4. Proprietà degli stimatori

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "4. Proprietà degli stimatori"

Transcript

1 Uiversità degli Studi di Basilicata Facoltà di Ecoomia Corso di Laurea i Ecoomia Aziedale - a.a. 0/03 lezioi di statistica del 0, e 3 giugo 03 - di Massimo Cristallo - 4. Proprietà degli stimatori Si è visto che quado soo igoti i parametri di ua data popolazioe oggetto di idagie, è ecessario stimare i medesimi parametri mediate teciche di stima basate su formule, dette stimatori, che utilizzao le iformazioi campioarie. Riportiamo alcue delle proprietà desiderabili per lo stimatore del parametro θ. a) Correttezza Si dice che è uo stimatore corretto del parametro θ se risulta soddisfatta la seguete codizioe: E (Θ)=θ ˆ cioè se la media di tutte le possibili stime, calcolate co lo stimatore, effettuate co i possibili campioi di dimesioe, risulta uguale al corrispodete parametro della popolazioe. Se risulta ivece E (Θ) ˆ θ, allora si dice che lo stimatore è distorto e la quatità B(Θ) ˆ = E (Θˆ ) θ idica la distorsioe dello stimatore. b) Efficieza Ua misura della precisioe dello stimatore è forita i geerale dall errore quadratico medio (MSE), così defiito: MSE( Θ) ˆ = E ( Θˆ -θ ) Tuttavia se lo stimatore è corretto, l errore quadratico medio può porsi ella seguete forma: [ Θˆ - E (Θ) ˆ ] Var( Θˆ ) MSE(Θ) ˆ = E = cioè coicide co la variaza campioaria dello stimatore. Teuto coto che solitamete si preferiscoo stimatori corretti, o comuque stimatori co ua distorsioe trascurabile all aumetare dell ampiezza campioaria, i realtà per misurare la precisioe di uo stimatore si fa riferimeto alla sua variaza campioaria piuttosto che all errore quadratico medio.

2 I geerale, dati due possibili stimatori corretti Θˆ e Θˆ del parametro θ, si cosidera più efficiete o migliore quello che ha la miore variaza campioaria. Se esiste, ivece, uo stimatore corretto del parametro θ, la cui variaza campioaria è * miore o uguale a quella di u qualsiasi altro stimatore corretto Θˆ del medesimo parametro θ, allora si dice che è il più efficiete. I altri termii, l efficieza di si ha quado la dispersioe delle stime effettuate co lo stimatore, itoro al valore del parametro igoto della popolazioe di riferimeto, al variare dei possibili campioi di dimesioe, è miore rispetto a quella otteibile co altri stimatori. I letteratura è stato idividuato il valore miimo di Var( Θ ˆ ) solo sotto certe codizioi di regolarità di u problema di stima, che i questa sede o si riportao. Tale valore miimo è forito dal teorema di Cramer-Rao ed è pari al rapporto: o i alterativa: E l f ( x, θ ) θ l f ( x, θ ) E θ quidi se valgoo le codizioi di regolarità ed esiste uo stimatore la cui variaza campioaria coicide da ua delle due predette espressioi, ove f ( x, θ ) è la fuzioe di desità di probabilità, allora lo stimatore idividuato è il più efficiete. c) Cosisteza L aalisi del comportameto dello stimatore al crescere della dimesioe del campioe assume otevole importaza. Ifatti, se si verifica che all aumetare di cresce la probabilità che il parametro stimato coicida co quello della popolazioe di riferimeto, si dice che lo stimatore è cosistete (o coerete). I formule, scriveremo: lim Pr( ˆ Θ θ < ε ) = ove ˆΘ è il geerico stimatore otteuto co u campioe di dimesioe ed ε è ua quatità piccola e positiva. Esistoo altre proprietà che si desidera siao possedute da uo stimatore, come la sufficieza, che però i questa sede si tralascia.

3 E difficile creare u ordie di importaza delle proprietà degli stimatori. I geerale, si preferisce utilizzare stimatori o distorti, pur sapedo che tale proprietà da sola o basta, soprattutto se o vale la proprietà della cosisteza. U metodo molto utilizzato per la scelta di uo stimatore è ivece il Best Liear Ubiased Estimator (BLUE), che cosiste ella scelta ella classe degli stimatori lieari corretti di θ di quello che preseta la variaza campioaria miima. U criterio a cui si fa spesso ricorso per scegliere uo stimatore è quello aalogico, ovvero si sceglie uo stimatore i base allo stesso tipo di fuzioe utilizzata ella popolazioe. Ad esempio, se si utilizza la media aritmetica campioaria come stimatore aalogico della media aritmetica della popolazioe è semplice verificare che il suo valore atteso coicide co la media igota della popolazioe, cioè che è soddisfatta la proprietà della correttezza. Ipotizzado u campioameto casuale semplice co ripetizioe e cosiderado (co il criterio aalogico) come stimatore della variaza della popolazioe la variaza campioaria s, di seguito riportata: s i = = si dimostra facilmete che il valore atteso di popolazioe: E ( s ( x x) i ) = s o coicide co la variaza igota della σ σ per cui, poedo: ˆ σ = s si ottiee, per le proprietà del valore atteso: ( x x) i i= = E( ˆ σ ) = σ da cui si desume che la gradezza σˆ, ota come variaza corretta campioaria, è uo stimatore corretto di σ e di cosegueza può essere usata el caso di campioameto casuale semplice co ripetizioe per stimare la variaza icogita della popolazioe. Si fa rilevare, tuttavia, che ell ipotesi di dimesioe campioaria elevata, s e σˆ assumoo valori molto vicii, per cui è idifferete l utilizzo dell uo o dell altro. 3

4 5. Stima itervallare Si è parlato elle precedeti lezioi della stima putuale dei parametri igoti di ua data popolazioe. Partedo dallo stimatore putuale e cosiderado la sua variaza è possibile costruire ua stima itervallare, cioè u itervallo di cofideza che cotiee il parametro oggetto d idagie co ua probabilità assegata P = α (detta livello di cofideza o di fiducia), ove α è il livello di sigificatività e forisce il rischio che si corre el cofidare che l itervallo stimato cotega il parametro icogito della popolazioe. Se è ota la forma della distribuzioe campioaria dello stimatore, per idividuare l itervallo di cofideza del parametro igoto θ occorre idividuare i suoi estremi θˆ e θˆ i modo che risulti soddisfatta la seguete codizioe: Pr ( ˆ θ < θ < ˆ θ ) = α Se si fissa il valore di α esistoo ifiti itervalli che soddisfao la precedete codizioe; si dimostra tuttavia che per distribuzioi campioarie simmetriche (ache approssimativamete) l itervallo migliore (cioè quello co l ampiezza miore) è quello cetrato itoro alla stima putuale. E importate osservare a questo puto che la stima mediate itervallo di cofideza è tato migliore quato miore è la sua ampiezza. E evidete, ifatti, che ai fii del problema di stima avrebbe poco seso dire, ad esempio, che la media delle stature (espresse i cm) degli studeti iscritti al corso di laurea i ecoomia aziedale di ua data Uiversità è coteuta ell itervallo [55, 95] co ua probabilità pari a 0, Spieghiamo meglio quato detto al puto precedete. Aumetado il livello di fiducia P = α aumeta l ampiezza dell itervallo e si aulla quasi il rischio di trovare u itervallo che o cotega il valore icogito del parametro della popolazioe. La riduzioe del rischio di commettere ua stima errata paga cioè il prezzo di avere u itervallo così ampio che o dà alcua iformazioe utile. Per le ragioi appea dette, i valori che di solito si attribuiscoo ad α soo 0,05 o 0,0, per cui gli itervalli di cofideza cotegoo il parametro igoto che si vuole stimare co ua probabilità pari rispettivamete a 0,95 e 0,99. Riportiamo di seguito alcui degli itervalli di cofideza della media e della frequeza relativa (proporzioe) della popolazioe, ell ipotesi realistica i cui σ è igoto. a) Itervallo di cofideza per la media µ el caso di gradi campioi (>00) Sfruttado il teorema del limite cetrale, si ha il seguete itervallo: x z( α / ) s,x + z( α / ) s ove i valori z( α / ) della variabile ormale stadardizzata soo tabulati. 4

5 b) Itervallo di cofideza per la media µ el caso di piccoli campioi. Se la variabile X è distribuita secodo ua curva ormale, e o si coosce σ, l itervallo diveta: x t s ( α / ), x + t ( α / ) s ove i valori t ( α / ) della variabile T di Studet soo tabulati. c) Itervallo di cofideza per la proporzioe (o frequeza relativa) p el caso di gradi campioi (>00) pˆ ( pˆ ) pˆ z( α / ), pˆ + z( α / ) pˆ ( pˆ ) ove i valori z( α / ) della variabile ormale stadardizzata soo tabulati Nell ambito della stima itervallare è possibile affrotare ache problemi iversi. Ad esempio, se si fissa l ampiezza dell itervallo (pari alla differeza dei suoi due estremi) ed il valore di α, co semplici passaggi matematici è possibile determiare il valore della dimesioe campioaria, fermo restado che sia oto ache s el caso della media e pˆ el caso della proporzioe. 6. Verifica delle ipotesi co u campioe Nell ambito dell ifereza statistica capita spesso di trovare problemi di verifica delle ipotesi. U ipotesi statistica è ua cogettura sulla forma della distribuzioe di probabilità di ua variabile casuale ovvero sul valore del parametro icogito. Nel primo caso si parla di ipotesi fuzioale, metre el secodo si parla di ipotesi parametrica. Aalizziamo ora le ipotesi parametriche el caso di u campioe. L ipotesi che si vuole sottoporre a verifica, deotata co H 0, è detta ipotesi ulla o di base, metre l ipotesi alterativa è idicata co H. Le ipotesi vegoo solitamete formulate i base ad iformazioi che si possiedoo del feomeo i esame. Esse possoo essere semplici o composte, a secoda che si riferiscao ad u uico valore del parametro o ad u isieme di valori. Es. ipotesi semplice H :θ =θ 0 Es. ipotesi composta H :θ θ 0 5

6 Per effettuare la verifica delle ipotesi si utilizza il test statistico T, cioè ua regola mediate la quale si decide i termii probabilistici, sulla base delle iformazioi campioarie, se respigere o meo l ipotesi H 0. Poedo l ipotesi ulla H 0 :θ = θ0, il test si dice uilaterale se risulta: metre è bilaterale quado si ha: H :θ < θ 0 oppure H :θ > θ0 H :θ θ 0 Si riportao di seguito le fasi da seguire per realizzare ua verifica delle ipotesi: i) idividuazioe della statistica test, cioè di quella fuzioe delle osservazioi campioarie di cui è ota la distribuzioe (campioaria) sotto l ipotesi ulla H 0 ; ii) defiizioe della regola di decisioe, ovvero della partizioe dei valori assuti dalla statistica test i regioe critica o di rifiuto di H 0 ed i regioe di o rifiuto di H 0 ; iii) determiazioe del valore empirico del test, attraverso la sostituzioe dei dati campioari ella statistica test già idividuata; iv) decisioe del test, i cui si verifica se il valore empirico di cui al puto iii) cade o meo ella zoa di rifiuto. Nel primo caso si rifiuta l ipotesi ulla e il test è detto sigificativo, metre el secodo o si rifiuta H 0. Il test ideale è ifatti quello che rifiuta l ipotesi H 0 quado è falsa. Nel test delle ipotesi si possoo commettere due tipi di errori: a) di prima specie, se rifiuto l ipotesi H 0 quado i realtà essa è vera. La probabilità di commettere tale errore si deota co α ; b) di secoda specie, se o rifiuto l ipotesi H 0 quado i realtà essa è falsa. La probabilità di commettere tale errore si deota co β. Sarebbe opportuo ridurre cogiutamete etrambe gli errori α e β, ma purtroppo si dimostra che ciò o è possibile; fissata la dimesioe campioaria tra i due errori esiste ua relazioe iversa, cioè all aumetare dell uo dimiuisce l altro. La riduzioe di etrambi gli errori si potrebbe avere soltato aumetado la dimesioe del campioe. Cosiderato allora che α è riteuto l errore più grave, solitamete la regioe critica o di rifiuto del test viee idividuata fissado il valore di α (che rappreseta il livello di sigificatività del test) e miimizzado l errore β. La probabilità di respigere giustamete l ipotesi ulla H 0 è data da ( β ) ed è chiamata poteza del test. I defiitiva, ua volta stabilite le ipotesi ulla e alterativa, a secoda del tipo di problema, si fissa il valore di α, si sceglie la statistica test appropriata al caso i esame e si 6

7 idividua la regioe critica di dimesioe α i modo da redere miimo β (cioè il test più potete). Riportiamo di seguito alcui problemi di verifica delle ipotesi co le relative statistiche test, ache i questo caso ell ipotesi realistica i cui o si coosceσ. Verifica delle ipotesi della media el caso di gradi campioi (>00) Se il problema è così formulato (test bilaterale): H 0 : µ = µ 0 H :µ µ 0 la statistica test da utilizzare è la ormale stadardizzata : x µ 0 z = s metre la regioe critica, fissato il valore di α, è forita dal seguete isieme: ove si ricorda i valori di ( α ) { z R : z < z( α ) z > z( α ) } z soo tabulati. Si rifiuta l ipotesi ulla H 0 se il valore empirico del test, calcolato co i dati campioari, cade ella sopra idicata regioe critica. Nel caso di test uilaterale, ad esempio: H 0 : µ = µ 0 H :µ > µ 0 la statistica test rimae la stessa, metre la zoa critica diveta: { z R : z > z( α ) } cioè la zoa di rifiuto si cocetra soltato su ua delle due code della distribuzioe. Verifica delle ipotesi della media el caso di piccoli campioi Se il feomeo i esame (cioè la variabile X) si distribuisce secodo ua curva ormale, ma o è oto il valore di σ, la statistica test da utilizzare è la t di Studet co (-) gradi di libertà: 7

8 x µ 0 t = s Se il problema è così formulato (test bilaterale): H 0 : µ = µ 0 H :µ µ 0 la regioe critica, fissato il valore di α, è forita dal seguete isieme: ove i valori di ( ) { t R : t < t ( α ) t t ( ) } > α t α soo tabulati al variare dei gradi di libertà. Ache i questo, ovviamete, si rifiuta l ipotesi ulla H 0 se il valore empirico del test, calcolato co i dati campioari, cade ella regioe critica. Nel caso di test uilaterale, ad esempio: H 0 : µ = µ 0 H :µ > µ 0 la statistica test rimae la stessa, metre la zoa critica diveta: { t R : t > t ( α ) } Verifica delle ipotesi della proporzioe (o frequeza relativa) el caso di gradi campioi (>00) Se il problema è così formulato (test bilaterale): la statistica test da utilizzare è la seguete: H : p = H 0 p 0 : p p 0 z = p 0 pˆ p 0 ( p ) 0 metre la regioe critica, fissato il valore di α, è forita dal seguete isieme: { z R : z < z( α ) z > z( α ) } 8

9 Si rifiuta l ipotesi ulla H 0 se il valore empirico del test, calcolato co i dati campioari, cade ella regioe di rifiuto. Nel caso di test uilaterale, ad esempio: H : p = 0 p 0 H : p < p 0 la statistica test rimae la stessa, metre la zoa critica diveta: { z R : z < z( α ) }. 9

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Stimatori, stima puntuale e intervalli di confidenza Statistica L-33 prof. Pellegrini

Stimatori, stima puntuale e intervalli di confidenza Statistica L-33 prof. Pellegrini Lezioe 3 Stimatori, stima putuale e itervalli di cofideza Statistica L-33 prof. Pellegrii Oggi studiamo le proprietà della stima che ricaviamo da u campioe. Si chiama teoria della stima. La stima statistica

Dettagli

Statistica. Lezione 5

Statistica. Lezione 5 Uiversità degli Studi del Piemote Orietale Corso di Laurea i Ifermieristica Corso itegrato i Scieze della Prevezioe e dei Servizi saitari Statistica Lezioe 5 a.a 2011-2012 Dott.ssa Daiela Ferrate daiela.ferrate@med.uipm.it

Dettagli

STATISTICA INFERENZIALE

STATISTICA INFERENZIALE STATISTICA INFERENZIALE 6 INFERENZA STATISTICA Isieme di metodi che cercao di raggiugere coclusioi sulla popolazioe, sulla base delle iformazioi coteute i u campioe estratto da quella popolazioe. INFERENZA

Dettagli

Argomenti trattati: Stima puntuale e stimatore Proprietà degli stimatori Stima puntuale della media della

Argomenti trattati: Stima puntuale e stimatore Proprietà degli stimatori Stima puntuale della media della 1 La stima putuale Argometi trattati: Stima putuale e stimatore Proprietà degli stimatori Stima putuale della media della popolazioe e sua distribuzioe Stima putuale di ua proporzioe e sua distribuzioe

Dettagli

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno Uiversità degli Studi di Cassio, Ao accademico 004-005 Corso di Statistica, Prof.. uro Esercitazioe del 01/03/005 dott. Claudio Coversao Esercizio 1 Si cosideri il seguete campioe casuale semplice estratto

Dettagli

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1 ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE ESERCIZIO. Si vuole verificare l ipotesi, a livello di sigificatività α, che la media μ di ua variabile aleatoria X abbia u valore fissato μ. Si effettuao

Dettagli

Intervalli di Fiducia

Intervalli di Fiducia di Fiducia Itroduzioe per la media Caso variaza ota per la media Caso variaza o ota per i coefficieti di regressioe per la risposta media i per i coefficieti i di regressioe multilieare - Media aritmetica

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Itervalli di cofideza Prof. Livia De Giovai statistica@dis.uiroma1.it Esercizio 1 La fabbrica A produce matite colorate. Ua prova su 100 matite scelte a caso ha idicato u peso

Dettagli

Costo manutenzione (euro)

Costo manutenzione (euro) Esercitazioe 05 maggio 016 ESERCIZIO 1 Ua società di servizi possiede u parco auto di diverse età. I dirigeti ritegoo che il costo degli iterveti di mautezioe per le auto più vecchie sia geeralmete più

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a. 9 Esame del -6- Statistica ESERCIZIO Relazioi tra Variabili (totale puti: ) Ad ua riuioe del circolo Amati dell acquario, i soci preseti

Dettagli

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z)

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z) Uiversità di Napoli Federico II, DISES, A.a. 215-16, CLEC, Corso di Statistica (L-Z) Corso di laurea i Ecoomia e Commercio (CLEC) Ao accademico 215-16 Corso di Statistica (L-Z) Maria Mario Lezioe: 22 Argometo:

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli Titolo della lezioe Dal campioe alla popolazioe: stima putuale e per itervalli Itroduzioe Itrodurre il cocetto di itervallo di cofideza Stima di parametri per piccoli e gradi campioi Stimare la proporzioe

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

Anemia. Anemia - percentuali

Anemia. Anemia - percentuali 1 emia emoglobia 1-13 Data la distribuzioe dell emoglobia i u gruppo di pazieti maschi sottoposti a trattameto: - Circa u paziete su 3 era fortemete aemico (emogl. meo di 1) - La mediaa era fra 13 e 14

Dettagli

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice Esercitazioe 12 Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () 1 / 15 Outlie 1 () 2 / 15 Outlie 1 2 () 2 / 15 Outlie 1 2 3 () 2 / 15 Outlie 1 2 3 4 () 2 / 15 Outlie 1 2 3 4 5

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96 STATISTICA A K (60 ore Marco Riai mriai@uipr.it http://www.riai.it : stima della percorreza media delle vetture diesel di u certo modello al primo guasto 400 X34.000 Km; s cor 9000 Km Livello di cofideza

Dettagli

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0 TEST STATISTICI I dati campioari possoo essere utilizzati per verificare se ua certa ipotesi su ua caratteristica della popolazioe può essere riteuta verosimile o meo. Co il termie ipotesi statistica si

Dettagli

Appunti di STATISTICA

Appunti di STATISTICA Apputi di STATISTICA! Distribuzioe espoeziale X v.a. cotiua, R X = (0,+ ) Si dice che X ha distribuzioe espoeziale a parametro f X = >0 E (X) = 1/ Var (X) = 1/ e - x x>0 0 altrove (umero reale) se la p.d.f.

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Intervalli di confidenza

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Intervalli di confidenza iovaella@disp.uiroma.it http://www.disp.uiroma.it/users/iovaella Itervalli di cofideza Itroduzioe Note geerali La stima putuale permette di otteere valori per i parametri di ua fuzioe ma i alcui casi può

Dettagli

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a Corso di Statistica Test per differeza tra medie e proporzioi Prof.ssa T. Laureti a.a. -3 Corso di Statistica a.a. -3 DEIM, Uiv.TUSCIA - Prof.ssa Laureti Test basati su campioi idipedeti proveieti da due

Dettagli

Politecnico di Milano - Anno Accademico Statistica Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo

Politecnico di Milano - Anno Accademico Statistica Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Politecico di Milao - Ao Accademico 010-011 Statistica 086449 Docete: Alessadra Guglielmi Esercitatore: Stefao Baraldo Esercitazioe 8 14 Giugo 011 Esercizio 1. Sia X ua popolazioe distribuita secodo ua

Dettagli

Intervalli di confidenza

Intervalli di confidenza Itervalli di cofideza Fracesco Lagoa Itroduzioe Questa dispesa riassume schematicamete i pricipali risultati discussi a lezioe sulla costruzioe di itervalli di cofideza. Itervalli di cofideza per la media

Dettagli

Stimatori corretti, stimatori efficaci e disuguaglianza di Cramer Rao

Stimatori corretti, stimatori efficaci e disuguaglianza di Cramer Rao Stimatori corretti stimatori efficaci e disuguagliaza di Cramer Rao Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche Defiizioe. Sia {X X 2... X } u

Dettagli

Inferenza statistica. Popolazione. Camp. Statistiche campionarie basate sulle osservazioni del campione. Estrazione casuale. Parametro e statistica

Inferenza statistica. Popolazione. Camp. Statistiche campionarie basate sulle osservazioni del campione. Estrazione casuale. Parametro e statistica 6/0/0 Corso di Statistica per l impresa Prof. A. D Agostio Ifereza statistica Per fare ifereza statistica si utilizzao le iformazioi raccolte su u campioe per cooscere parametri icogiti della popolazioe

Dettagli

PROBLEMI DI INFERENZA SU MEDIE

PROBLEMI DI INFERENZA SU MEDIE PROBLEMI DI INFERENZA SU MEDIE STIMA PUNTUALE Il problema della stima di ua media si poe allorchè si vuole cooscere, sulla base di osservazioi campioarie, il valore medio μ che u dato carattere preseta

Dettagli

INFERENZA o STATISTICA INFERENTE

INFERENZA o STATISTICA INFERENTE INFERENZA o STATISTICA INFERENTE Le iformazioi sui parametri della popolazioe si possoo otteere sia mediate ua rilevazioe totale (o rilevazioe cesuaria) sia mediate ua rilevazioe parziale (o rilevazioe

Dettagli

INTRODUZIONE ALLA INFERENZA STATISTICA

INTRODUZIONE ALLA INFERENZA STATISTICA INTRODUZIONE ALLA INFERENZA STATISTICA 1) CONCETTO DI INFERENZA STATISTICA E SCOPI : L ifereza statistica è il procedimeto iduttivo che, avvaledosi del calcolo delle probabilità, cosete di estedere all

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE. Psicometria 1 - Lezione 12 Lucidi presentati a lezione AA 2000/2001 dott.

VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE. Psicometria 1 - Lezione 12 Lucidi presentati a lezione AA 2000/2001 dott. VERIFICA DI IPOTESI SULLA DIFFERENZA TRA DUE MEDIE Psicometria - Lezioe Lucidi presetati a lezioe AA 000/00 dott. Corrado Caudek Il caso più comue di disego sperimetale è quello i cui i soggetti vegoo

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti:

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti: Quesito. I segueti dati si riferiscoo ai tempi di reazioe motori a uo stimolo lumioso, espressi i decimi di secodo, di u gruppo di piloti: 2, 6 3, 8 4, 8 5, 8 2, 6 4, 0 5, 0 7, 2 2, 6 4, 0 5, 0 7, 2 2,

Dettagli

Legge Gamma e Legge Chi quadro

Legge Gamma e Legge Chi quadro Legge Gamma e Legge Chi quadro Sia G ua variabile aleatoria di legge Gamma di parametri a e λ reali positivi, G Γ(a, λ, la cui fuzioe di desità è: f G (x = λa Γ(a e λx x a per x 0 dove Γ( è la fuzioe Gamma

Dettagli

Titolo della lezione. Campionamento e Distribuzioni Campionarie

Titolo della lezione. Campionamento e Distribuzioni Campionarie Titolo della lezioe Campioameto e Distribuzioi Campioarie Itroduzioe Itrodurre le idagii campioarie Aalizzare il le teciche di costruzioe dei campioi e di rilevazioe Sviluppare il cocetto di distribuzioe

Dettagli

Soluzioni. Se l interallo avesse livello di confidenza 99%, al posto di 1,96 avremmo

Soluzioni. Se l interallo avesse livello di confidenza 99%, al posto di 1,96 avremmo Esercizio 1 Soluzioi 1. Ricordiamo che l ampiezza di u itervallo di cofideza è fuzioe della umerosità campioaria edellivellodicofideza. Aparità di tutto il resto, l ampiezza dimiuisce al crescere di eaumetaal

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel:

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel: UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Doatella Siepi doatella.siepi@uipg.it tel: 075 5853525 05 dicembre 2014 6 LEZIONE Statistica descrittiva STATISTICA DESCRITTIVA Rilevazioe dei

Dettagli

LE MISURE DI TENDENZA CENTRALE

LE MISURE DI TENDENZA CENTRALE STATISTICA DESCRITTIVA LE MISURE DI TENDENZA CENTRALE http://www.biostatistica.uich.itit OBIETTIVO Esempio: Nella tabella seguete soo riportati i valori del tasso glicemico rilevati su 0 pazieti: Idividuare

Dettagli

6 Stima di media e varianza, e intervalli di confidenza

6 Stima di media e varianza, e intervalli di confidenza Si può mostrare che, per ogi fissato α, t,α z α, e t,α z α per + I pratica t,α e z α soo idistiguibili per 200. 6 Stima di media e variaza, e itervalli di cofideza Lo scopo esseziale della Statistica ifereziale

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Esercitazione 6 del corso di Statistica 2

Esercitazione 6 del corso di Statistica 2 Esercitazioe 6 del corso di Statistica Dott.ssa Paola Costatii 7 marzo Decisioe vera falsa è respita Errore di I tipo Decisioe corretta o è respita Probabilità = Decisioe corretta Probabilità = - Probabilità

Dettagli

Caso studio 9. Distribuzioni doppie. Esempi

Caso studio 9. Distribuzioni doppie. Esempi 7/3/16 Caso studio 9 Si cosideri la seguete tabella che riporta i dati dei Laureati el 4 dei tre pricipali gruppi di corsi di laurea, per codizioe occupazioale a tre ai dalla laurea (Fote: ISTAT, Idagie

Dettagli

STATISTICA INFERENZIALE - SCHEDA N. 1 CAMPIONAMENTO E STIMA

STATISTICA INFERENZIALE - SCHEDA N. 1 CAMPIONAMENTO E STIMA Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) STATISTICA INFERENZIALE

Dettagli

LEGGE DEI GRANDI NUMERI

LEGGE DEI GRANDI NUMERI LEGGE DEI GRANDI NUMERI E. DI NARDO 1. Legge empirica del caso e il teorema di Beroulli I diverse occasioi, abbiamo mezioato che la ozioe ituitiva di probabilità si basa sulla seguete assuzioe: se i sperimetazioi

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

Esercitazioni del corso: ANALISI MULTIVARIATA

Esercitazioni del corso: ANALISI MULTIVARIATA A. A. 9 1 Esercitazioi del corso: ANALISI MULTIVARIATA Isabella Romeo: i.romeo@campus.uimib.it Sommario Esercitazioe 4: Verifica d Ipotesi Test Z e test T Test d Idipedeza Aalisi Multivariata a. a. 9-1

Dettagli

Esame di Statistica A-Di Prof. M. Romanazzi

Esame di Statistica A-Di Prof. M. Romanazzi 1 Uiversità di Veezia Esame di Statistica A-Di Prof. M. Romaazzi 12 Maggio 2014 Cogome e Nome..................................... N. Matricola.......... Valutazioe Il puteggio massimo teorico di questa

Dettagli

CAPITOLO 2 Semplici esperimenti comparativi

CAPITOLO 2 Semplici esperimenti comparativi Douglas C. Motgomer Progettazioe e aalisi degli esperimeti 006 McGraw-Hill CAPITOLO emplici esperimeti comparativi Metodi statistici e probabilistici per l igegeria Corso di Laurea i Igegeria Civile A.A.

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a Esame del STATISTICA

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a Esame del STATISTICA FACOLTÀ DI SOCIOLOGIA a. a. 011 01 Esame del 11-01-01 STATISTICA ESERCIZIO 1 U idagie sulle abitudii alimetari dei requetatori di u cetro itess ha moitorato il umero di caè cosumati i u gioro ormale e

Dettagli

Confronto di due misure Campioni indipendenti

Confronto di due misure Campioni indipendenti Statistica7 /11/015 Cofroto di due misure Campioi idipedeti o meglio.. rispodere al quesito Due serie di misure soo state estratte dalla stessa popolazioe (popolazioe comue o idetica) o soo state estratte

Dettagli

TEORIA DEI CAMPIONI. Psicometria 1 - Lezione 10 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek

TEORIA DEI CAMPIONI. Psicometria 1 - Lezione 10 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek TEORIA DEI CAMPIONI Psicometria 1 - Lezioe 10 Lucidi presetati a lezioe AA 000/001 dott. Corrado Caudek 1 Nella teoria statistica per popolazioe si itede la totalità delle uità poteziali d'osservazioe.

Dettagli

Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere

Dettagli

Proprietà asintotiche stimatori OLS e statistiche collegate

Proprietà asintotiche stimatori OLS e statistiche collegate Proprietà asitotiche stimatori OLS e statistiche collegate Eduardo Rossi 2 2 Uiversità di Pavia (Italy) Maggio 2014 Rossi Proprietà asitotiche Ecoometria - 2014 1 / 30 Sommario Risultati prelimiari Distribuzioe

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13

Teoria dei Fenomeni Aleatori AA 2012/13 Statistica Matematica: Cocetti Fodametali Nell esperieza quotidiaa e ella pratica della professioe dell igegere occorre: predere decisioi e ciò ormalmete richiede la dispoibilità di specifiche iformazioi

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

(sqm ottenuto dividendo per n-1 ) =

(sqm ottenuto dividendo per n-1 ) = STATISTICA PER L ANALISI ORGANIZZATIVA AA 006-007 Per casa Soluzioi Esercizio.. Durate ua ricerca soo state rilevate le lughezze di tre differeti variabili ecoomiche per ciascuo di 50 paesi i via di sviluppo.

Dettagli

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie.

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie. SERIE NUMERICHE Defiizioe. Data ua successioe (a ) alla scrittura formale ) a + a 2 + + a +, si dà il ome di serie. I umeri a, a 2,, a, rappresetao i termii della serie, i particolare a è il termie geerale

Dettagli

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5 Sviluppi di Taylor Adrea Corli settembre 009 Idice Notazioe o Liearizzazioe di ua fuzioe 3 Formula di Taylor 3 4 Esempi ed applicazioi 5 I questo capitolo aalizziamo l approssimazioe di ua fuzioe regolare

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

Lezione 3: Segnali periodici

Lezione 3: Segnali periodici eoria dei segali Segali a poteza media fiita e coversioe A/D Lezioe 3: Aalisi i frequeza Esempio di calcolo 005 Politecico di orio eoria dei segali aalisi i frequeza Poteza media Sia dato u segale (t)

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2005/06

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2005/06 PROVE SCRITTE DI MTEMTIC PPLICT, NNO 5/6 Esercizio 1 Prova scritta del 14/1/5 Sia X ua successioe I.I.D. di variabili aleatorie co distribuzioe uiforme cotiua, X U(, M), ove M = umero lettere del cogome.

Dettagli

2T(n/2) + n se n > 1 T(n) = 1 se n = 1

2T(n/2) + n se n > 1 T(n) = 1 se n = 1 3 Ricorreze Nel caso di algoritmi ricorsivi (ad esempio, merge sort, ricerca biaria, ricerca del massimo e/o del miimo), il tempo di esecuzioe può essere descritto da ua fuzioe ricorsiva, ovvero da u equazioe

Dettagli

CAP. 4 TEST delle IPOTESI

CAP. 4 TEST delle IPOTESI B. Chiadotto Versioe 6 CAP. 4 TEST delle IPOTESI Itroduzioe I questo capitolo si affrota il problema della verifica d ipotesi statistiche limitado sostazialmete la trattazioe alla cosiddetta teoria classica

Dettagli

1 Statistica Inferenziale

1 Statistica Inferenziale 1 Statistica Ifereziale Cosideriamo u tipico problema che coduce a cosiderazioi di tipo statistico: Problema: Ua moeta, di cui si igora l oestà, viee laciata 1000 volte otteedo 447 teste. Si può affermare

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti.

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti. AROSSIMAZIONE NORMALE 1. Si tirao 300 dadi o truccati. Sia X la somma dei puteggi. Calcolare approssimativamete le probabilità segueti. (a (X 1000; (b (1000 X 1100. 2. La quatità di eve, che cade al gioro,i

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI NOTE DALLE LEZIONI DI TATITICA MEDICA ED EERCIZI I METODI PER IL CONFRONTO DI MEDIE (Campioi idipedeti) IL PROBLEMA oo stati rilevati i dati relativi alla frequeza cardiaca (misurata i battiti al miuto)

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati Esercitazioe parte Medie e medie per dati raggruppati el file dati0.xls soo coteute alcue distribuzioi di dati. Calcolare di ogua. Media aritmetica o Mostrare, co u calcolo automatico, che la somma degli

Dettagli

NUMERICI QUESITI FISICA GENERALE

NUMERICI QUESITI FISICA GENERALE UMERICI (Aalisi Dimesioale). Utilizzado le iformazioi ricavabili dalla gradezza fisica che ci si aspetta come risultato e dai valori umerici foriti, idividuare, tra le espressioi riportate, quella/e dimesioalmete

Dettagli

5. INDICI DI VARIABILITA'

5. INDICI DI VARIABILITA' UNIVERSITA DEGLI STUDI DI PERUGIA DIPARTIMENTO DI FILOSOFIA SCIENZE SOCIALI UMANE E DELLA FORMAZIONE Corso di Laurea i Scieze per l'ivestigazioe e la Sicurezza. INDICI DI VARIABILITA' Prof. Maurizio Pertichetti

Dettagli

Variabilità o Dispersione Definizione Attitudine di un fenomeno ad assumere diverse modalità

Variabilità o Dispersione Definizione Attitudine di un fenomeno ad assumere diverse modalità Variabilità o Dispersioe Defiizioe Attitudie di u feomeo ad assumere diverse modalità Le medie o bastao Esempio: caratteri quatitativi Codomiio A u.s. Numero televisori u 8 u 8 u3 8 u4 8 u5 8 Me=M=8 Codomiio

Dettagli

Esercizi di Calcolo delle Probabilità e Statistica Matematica

Esercizi di Calcolo delle Probabilità e Statistica Matematica Esercizi di Calcolo delle Probabilità e Statistica Matematica Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche 1. Esercizio (31 marzo 2012. 1). Al

Dettagli

Corso di laurea in STATISTICA MATEMATICA E TRATTAMENTO INFORMATICO DEI DATI

Corso di laurea in STATISTICA MATEMATICA E TRATTAMENTO INFORMATICO DEI DATI Corso di laurea i STATISTICA MATEMATICA E TRATTAMENTO INFORMATICO DEI DATI Raccolta delle prove scritte degli esami del corso di STATISTICA INFERENZIALE STATISTICA INFERENZIALE SMID a.a. 00/3 Prova scritta

Dettagli

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) STATISTICA INFERENZIALE

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Trieale i Matematica Calcolo delle Probabilità I doceti G. Nappo, F. Spizzichio Prova di martedì luglio tempo a disposizioe: 3 ore. Scrivere su ogi foglio NOME e COGNOME. Le risposte devoo

Dettagli

(1 2 3) (1 2) Lezione 10. I gruppi diedrali.

(1 2 3) (1 2) Lezione 10. I gruppi diedrali. Lezioe 0 Prerequisiti: Simmetrie di poligoi regolari. Gruppi di permutazioi. Cetro di u gruppo. Cetralizzate di u elemeto di u gruppo. Riferimeto al testo: [PC] Sezioe 5.4 I gruppi diedrali. Ogi simmetria

Dettagli

Argomenti trattati: Capitolo 12 libro di testo. Statistica - Metodologie per le scienze economiche e sociali A. Di Ciaccio, S.

Argomenti trattati: Capitolo 12 libro di testo. Statistica - Metodologie per le scienze economiche e sociali A. Di Ciaccio, S. 1 GLI INTERVALLI DI CONFIDENZA Argometi trattati: Stima per itervallo Aalogie tra la stima putuale e per itervallo Itervallo di cofideza per la media Itervallo di cofideza per la proporzioe Itervallo di

Dettagli

PREMESSA. = η valore medio della popolazione = σ deviazione standard della popolazione. Descrizione parametrica di una popolazione

PREMESSA. = η valore medio della popolazione = σ deviazione standard della popolazione. Descrizione parametrica di una popolazione PREMESSA Descrizioe parametrica di ua popolazioe Sappiamo che u famiglia parametrica di fuzioi desità di probabilità è defiita da uo o più parametri Θ = {θ, θ,., θ }. Ad esempio, la d.d.p. di tipo espoeziale

Dettagli

Classificazione degli errori

Classificazione degli errori Classificazioe degli errori Escludedo gli errori grossolai, derivati, ad esempio, da macroscopiche sviste ell applicazioe della procedura o da u problema strumetale improvviso, gli errori che caratterizzao

Dettagli

ELEMENTI DI STATISTICA INFERENZIALE (versione preliminare) Barbara Torti, Mario Abundo

ELEMENTI DI STATISTICA INFERENZIALE (versione preliminare) Barbara Torti, Mario Abundo ELEMENTI DI STATISTICA INFERENZIALE (versioe prelimiare) Barbara Torti, Mario Abudo Idice 1 Richiami di Probabilità e Statistica 3 1.1 Spazi di Probabilità e variabili aleatorie.................... 3 1.

Dettagli

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1.

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1. Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 0: Riferimeti: R.Adams, Calcolo Differeziale - Si cosiglia vivamete di fare gli esercizi del testo. Successioi umeriche:

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Matematica e Statistica: Modulo di Statistica - Prof. Federico Di Palma - Appello del 12 Febbraio

Matematica e Statistica: Modulo di Statistica - Prof. Federico Di Palma - Appello del 12 Febbraio Matematica e Statistica: Modulo di Statistica - Prof. Federico Di Palma - Appello del 1 Febbraio 014 - Esercizio 1) I ua ricerca si è iteressati a verificare le dimesioi i micrometri di u graulocita eutrofilo.

Dettagli

16 - Serie Numeriche

16 - Serie Numeriche Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 6 - Serie Numeriche Ao Accademico 03/04 M. Tummiello, V. Lacagia, A. Cosiglio, S.

Dettagli

PROPRIETÀ DELLE POTENZE IN BASE 10

PROPRIETÀ DELLE POTENZE IN BASE 10 PROPRIETÀ DELLE POTENZE IN BASE Poteze i base co espoete itero positivo Prediamo u umero qualsiasi che deotiamo co la lettera a e u umero itero positivo che deotiamo co la lettera Per defiizioe (cioè per

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

Appunti complementari per il Corso di Statistica

Appunti complementari per il Corso di Statistica Apputi complemetari per il Corso di Statistica Corsi di Laurea i Igegeria Edile e Tessile Ilia Negri 24 settembre 2002 1 Schemi di campioameto Co il termie campioameto si itede l operazioe di estrazioe

Dettagli

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10 Materiale didattico relativo al corso di Matematica geerale Prof. G. Rotudo a.a.2009/10 ATTENZIONE: questo materiale cotiee i lucidi utilizzati per le lezioi. NON sostituisce il libro, che deve essere

Dettagli

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici Facoltà di Igegeria Precorso di Matematica 1. Equazioi e disequazioi Parte IV : Fuzioi e luoghi geometrici Richiamiamo brevemete la ozioe di fuzioe, che sarà utilizzato i quest ultima parte del precorso.

Dettagli

LEZIONI DI STATISTICA MEDICA

LEZIONI DI STATISTICA MEDICA LEZIONI DI STATISTICA MEDICA $! %! """ # &' ( )* &' + %, -. / %,! 0 -$ 34! % 3 3 3 3 )5* 3$&6 ( &7'* / $& : 3; / ( 8/ &* &')&56 &/ * : 5'9 $ : x A > x B I risultati del trial ci permettoo di decidere

Dettagli

Metodi statistici per l analisi dei dati

Metodi statistici per l analisi dei dati Metodi statistici per l aalisi dei dati Massimiliao Grosso Dipartimeto di Igegeria Meccaica, Chimica e dei Materiali E-mail: massimiliao.grosso@dimcm.uica.it Web: http://people.uica.it/massimiliaogrosso

Dettagli