare il centro degli asintoti all interno della regione desiderata, col vincolo che lo zero z deve appartenere alla regione desiderata: se così non fosse, infatti, poiché per K + un ramo converge sullo zero, si avrebbe un ramo del luogo delle radici che per valori sufficientemente elevati di K esce dalla regione desiderata; K non coincide in questo caso con il guadagno K G del controllore, che è invece dato da: K G = 6K (7) p a cui corrisponde il seguente vincolo derivante dalla condizione () su ẽ 1 : 6K p Al controllore G(s) dato dalla (6), corrisponde: F(s) = G(s)P(s) = K(s + 6) s p K p 6 (s + ) s(s + 1)(s + 6) (8) = K(s + ) s(s + 1)(s p) = K (s + ) s(s + 1)(s p) (9) Si ha ovviamente il vincolo: K 4 p. Il centro degli asintoti associato a F(s) 6 è : s = 1 + p + () e deve essere tale che: s <. Si può scegliere ad esempio s = 4, ottenendo: s = 1 + p + = 4 p = (11) Riassumendo: K(s + 6) G(s) = s + (1) K (1) K(s + ) F(s) = s(s + 1)(s + ) = K (s + ) s(s + 1)(s + ) (14) K (15) Il luogo delle radici associato a F(s) (luogo delle radici finale) è il seguente:

8 luogo delle radici finale 15 zeri in catena aperta poli in catena aperta asintoti Asse Immaginario Asse Reale Fig. Luogo delle radici di F(s) (luogo finale) dal quale si deduce che, a partire da un certo valore di K in poi, tutti i rami del luogo entrano nella regione desiderata. Ci si aspetta perciò di trovare un intervallo di valori di K, corrispondente al soddisfacimento delle specifiche, del tipo: K K. Per calcolare K, si consideri l equazione caratteristica del luogo, cioè il denominatore della funzione di trasferimento in catena chiusa: e si effettui la sostituzione s = s. Si ottiene: s(s + 1)(s + ) + K (s + ) =, (16) s + 5s + (K )s + K + 16 = (17) Si costruisca la tabella di Routh associata all equazione (17): ) 1 K ) 5 K K 16 1) 5 ) K + 16 Applicando il criterio di Routh, si può concludere che le specifiche a ciclo chiuso sono soddisfatte per 4K 16 K 1.5 K Quest ultima condizione va confrontata con la (1): Si può infine porre: e la sintesi è conclusa. { K K K G(s) = (s + 6) s + (18) 4

9 Esempi di sintesi per tentativi con il luogo delle radici Esempio È dato il sistema di controllo: d u + + G(s) P(s) y in cui: P(s) = s + 6 s (s + s + 6), d(t) = δ 1(t) Utilizzando la sintesi per tentativi con il luogo delle radici, progettare G(s) in modo che: il sistema sia astatico rispetto al disturbo d(t); tutti i poli a ciclo chiuso abbiano parte reale minore od uguale a. Soluzione Per la condizione di astatismo, è necessario introdurre nel controllore un polo in s =. Il controllore di primo tentativo è perciò: a cui corrisponde: Ĝ(s) = K s ˆF(s) = Ĝ(s)P(s) = K(s + 6) s (s + s + 6) Il luogo delle radici associato a ˆF(s) è il seguente: Root Locus Imaginary Axis Real Axis

10 È evidente che le specifiche a ciclo chiuso richieste non sono soddisfatte (il sistema a ciclo chiuso è instabile). Si noti che: i poli complessi coniugati si trovano all interno della regione desiderata; è sempre consigliabile, compatibilmente con la fisica realizzabilità del controllore, fare in modo che l eccesso poli-zeri della funzione di trasferimento a ciclo aperto sia minimo, in modo da avere una situazione migliore per quel che riguarda gli asintoti del luogo delle radici. Considerato ciò, si può scegliere: a cui corrisponde: Il luogo delle radici di F(s) è: G(s) = K(s + s + 6) s(s + 16) F(s) = G(s)P(s) = K(s + 6) s (s + 16) 4 Root Locus Imaginary Axis Real Axis da cui si evince che, a partire da un certo valore di K in poi, tutti i rami del luogo entrano nella regione di specifica. Ci si aspetta perciò di trovare un intervallo di valori di K, corrispondente al soddisfacimento delle specifiche, del tipo: K > K. Per calcolare K, si consideri l equazione caratteristica del luogo: si effettui la sostituzione: s = s : s (s + 16) + K(s + 6) =, s + 7s + (K 69)s + K = e si applichi a quest ultima equazione il criterio di Routh:

11 ) 1 K 69 ) 7 K K 6 1) 7 ) K Dalla tabella di Routh si può concludere che le specifiche a ciclo chiuso sono soddisfatte per K 15. Quindi si può porre: G(s) = 15(s + s + 6) s(s + 16)

Il luogo delle radici

Il luogo delle radici Il luogo delle radici Andrea Munafò Università di Pisa April 14, 2012 Luogo delle radici (Evans 1948) Il luogo delle radici è uno strumento grafico per l analisi e la sintesi di sistemi di controllo a

Dettagli

Graficazione qualitativa del luogo delle radici

Graficazione qualitativa del luogo delle radici .. 5.3 1 Graficazione qualitativa del luogo delle radici Esempio. Si faccia riferimento al seguente sistema retroazionato: d(t) G(s) r(t) e(t) K 1(s 1) s(s + 1)(s + 8s + 5) y(t) Per una graficazione qualitativa

Dettagli

Corso di Controlli Automatici Proff. M. D. Di Benedetto e S. Di Gennaro

Corso di Controlli Automatici Proff. M. D. Di Benedetto e S. Di Gennaro Corso di Controlli Automatici Proff. M. D. Di Benedetto e S. Di Gennaro LUOGO DELLE RADICI Ing. Francesco Smarra & Ing. Alessandro Borri Richiami di teoria Generalità Sia dato un sistema dinamico a controreazione

Dettagli

Graficazione qualitativa del luogo delle radici

Graficazione qualitativa del luogo delle radici .. 1.1 1 Graficazione qualitativa del luogo delle radici Esempio. Si faccia riferimento al seguente sistema retroazionato: d(t) G(s) r(t) e(t) K 1(s 1) s(s+1)(s +8s+5) y(t) Per una graficazione qualitativa

Dettagli

Sintesi diretta. (Complementi di Controlli Automatici: prof. Giuseppe Fusco)

Sintesi diretta. (Complementi di Controlli Automatici: prof. Giuseppe Fusco) Sintesi diretta (Complementi di Controlli Automatici: prof. Giuseppe Fusco) La tecnica di progetto denominata sintesi diretta ha come obiettivo il progetto di un controllore C(s) il quale assicuri che

Dettagli

Stabilità e retroazione

Stabilità e retroazione 0.0. 4.1 1 iagramma Stabilità e retroazione Stabilità dei sistemi dinamici lineari: Un sistema G(s) è asintoticamente stabile se tutti i suoi poli sono a parte reale negativa. Un sistema G(s) è stabile

Dettagli

Luogo delle radici. Si consideri il seguente schema in retroazione:

Luogo delle radici. Si consideri il seguente schema in retroazione: 0.0. 5.1 1 Luogo delle radici Si consideri il seguente schema in retroazione: La funzione di trasferimento G 0 (s) del sistema retroazionato è: G 0 (s) = G(s)H(s) 1+G(s)H(s) I poli del sistema retroazionato

Dettagli

Luogo delle Radici. Università degli Studi di Firenze. L. Chisci, P. Falugi

Luogo delle Radici. Università degli Studi di Firenze. L. Chisci, P. Falugi Università degli Studi di Firenze Luogo delle Radici L. Chisci, P. Falugi Corso di Fondamenti di Automatica per CdL Ing. dell Informazione e Ing. dell Ambiente e delle Risorse Anno Accademico 005/06 Fondamenti

Dettagli

Esercizi sul luogo delle radici

Esercizi sul luogo delle radici FA Esercizi 6, 1 Esercizi sul luogo delle radici Analisi di prestazioni a ciclo chiuso, progetto di regolatori facendo uso del luogo delle radici. Analisi di prestazioni FA Esercizi 6, 2 Consideriamo il

Dettagli

Regolazione e Controllo dei Sistemi Meccanici

Regolazione e Controllo dei Sistemi Meccanici Regolazione e Controllo dei Sistemi Meccanici 3--24 Numero di matricola =ρ =ɛ =β Si consideri il razzo vettore riportato in fig.. Figure : Vettore ARIANE-V. La dinamica planare semplificata e linearizzata

Dettagli

Soluzione degli esercizi del Capitolo 13

Soluzione degli esercizi del Capitolo 13 Soluzione degli esercizi del Capitolo 3 Soluzione dell Esercizio 3. Il luogo diretto è costituito da due rami posizionati sull asse reale. Uno di essi si sposta dal polo in a e l altro percorre il segmento

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 crediti) Prova scritta 16 luglio 2014 SOLUZIONE ESERCIZIO 1. Dato il sistema con: si determinino gli autovalori della forma minima. Per determinare la forma minima

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale LUOGO DELLE RADICI

CONTROLLI AUTOMATICI Ingegneria Gestionale  LUOGO DELLE RADICI CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm LUOGO DELLE RADICI Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/27 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

un sistema è stabile se, in conseguenza di una sollecitazione esterna limitata, la sua risposta (variazione dell uscita) è limitata (Bounded Input

un sistema è stabile se, in conseguenza di una sollecitazione esterna limitata, la sua risposta (variazione dell uscita) è limitata (Bounded Input un sistema è stabile se, in conseguenza di una sollecitazione esterna limitata, la sua risposta (variazione dell uscita) è limitata (Bounded Input Bounded Output) Un sistema si dice asintoticamente stabile

Dettagli

Controlli automatici

Controlli automatici Controlli automatici Luogo delle radici Prof. Paolo Rocco (paolo.rocco@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Introduzione Il luogo delle radici è un

Dettagli

Progetto del controllore

Progetto del controllore Parte 10, 1 - Problema di progetto Parte 10, 2 Progetto del controllore Il caso dei sistemi LTI a tempo continuo Determinare in modo che il sistema soddisfi alcuni requisiti - Principali requisiti e diagrammi

Dettagli

SOLUZIONE COMMENTATA TEST DI AUTOVALUTAZIONE

SOLUZIONE COMMENTATA TEST DI AUTOVALUTAZIONE SLUZINE CMMENTATA TEST DI AUTVALUTAZINE CRS DI MATEMATICA PER L ECNMIA III MDUL ) Individuare il campo di esistenza della seguente funzione polinomiale: = + 5+ 6 6, 6 Poiché la funzione data è polinomiale,

Dettagli

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) =

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) = Fondamenti di Controlli Automatici - A.A. 211/12 3 luglio 212 - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni

Dettagli

09. Luogo delle Radici

09. Luogo delle Radici Controlli Automatici 09. Luogo delle Radici Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e ggio Emilia E-mail: {nome.cognome}@unimore.it

Dettagli

5. EQUAZIONI e DISEQUAZIONI

5. EQUAZIONI e DISEQUAZIONI 5. EQUAZIONI e DISEQUAZIONI 1. Per ognuna delle affermazioni seguenti, indicare se e vera o falsa, motivando la risposta (a) L equazione di primo grado (1 2)x = 2 ha soluzione x = 2(1+ 2). V F (b) La disequazione

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 212/13 9 novembre 212 - Domande Teoriche Nome: Nr. Mat. Firma: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che si

Dettagli

Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s

Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s .. 3.2 1 Nyquist: Diagrammi asintotici di Bode: esercizi Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): 6(s2 +.8s+4) s(s 3)(1+ s 2 )2. Pendenza iniziale: -2 db/dec. Pulsazioni critiche:

Dettagli

Analisi dei sistemi in retroazione

Analisi dei sistemi in retroazione Facoltà di Ingegneria di Reggio Emilia Corso di Controlli Automatici Corsi di laurea in Ingegneria Meccatronica ed in Ingegneria della Gestione Industriale Ing. Alessandro Macchelli e-mail: amacchelli@deis.unibo.it

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE Ing. Federica

Dettagli

Fondamenti di Controlli Automatici

Fondamenti di Controlli Automatici Cognome: Nome: N. Matr.: Fondamenti di Controlli Automatici Ingegneria Meccanica Compito del 11 settembre 215 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte che si ritengono

Dettagli

Il luogo delle radici. G(s) - H(s)

Il luogo delle radici. G(s) - H(s) Il luogo delle radici r + e D(s) u - H(s) G(s) Esempio: controllo proporzionale: u(t)=ke(t) Strumenti per analizzare la stabilita` del sistema a catena chiusa al variare di K (criteri di Routh e Nyquist)

Dettagli

Soluzione nel dominio del tempo

Soluzione nel dominio del tempo Soluzione nel dominio del tempo Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Antitrasformate CA 2017 2018 Prof. Laura Giarré 1 Risposta nel dominio trasformato Ricordo che

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitï 1 degli Studi ROMA TRE

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitï 1 degli Studi ROMA TRE Brevi appunti di Fondamenti di Automatica 1 prof. Dipartimento di Informatica e Automazione Universitï 1 degli Studi ROMA TRE 2 ROMA TRE UNIVERSITÀ DEGLI STUDI 4 marzo 215 1 Rev..2 INDICE Indice 1 Esercizi

Dettagli

Controlli Automatici L-A - Esercitazione

Controlli Automatici L-A - Esercitazione Controlli Automatici L-A - Esercitazione 1. Si consideri lo schema a blocchi di figura. d(t) K d x(t) e(t) R(s) u(t) G(s) y(t) - R(s) = K τs + 1 s + 1, G(s) = K d = 2 s(s 2 + 6s + ), a) Considerando gli

Dettagli

Diagrammi di Nyquist o polari

Diagrammi di Nyquist o polari 0.0. 3.3 1 qualitativa Ampiezza Diagrammi di Nyquist o polari Esempio di diagramma polare senza poli nell origine: 40 20 G(s) = 100(1+ s 50 ) (1+ s 10 )2 (1+ s 20 )(1+ s 100 ) Imag 0 20 15 20 30 80 0.1

Dettagli

Compito di Fondamenti di Automatica - 13 luglio 2006 Versione A Esercizio 1A. Dato lo schema seguente (operazionali ideali)

Compito di Fondamenti di Automatica - 13 luglio 2006 Versione A Esercizio 1A. Dato lo schema seguente (operazionali ideali) Compito di Fondamenti di Automatica - 1 luglio 2006 Versione A Esercizio 1A. Dato lo schema seguente (operazionali ideali) C v in 2 vout é richiesto di calcolare la funzione di trasferimento G(s) tra v

Dettagli

Controlli Automatici 2 22/06/05 Compito a

Controlli Automatici 2 22/06/05 Compito a Controlli Automatici 2 22/6/5 Compito a a) Si consideri il diagramma di Bode (modulo e fase) di G(s) in figura 1. Si 5 Bode Diagram 5 15 45 9 135 18 3 2 1 1 2 3 Frequency (rad/sec) Figure 1: Diagrammi

Dettagli

Esercitazione 06: Sistemi interconnessi e funzioni di trasferimento

Esercitazione 06: Sistemi interconnessi e funzioni di trasferimento Esercitazione 06: Sistemi interconnessi e funzioni di trasferimento 20 aprile 2016 (3h) Alessandro Vittorio Papadopoulos alessandro.papadopoulos@polimi.it Fondamenti di Automatica Prof. M. Farina 1 Schema

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta

Dettagli

# EFFETTO DEL GUADAGNO A CICLO APERTO SULLA STABILITA #

# EFFETTO DEL GUADAGNO A CICLO APERTO SULLA STABILITA # # EETTO DEL GUADAGNO A CICLO APERTO SULLA STABILITA # Consideriamo il sistema di controllo a controreazione con la seguente. di T. a ciclo aperto: 5 ( = (1 + (1 + (1 ; Il diagramma di Nyquist della (jω)

Dettagli

FORMULARIO DI CONTROLLI AUTOMATICI

FORMULARIO DI CONTROLLI AUTOMATICI FORMULARIO DI CONTROLLI AUTOMATICI Sistema x (t) = A x (t) + B u (t) y (t) = C x (t) + D u (t) Funzione di trasferimento G (s) = y (s) / u (s) = C (si A) -1 B + D Sistema Serie G (s) = i G i (s) prodotto

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile; 1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema

Dettagli

Sintesi in Frequenza:

Sintesi in Frequenza: Fondamenti di Automatica Sintesi in Frequenza: Sintesi per tentativi L. Lanari Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio Ruberti Università di Roma La Sapienza Versione provvisoria

Dettagli

ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA

ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA Ing. Federica Grossi Tel.

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Controlli Automatici - A.A. 1/11 Ingegneria Gestionale 13 Settembre 11 - Esercizi Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

Esercizio riassuntivo di sintesi in frequenza

Esercizio riassuntivo di sintesi in frequenza Esercizio riassuntivo di sintesi in frequenza Sia dato il sistema di controllo a retroazione unitaria di Fig. 1 r G(s) P (s) + + d + y Figura 1: Il sistema di controllo assegnato in cui il processo ha

Dettagli

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione. Margine di guadagno e margine di fase

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione. Margine di guadagno e margine di fase ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Schema generale di controllo in retroazione Requisiti di un sistema di controllo Stabilità in condizioni nominali Margine di guadagno e margine di fase

Dettagli

Regolazione e Controllo dei Sistemi Meccanici 21 Luglio 2003

Regolazione e Controllo dei Sistemi Meccanici 21 Luglio 2003 Regolazione e Controllo dei Sistemi Meccanici 2 Luglio 23 Numero di matricola = α = β = γ = δ Si consideri un sistema termodinamico costituito da un frigorifero posto all interno di un ambiente a temperatura

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Ingegneria e Tecnologie dei sistemi di Controllo

Ingegneria e Tecnologie dei sistemi di Controllo INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica PROGETTO MEDIANTE IL LUOGO DELLE RADICI Ing. Tel. 05 535 email: secchi.cristian@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

Stabilità BIBO Risposta impulsiva (vedi Marro par. 2.3, vedi Vitelli-Petternella par. III.1, vedi es. in LabView) Poli sull asse immaginario

Stabilità BIBO Risposta impulsiva (vedi Marro par. 2.3, vedi Vitelli-Petternella par. III.1, vedi es. in LabView) Poli sull asse immaginario Stabilità BIBO Risposta impulsiva (vedi Marro par..3, vedi Vitelli-Petternella par. III., vedi es. in LabView) Poli sull asse immaginario Criteri per la stabilità (vedi Marro Par. 4. a 4., vedi Vitelli-Petternella

Dettagli

STABILITÀ DEI SISTEMI Metodo di Bode e Nyquist

STABILITÀ DEI SISTEMI Metodo di Bode e Nyquist I.T.I. Modesto PANETTI B A R I Via Re David, 186-70125 BARI 080-542.54.12 - Fax 080-542.64.32 Internet http://www.itispanetti.it email : BATF05000C@istruzione.it INTRODUZIONE STABILITÀ DEI SISTEMI Metodo

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Fila A 1. Determina l insieme delle soluzioni reali per ciascuna delle seguenti equazioni:

Fila A 1. Determina l insieme delle soluzioni reali per ciascuna delle seguenti equazioni: LS Fila A Determina l insieme delle soluzioni reali per ciascuna delle seguenti equazioni: NB Ciascun procedimento risolutivo si deve concludere con la frase L'insieme delle soluzioni è a) Trasformando

Dettagli

rapporto tra ingresso e uscita all equilibrio.

rapporto tra ingresso e uscita all equilibrio. Sistemi Dinamici: Induttore: Condensatore: Massa: Oscillatore meccanico: Pendolo: Serbatoio cilindrico: Serbatoio cilindrico con valvola d efflusso: Funzione di Trasferimento: Stabilità del sistema: (N.B.

Dettagli

Stabilità dei sistemi in retroazione. Diagrammi polari e teorema di Nyquist

Stabilità dei sistemi in retroazione. Diagrammi polari e teorema di Nyquist Stabilità dei sistemi in retroazione Diagrammi polari e teorema di Nyquist STABILITA DEI SISTEMI IN RETROAZIONE Vogliamo studiare la stabilità del sistema in retroazione a partire della conoscenza di L(s

Dettagli

Lezione 5 01 Febbraio. 5.1 Richiami di controlli automatici

Lezione 5 01 Febbraio. 5.1 Richiami di controlli automatici LabCont1: Laboratorio di Controlli 1 II Trim. 2007 Lezione 5 01 Febbraio Docente: Luca Schenato Stesori: Lago Paolo, Maso GIulia, Segato Giordano 5.1 Richiami di controlli automatici 5.1.1 Progettazione

Dettagli

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Schema generale di controllo in retroazione Requisiti di un sistema di controllo Stabilità in condizioni nominali Margine di guadagno e margine di fase

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

t (sec) t (sec)

t (sec) t (sec) Nome e Cognome: Anno di frequenza: Esame di Regolazione e Controllo dei Sistemi Meccanici { {{ Numero di matricola { { =, =, =, =, A (pt. ) Per descrivere la dinamica delle sospensioni di un veicolo che

Dettagli

1 Fattorizzazione di polinomi

1 Fattorizzazione di polinomi 1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0. 2.2 Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiede l antitrasformazione di una funzione razionale fratta

Dettagli

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione a PROVA PARZIAE DI FONDAMENTI DI AUTOMATIA A.A. 24/25 9 novembre 24 Esercizio on riferimento alla funzione di trasferimento G(s) = 7s2 + 36s + 48 (s + 3)(s + 4) 2 Domanda.. Indicare i valori del guadagno,

Dettagli

Funzione di trasferimento

Funzione di trasferimento Funzione ditrasferimento - 1 Corso di Laurea in Ingegneria Meccanica Funzione di trasferimento DEIS-Università di Bologna Tel. 51 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Definizione

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm CRITERIO DI ROUTH-HURWITZ

Dettagli

Esercizi sul luogo delle radici

Esercizi sul luogo delle radici Esercizi sul luogo delle radici Gli esercizi che seguono faranno riferimento allo schema a blocchi riportato di seguito. r k G(s) y Esercizio. Sia data la seguente funzione di trasferimento s(s+). Verificare

Dettagli

Rappresentazione grafica delle funzioni di trasferimento: diagramma di Nyquist

Rappresentazione grafica delle funzioni di trasferimento: diagramma di Nyquist Capitolo 8 Rappresentazione grafica delle funzioni di trasferimento: diagramma di Nyquist 8. Proprietà generali del diagramma di Nyquist Il diagramma di Nyquist (o polare ) della funzione W (jω) è definito

Dettagli

Controlli Automatici Compito del - Esercizi

Controlli Automatici Compito del - Esercizi Compito del - Esercizi. Data la funzione di trasferimento G(s) = s (s +),sicalcoli a) La risposta impulsiva g(t); b) L equazione differenziale associata al sistema G(s); c) Si commenti la stabilità del

Dettagli

Corso di laurea in Informatica. Regolatori. Marta Capiluppi Dipartimento di Informatica Università di Verona

Corso di laurea in Informatica. Regolatori. Marta Capiluppi Dipartimento di Informatica Università di Verona Corso di laurea in Informatica Regolatori Marta Capiluppi marta.capiluppi@univr.it Dipartimento di Informatica Università di Verona Scelta delle specifiche 1. Picco di risonanza e massima sovraelongazione

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

LUOGO DELLE RADICI. G(s) H(s) 1+KG(s)H(s)=0

LUOGO DELLE RADICI. G(s) H(s) 1+KG(s)H(s)=0 LUOGO DELLE RADICI Il progetto accurato di un sistema di controllo richiede la conoscenza dei poli del sistema in anello chiuso e dell influenza che su di essi hanno le variazioni dei più importanti parametri

Dettagli

Slide del corso di. Controllo digitale

Slide del corso di. Controllo digitale Slide del corso di Controllo digitale Corso di Laurea in Ingegneria Informatica e dell Informazione Università di Siena, Dip. Ing. dell Informazione e Sc. Matematiche Parte VI Sintesi diretta a tempo discreto

Dettagli

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0 MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO Sistema lineare stazionario a tempo continuo in equazioni di stato ẋ(t) y(t) = Ax(t) + Bu(t) = Cx(t) + Du(t) x() = x Risposta completa (risposta libera e

Dettagli

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi Forma implicita Forma esplicita a x b y c 0 y m x q a c y x b b Esempio

Dettagli

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( )

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( ) Esercizio proposto N 1 Verificare che ESERCIZI SUI LIMITI DI FUNZIONE Si ricordi la definizione di ite finito in un punto: Pertanto, applicando la definizione al caso concreto, si ha: o, ciò che è lo stesso:

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Elaborazione di segnali e immagini: modulo segnali

Elaborazione di segnali e immagini: modulo segnali Elaborazione di segnali e immagini: modulo segnali 30 gennaio 014 Esame parziale con soluzioni Esercizio 1 Dato un sistema LTI descritto dalla seguente equazione alle differenze: v(k) + v(k 1) 10v(k )

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

Esercizi di Calcolo e Biostatistica con soluzioni

Esercizi di Calcolo e Biostatistica con soluzioni 1 Esercizi di Calcolo e Biostatistica con soluzioni 1. Date le funzioni f 1 (x) = x/4 1, f 2 (x) = 3 x, f 3 (x) = x 4 2x, scrivere a parole le operazioni che, dato x in modo opportuno, permettono di calcolare

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Lezione 4 Andrea Susa PROPRIETÀ GENERALI DISEQUAZIONI 1 Proprietà disuguaglianze Siano,,, allora valgono le seguenti proprietà se

Dettagli

Lezione 8. Stabilità dei sistemi di controllo

Lezione 8. Stabilità dei sistemi di controllo Lezione 8 Stabilità dei sistemi di controllo Poli di un sistema di controllo Riprendiamo lo schema a blocchi di un sistema di controllo in retroazione: d y + + + y L(s) + + n Fig. 1 : Sistema di controllo

Dettagli

La stabilità di un sistema non dipende dal segnale d ingresso, ma dipende solo dalla f.d.t. del sistema. Stabilità BIBO (Bound Input Bounded Output)

La stabilità di un sistema non dipende dal segnale d ingresso, ma dipende solo dalla f.d.t. del sistema. Stabilità BIBO (Bound Input Bounded Output) 8.1 GENERALITÀ La stabilità di un sistema non dipende dal segnale d ingresso, ma dipende solo dalla f.d.t. del sistema f.d.t. = U(s) E(s) Stabilità BIBO (Bound Input Bounded Output) Un sistema lineare

Dettagli

Diagrammi polari, di Nyquist e di Nichols

Diagrammi polari, di Nyquist e di Nichols Diagrammi polari, di Nyquist e di Nichols Diagramma polare La risposta in frequenza si analizza tramite G(s) s jω G(jω) M( ω) e G(jω) jϕ( ω) e ω < Un altra rappresentazione grafica di G(jω) si ottiene

Dettagli

Controlli Automatici: Raccolta di Prove Scritte con Soluzione. Elena Zattoni

Controlli Automatici: Raccolta di Prove Scritte con Soluzione. Elena Zattoni Controlli Automatici: Raccolta di Prove Scritte con Soluzione Elena Zattoni Premessa Questo volumetto è rivolto agli Studenti dei corsi di Controlli Automatici e raccoglie una serie di prove scritte con

Dettagli

Soluzione degli esercizi del Capitolo 9

Soluzione degli esercizi del Capitolo 9 Soluzione degli esercizi del Capitolo 9 Soluzione dell Esercizio 9.1 Il diagramma polare associato alla funzione L(s) = µ/s, µ > comprende l intero semiasse reale negativo. È quindi immediato concludere

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stabilità dei sistemi di controllo in retroazione Risposta in frequenza Rappresentazione grafica naturale Rappresentazione grafica modificata di fdt elementari Esempio 7 Politecnico di Torino 1 Risposta

Dettagli

ANALISI ARMONICA FUNZIONE DI RISPOSTA ARMONICA

ANALISI ARMONICA FUNZIONE DI RISPOSTA ARMONICA ANALISI ARMONICA I procedimenti per la soluzione delle equazioni differenziali lineari e tempoinvarianti, basati in particolare sulla trasformazione di Laplace, hanno come obiettivo la deduzione della

Dettagli

Controlli automatici e controllo dei processi Docente: Davide M. Raimondo Prova scritta: 01/03/2013 Durata: 3h. Cognome Nome Matricola

Controlli automatici e controllo dei processi Docente: Davide M. Raimondo Prova scritta: 01/03/2013 Durata: 3h. Cognome Nome Matricola Controlli automatici e controllo dei processi Docente: Davide M. Raimondo Prova scritta: 01/03/2013 Durata: 3h Cognome Nome Matricola Esercizio 3: Si determini, motivando brevemente, la corrispondenza

Dettagli

Metodi di Iterazione Funzionale

Metodi di Iterazione Funzionale Appunti di Matematica Computazionale Lezione Metodi di Iterazione Funzionale Il problema di calcolare il valore per cui F() = si può sempre trasformare in quello di trovare il punto fisso di una funzione

Dettagli

Si considerino i sistemi elettrici RL rappresentati nella seguente figura: L u 1 (t)

Si considerino i sistemi elettrici RL rappresentati nella seguente figura: L u 1 (t) Esercizio Circuiti R in serie). Si considerino i sistemi elettrici R rappresentati nella seguente figura: + + + + u t) R y t) u t) R y t) Si consideri inoltre il sistema ottenuto collegando in serie i

Dettagli

Prova scritta di Controlli Automatici e sistemi elettrici lineari

Prova scritta di Controlli Automatici e sistemi elettrici lineari Prova scritta di Controlli Automatici e sistemi elettrici lineari Corso di Laurea in Ingegneria Meccatronica, AA 202 203 9 Settembre 203 Domande a Risposta Multipla Per ognuna delle seguenti domande a

Dettagli

Strutture realizzative per sistemi tempo-discreto: soluzione dei problemi proposti

Strutture realizzative per sistemi tempo-discreto: soluzione dei problemi proposti 4 Strutture realizzative per sistemi tempo-discreto: soluzione dei problemi proposti P-4.1: Dopo aver diviso per 0.5, cioè il coefficiente di, l equazione alle differenze finite data, si ottengono le strutture

Dettagli

CONTROLLO NEL DOMINIO DELLA FREQUENZA

CONTROLLO NEL DOMINIO DELLA FREQUENZA SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html Relazione tra specifiche e proprietà di L(s) Nell analisi dei sistemi in retroazione

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema

CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO. Sistema in condizioni di equilibrio a t = 0. d(t) = 0. u(t) = 0. y(t) = 0. Sistema CONCETTO DI STABILITÀ NEI SISTEMI DI CONTROLLO Sistema in condizioni di equilibrio a t = 0. d(t) = 0 u(t) = 0 Sistema y(t) = 0 Tipi di perturbazione. Perturbazione di durata limitata: u(t) = 0, t > T u

Dettagli

3 Equazioni e disequazioni.

3 Equazioni e disequazioni. 3 Equazioni e disequazioni. 3. Equazioni. Una equazione algebrica è un uguaglianza tra espressioni letterali soddisfatta per alcuni valori attribuiti alle lettere che vi compaiono. Tali valori sono detti

Dettagli

Regolazione e Controllo dei Sistemi Meccanici 17 Luglio 2002

Regolazione e Controllo dei Sistemi Meccanici 17 Luglio 2002 Regolazione e Controllo dei Sistemi Meccanici 17 Luglio Numero di matricola = α 1 = β 1 = γ 1 = δ 1 Le equazioni dinamiche del sistema a pendolo inverso rappresentato in figura sono le seguenti: { (M +

Dettagli

Controlli Automatici (Parte B) Ingegneria Meccanica e Ingegneria del Veicolo

Controlli Automatici (Parte B) Ingegneria Meccanica e Ingegneria del Veicolo Cognome: Nome: N. Matr.: Controlli Automatici Ho superato la Parte A in data (mese/anno) Controlli Automatici (Parte B) Ingegneria Meccanica e Ingegneria del Veicolo Compito del 2 dicembre 27 - Quiz Per

Dettagli

Disequazioni - ulteriori esercizi proposti 1

Disequazioni - ulteriori esercizi proposti 1 Disequazioni - ulteriori esercizi proposti Trovare le soluzioni delle seguenti disequazioni o sistemi di disequazioni:. 5 4 >. 4. < 4. 4 9 5. 9 > 6. > 7. < 8. 5 4 9. > > 4. < 4. < > 9 4 Non esitate a comunicarmi

Dettagli