IR(3): Illuminazione Globale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "IR(3): Illuminazione Globale"

Transcript

1 IR(3): Illuminazione Globale Alessandro Martinelli 21 Dicembre 2011 IR(3): Illuminazione Globale Illuminazione e Rendering: Principi di Illuminazione Rendering Real-Time Illuminazione Globale Grafica 3D e Simulazioni Visuali

2 Equazione di Rendering IR(3): Illuminazione Globale Illuminazione e Rendering: Principi di Illuminazione Rendering Real-Time Illuminazione Globale L Equazione di Rendering Algoritmi di Illuminazione Globale A. Martinelli () Illuminazione Globale 21/12/ / 14

3 Equazione di Rendering L Equazione di Rendering (1/3) Si considera un intero scenario tridimensionale: Funzione Radianza La funzione Radianza L(X, Y) fornisce il valore di Radianza nella direzione che va da X ad Y, dove X e Y sono due punti qualsiasi dello scenario tridimensionale. La Funzione Radianza ci dice che cosa vediamo da un punto qualsiasi Y di una scena tridimensionale. Funzione BRDF di scena La funzione Radianza f(v XY,l XZ ) = f(x,y,z) rappresenta la funzione BRDF nel punto X per qualsiasi punto (significativo) di uno scenario tridimensionale, dove v XY è la direzione che dal punto X va al punto Y e l XZ è la direzione che dal punto X va al punto Z. In un punto qualsiasi dello scenario 3D la BRDF viene definita come: f(x,y,z) = dl(x,y) de (X,Z) (1) A. Martinelli () Illuminazione Globale 21/12/ / 14

4 Equazione di Rendering L Equazione di Rendering (2/3) Dal modello della BRDF: Ricordiamo inoltre che: dl(x,y) = f(x,y,z)de (X,Z) (2) de (X,Z) = cos(β XZ )L(Z,X)dω (3) Dove β XZ è l angolo che la Normale alla superficie in X ha con la direzione che da X va a Z Da cui: dl(x,y) = f(x,y,z)cos(β XZ )L(Z,X)dω (4) La Funzione Radianza è la soluzione dell Equazione di Rendering (Kajiya a+b???? 1986) : L(X,Y) = f(x,y,z)cos(β XZ )L(Z,X)dω (5) Ω Dove Ω rappresenta l intevallo massimo di angolo solido [0, 4π] A. Martinelli () Illuminazione Globale 21/12/ / 14

5 Equazione di Rendering L Equazione di Rendering (3/3) E un equazione differenziale L Equazione di Rendering: Serve per la valutazione della Funzione Radianza... Che si trova sia a sinistra che a destra all interno dell integrale. Con poche eccezioni, non avrà mai soluzione analitica. A. Martinelli () Illuminazione Globale 21/12/ / 14

6 Equazione di Rendering Illuminazione Globale Illuminazione Globale Con Illuminazione Globale ci si riferisce ad algoritmi che valutano una stima della Funzione Radianza. Questi algoritmi devono essere generali, nel senso che devono funzionare data la descrizione di uno scenario qualsiasi. Tra questi: Ray-Tracing (trattato al corso) Generico Path-Tracing (trattato al corso) Radiosity (trattato al corso) Photon Mapping Precomputed Radiance Transfer Irradiance Maps Caustics Maps etc. A. Martinelli () Illuminazione Globale 21/12/ / 14

7 IR(3): Illuminazione Globale Illuminazione e Rendering: Principi di Illuminazione Rendering Real-Time Illuminazione Globale L Equazione di Rendering Algoritmi di Illuminazione Globale A. Martinelli () Illuminazione Globale 21/12/ / 14

8 Ray Casting Fuoco pixel pixel intersezione intersezione Il Ray Casting è un Algoritmo di Digitalizzazione alternativo a quelli già incontrati nella pipeline di Rendering: E dato un fuoco E dato un modello di come l immagine da disegnare è collocata nello stazio. I pixel sono dei rettangoli nello spazio 3D. E dato un intero scenario 3D Si calcola la semi-retta che parte dal fuoco e passa per il centro di ogni Pixel Si trova la più vicina di tutte le possibili intersezioni con oggetti della scena della retta individuata. L intersezione dice ciò che io vedo dal fuoco attraverso ognuno dei pixel dell immagine. Il colore dell oggetto individuato nel punto individuato è usato per colorare il pixel. A. Martinelli () Illuminazione Globale 21/12/ / 14

9 Ray Tracing (1/2) Il Ray Tracing generalizza il Ray Casting. Una libreria software per il ray casting mi consente di calcolare le intersezioni retta-oggetto. Trovata l intersezione con l oggetto è possibile generare nuovi raggi di luce. Direzione Raggio riflesso Raggio Rifratto Raggio che va verso un punto luce e verifica se ci sono oggi che fanno ombra BRDF(valutazione) Fuoco intersezione intersezione I raggi rifratti o riflessi possono raggiungere altri oggetti ed essere ulteriormente suddivisi. Il Ray Tracing riesce a stimare il comportamente di una parte della Funzione Radianza, quando le BRDF sono di tipo Lambertiano, o tengano conto degli effetti di Riflessione Superficiali, ma è meno adatto per BRDF più generali che contengano ad esempio modelli a microfacce. A. Martinelli () Illuminazione Globale 21/12/ / 14

10 Ray Tracing (2/2) immagini generate con l applicazione Open Source PoV-Ray (PoV:Persistence of Vision) A. Martinelli () Illuminazione Globale 21/12/ / 14

11 Integrazione di Monte-Carlo e Path-Tracing (1/2) Integrazione di Monte Carlo L Integrazione di Monte Carlo è una soluzione numerica di valenza generale per il calcolo di integrali, che si basa sull utilizzo di campioni disposti in modo casuale. Esempio(Integrazione di Monte Carlo) E data la funzione f(x) e si vuole calcolare l integrale di f(x) in [x A,x B ]. a+b???? Viene estratto un vettore di N valori casuali x i, tale che x A x 1,x 2...x N x B L integrale è approssimabile come: ( xb N ) f(x)dx (x B x A ) = f(x i ) x A N 1 (6) Perchè gli Integrali alla MonteCarlo? Perchè esistono circostanze in cui un integratore casuale da risultati preferibili ad un integratore a passo fisso (es. integrazione del punto medio)....ed il nostro è uno di questi casi A. Martinelli () Illuminazione Globale 21/12/ / 14

12 Integrazione di Monte-Carlo e Path-Tracing (2/2) Path-Tracing Estremizzazione del concetto di Ray-Tracing. Tecnicamente: la soluzione più generale nota nel caso in cui le BRDF di una scena sono qualsiasi. Approsima l Equazione di Rendering usando l integrazione di Monte-Carlo. Come si fa a fare un Integrale di Monte Carlo sull Equazione di Rendering?... quando si deve calcolare L(X,Y) = Ω f(x,y,z)cos(β XZ)L(Z,X)dω si tracciano i raggi di luce verso un numero molto grande (1000, ) di possibili punti Z. A. Martinelli () Illuminazione Globale 21/12/ / 14

13 Radiosity (1/2) L Algoritmo di Radiosity (Emittanza...) si basa sull ipotesi che tutte le superfici siano dotate di una BRDF puramente diffusa. In questo caso: L = c diffe (7) π Dove E è l irradianza totale che cade sulla superficie, c diff è il coefficiente di riflessione diffusa, L è l irradianza che dal punto superficiale va in una qualsiasi direzione. Ipotiziamo una scena costituita da un numero finito N di poligoni (triangoli): Ad ogni coppia di poligoni è associato un fattore G ij, detto fattore geometrico, che definisce quanta della radianza uscente dal poligono i va a cadere sul poligono j. Anzichè calcolare la Funzione Radianza, si calcola il valore di Emittanza (Radiosity) in uscita da ogni triangolo. Con queste considerazioni l equazione di rendering... si riduce ad un sistema lineare di N equazioni (che descrivono il comportamento della luce sopra ad un poligono) per N incognite (il valore di Radiosity di ogni poligono). A. Martinelli () Illuminazione Globale 21/12/ / 14

14 Radiosity (2/2) L algoritmo di Radiosity riesce a valutare con estrema precisione l Equazione di Rendering quando le BRDF sono puramente diffuse, mentre risulta approssimativo nel caso di BRDF con valori significativi di riflessione. immagini generate con l application Open Sourve PoV-Ray (PoV:Persistence of Vision) A. Martinelli () Illuminazione Globale 21/12/ / 14

Luci/Ombre. YAFARAY motore di rendering Open Source. Federico Frittelli aka fredfrittella. SUTURA-studio di progettazione.

Luci/Ombre. YAFARAY motore di rendering Open Source. Federico Frittelli aka fredfrittella. SUTURA-studio di progettazione. Luci/Ombre YAFARAY motore di rendering Open Source Federico Frittelli aka fredfrittella SUTURA-studio di progettazione LinuxDay, 2010 fredfrittella (SUTURA-studio di progettazione) Luci/Ombre 23 Ottobre

Dettagli

Rendering ed illuminazione

Rendering ed illuminazione Rendering ed illuminazione Dove si introduce un metodo per ottenere una immagine a partire da una descrizione degli oggetti tridimensionali e si presenta la legge fondamentale che governa l illuminazione.

Dettagli

Introduzione alla Computer Graphics

Introduzione alla Computer Graphics Introduzione alla Computer Graphics Informatica Grafica CdLS a ciclo unico in Ingegneria Edile-Architettura a.a. 2008/09 Computer Graphics e Image Processing Image processing Insieme di teorie ed algoritmi

Dettagli

Grafica computazionale

Grafica computazionale Grafica computazionale Lezione 5 (slide parzialmente basate su Computer Graphics - MIT Opencourseware Grafica Computazionale - Massimiliano Corsini Università di Siena) 1 L'Equazione di Rendering La luce

Dettagli

Interazione luce - materia

Interazione luce - materia Interazione luce - materia 1 Modelli di illuminazione Il modello di illuminazione descrive l interazione tra la luce e gli oggetti della scena Descrive i fattori che determinano il colore di un punto della

Dettagli

Grafica al calcolatore. Computer Graphics. 6 Modelli di illuminazione 18/11/12

Grafica al calcolatore. Computer Graphics. 6 Modelli di illuminazione 18/11/12 Grafica al calcolatore Computer Graphics 6 Modelli di illuminazione 18/11/12 Grafica 2013 1 Ray casting e colore Tornando al problema della formazione dell'immagine, possiamo creare le immagini se sappiamo

Dettagli

Dalla Sfera a Luigi del film Cars L Algoritmo di Ray Tracing

Dalla Sfera a Luigi del film Cars L Algoritmo di Ray Tracing Dalla Sfera a Luigi del film Cars L Algoritmo di Ray Tracing Ing. Federico Bergenti E-mail federico.bergenti@unipr.it Telefono +39 0521 90 6929 Sintesi di Immagini Digitali Generazione automatica di immagini

Dettagli

Shading Rendering. IUAV dcp corso Disegno Digitale. Camillo Trevisan

Shading Rendering. IUAV dcp corso Disegno Digitale. Camillo Trevisan Shading Rendering IUAV dcp corso Disegno Digitale Camillo Trevisan Modelli di illuminazione Obiettivo: non tanto simulare il vero comportamento della luce, ma piuttosto riprodurre realisticamente l effetto

Dettagli

Grafica al calcolatore. Computer Graphics. 5 - Rendering 19/11/12

Grafica al calcolatore. Computer Graphics. 5 - Rendering 19/11/12 Grafica al calcolatore Computer Graphics 5 - Rendering 19/11/12 Grafica 2013 1 Rendering Il termine rendering indica la serie di algoritmi, geometrici e non, a cui si sottopone una data descrizione di

Dettagli

Rendering & ray tracing. Implementazione e applicazione pratica

Rendering & ray tracing. Implementazione e applicazione pratica Rendering & ray tracing Implementazione e applicazione pratica Che cos e CG(computer graphics)? Quando si parla di CG si intendono immagini, o video creati al computer. CG e una branca dell informatica

Dettagli

ScuolaSI computer grafica 3d

ScuolaSI computer grafica 3d ScuolaSI computer grafica 3d pagina stampata dal sito ScuolaSI http://www.scuolasi.it pubblicato il 22/04/2011 Grafica - La computer grafica 3D è un ramo della computer grafica che basa la creazione di

Dettagli

Definizione DEFINIZIONE

Definizione DEFINIZIONE Definizione Funzione reale di due variabili reali Indichiamo con R 2 l insieme di tutti i vettori bidimensionali. Dato un sottoinsiemed R 2, una funzione f: D R è una legge che assegna a ogni punto (x,

Dettagli

Modelli di illuminazione

Modelli di illuminazione Modelli di illuminazione Dove si discutono modelli per l interazione della luce con le superfici. Introduzione Modello di Phong Modello di Cook-Torrance Tipi di luci Ray tracing Radiosity Grafica al Calcolatore

Dettagli

Capitolo 8 Rendering Globale. Dal modello locale ai modelli globali. Cap. 8 - Contenuti. Rendering Locale. Sezione 8.1. Limitazioni del modello locale

Capitolo 8 Rendering Globale. Dal modello locale ai modelli globali. Cap. 8 - Contenuti. Rendering Locale. Sezione 8.1. Limitazioni del modello locale Cap. 8 - Contenuti Capitolo 8 Rendering Globale 8.1 Dal modello locale ai modelli globali Limitazioni del modello locale, effetti globale e modi per approssimarli in un contesto locale 8.2 Ray-tracing

Dettagli

LA SIMULAZIONE E LA COMUNICAZIONE DEL PROGETTO ILLUMINOTECNICO: IL CASO DI PALAZZO MADAMA IN TORINO

LA SIMULAZIONE E LA COMUNICAZIONE DEL PROGETTO ILLUMINOTECNICO: IL CASO DI PALAZZO MADAMA IN TORINO Politecnico di Torino,, Facoltà di Architettura - Dipartimento di Energetica Virtuality 2002 Annual Virtual Reality Conference - 2 Convegno MIMOS Torino 28-29 ottobre LA SIMULAZIONE E LA COMUNICAZIONE

Dettagli

RADIOSITY TUTORIAL. versione originale su: http://www.mvpny.com/radtutmv/radiositytut1mv.html

RADIOSITY TUTORIAL. versione originale su: http://www.mvpny.com/radtutmv/radiositytut1mv.html RADIOSITY TUTORIAL La "Profondità Diffusione" che si imposta nella finesta Settaggi Radiosity (render- >parametri rendering->radiosity) stabilisce quante volte una fonte di illuminazione andrà a riflettersi

Dettagli

Illuminazione avanzata

Illuminazione avanzata Informatica Grafica per le arti Illuminazione avanzata E' possibile applicare una bitmap ad una luce. Una luce a cui e' applicata una bitmap proietta l'immagine associata nello spazio. Marco Gribaudo marcog@di.unito.it

Dettagli

Raccomandazione del Parlamento europeo 18/12/2006 CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE. Operare con i numeri

Raccomandazione del Parlamento europeo 18/12/2006 CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE. Operare con i numeri COMPETENZA CHIAVE MATEMATICA Fonte di legittimazione Raccomandazione del Parlamento europeo 18/12/2006 CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE L alunno utilizza il calcolo scritto e mentale con i numeri

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

Trasformazioni geometriche nel piano cartesiano

Trasformazioni geometriche nel piano cartesiano Trasformazioni geometriche nel piano cartesiano Francesco Biccari 18 marzo 2013 Una trasformazione geometrica del piano è una legge (corrispondenza biunivoca) che consente di associare a un determinato

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

Fondamenti di Grafica Tridimensionale

Fondamenti di Grafica Tridimensionale Fondamenti di Grafica Tridimensionale La Pipeline Grafica Marco Di Benedetto marco.dibenedetto@isti.cnr.it Visualizzazione dell Informazione noi siamo qui Informazione mondo reale (es: 3D scans) creazione

Dettagli

Grafica al calcolatore - Computer Graphics

Grafica al calcolatore - Computer Graphics Grafica al calcolatore - Computer Graphics 7 Pipeline di rasterizzazione 23/11/13 Grafica 2013 1 Rasterization pipeline Sappiamo implementare ray casting (o ray tracing). Abbiamo tuttavia già visto che

Dettagli

Guida rapida - versione Web e Tablet

Guida rapida - versione Web e Tablet Guida rapida - versione Web e Tablet Cos è GeoGebra? Un pacchetto completo di software di matematica dinamica Dedicato all apprendimento e all insegnamento a qualsiasi livello scolastico Gestisce interattivamente

Dettagli

Franco Gugliermetti, Fabio Bisegna. Report RSE/2009/40

Franco Gugliermetti, Fabio Bisegna. Report RSE/2009/40 Integrazione luce naturale/luce artificiale in ambito industriale Parte 6: Tecniche di modellazione avanzate e tradizionali per l analisi dell ambiente visivo in presenza di sistemi tradizionali e innovativi

Dettagli

Corso di Visione Artificiale. Radiometria. Samuel Rota Bulò

Corso di Visione Artificiale. Radiometria. Samuel Rota Bulò Corso di Visione Artificiale Radiometria Samuel Rota Bulò Come vediamo? Teorie della visione Teoria emissionista Teoria emissionista (o visione tattile ): l'occhio emette un fascio di raggi che, viaggiando

Dettagli

Lezione1. Cos è la computer grafica. Lezione del 10 Marzo 2010. Michele Antolini Dipartimento di Ingegneria Meccanica Politecnico di Milano

Lezione1. Cos è la computer grafica. Lezione del 10 Marzo 2010. Michele Antolini Dipartimento di Ingegneria Meccanica Politecnico di Milano Lezione1 Informatica Grafica Cos è la computer grafica Lezione del 10 Marzo 2010 Grafica OpenGL vs Direct Dipartimento di Ingegneria Meccanica Politecnico di Milano 1.1 Tubo a Raggi Catodici Cathode Ray

Dettagli

allora la retta di equazione x=c è asintoto (verticale) della funzione

allora la retta di equazione x=c è asintoto (verticale) della funzione 1)Cosa rappresenta il seguente limite e quale ne è il valore? E il limite del rapporto incrementale della funzione f(x)= con punto iniziale, al tendere a 0 dell incremento h. Il valore del limite può essere

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ;

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; Primo anno Secondo anno Terzo anno Primo anno MATEMATICA Scuola dell Infanzia Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; legge

Dettagli

CURRICOLO MATEMATICA ABILITA COMPETENZE

CURRICOLO MATEMATICA ABILITA COMPETENZE CURRICOLO MATEMATICA 1) Operare con i numeri nel calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali. Per riconoscere e risolvere problemi di vario genere, individuando

Dettagli

Sistemi di forze: calcolo grafico

Sistemi di forze: calcolo grafico UNTÀ D3 Sistemi di forze: calcolo grafico TEOA Uso del CAD nei procedimenti grafici 2 appresentazione grafica dei vettori 3 Poligono delle forze 4 Poligono delle successive risultanti 5 Poligono funicolare

Dettagli

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico Competenza matematica n. BIENNIO, BIENNIO Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma grafica BIENNIO BIENNIO Operare sui dati comprendendone

Dettagli

SIMULAZIONE TEST. Matematica di base

SIMULAZIONE TEST. Matematica di base onferenza Nazionale Permanente dei Presidi delle Facoltà di Scienze e Tecnologie Piano Nazionale Lauree Scientifiche SIMULZIONE TEST Matematica di base. Quanto vale log 3 9? 2 2 2 Non esiste 2. Quanto

Dettagli

l insieme Y è detto codominio (è l insieme di tutti i valori che la funzione può assumere)

l insieme Y è detto codominio (è l insieme di tutti i valori che la funzione può assumere) Che cos è una funzione? Assegnati due insiemi X e Y si ha una funzione elemento di X uno e un solo elemento di Y. f : X Y se esiste una corrispondenza che associa ad ogni Osservazioni: l insieme X è detto

Dettagli

Programma precorso di matematica

Programma precorso di matematica Programma precorso di matematica a.a. 015/16 Quello che segue è il programma dettagliato del precorso. Si fa riferimento al testo [MPB] E. Acerbi, G. Buttazzo: Matematica Preuniversitaria di Base, Pitagora

Dettagli

Metodi di realizzazione di una stazione radio base compatibile con i limiti di esposizione Vallone Laura

Metodi di realizzazione di una stazione radio base compatibile con i limiti di esposizione Vallone Laura Metodi di realizzazione di una stazione radio base compatibile con i limiti di esposizione Vallone Laura 01/06/2007 dei Campi Elettromagnetici 1 Normativa tecnica di riferimento Guida CEI 211-10: Guida

Dettagli

Grafica vettoriale. Al contrario la grafica vettoriale si basa sull'idea di dare una descrizione geometrica dell'immagine

Grafica vettoriale. Al contrario la grafica vettoriale si basa sull'idea di dare una descrizione geometrica dell'immagine Grafica vettoriale Come abbiamo visto in un certo dettaglio, la grafica raster si basa sull'idea di definire certe proprietà (colore, trasparenza, ecc.) di ogni pixel applicazioni di tipo fotografico Al

Dettagli

Questa sezione descrive come creare oggetti geometrici solidi tridimensionali e come gestirli in PicturesToExe.

Questa sezione descrive come creare oggetti geometrici solidi tridimensionali e come gestirli in PicturesToExe. 2015/05/03 14:36 1/12 Questa sezione descrive come creare oggetti geometrici solidi tridimensionali e come gestirli in PicturesToExe. Cornici Una cornice è un oggetto (normalmente) trasparente al quale

Dettagli

Applicazioni 3D avanzate

Applicazioni 3D avanzate Azienda Ospedaliera Card. G. Panico Applicazioni 3D avanzate VR e segmentazione delle articolazioni: campi applicativi Indice Applicazioni 3D avanzate Articolazioni e grandi macchine 1. Definizioni 2.

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

Introduzione. Se la scena non ne contiene, Maya ombreggia ed effettua il rendering con la luce di default.

Introduzione. Se la scena non ne contiene, Maya ombreggia ed effettua il rendering con la luce di default. Introduzione Le luci sono oggetti atti a simulare le lampade per l illuminazione delle case, i riflettori e proiettori degli allestimenti teatrali e cinematografici, il sole ecc. Se la scena non ne contiene,

Dettagli

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA Simulazione 01/15 ANNO SCOLASTICO 01/15 PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei due problemi Problema 1 Nella

Dettagli

GeoGebra vers.5 - vista Grafici 3D

GeoGebra vers.5 - vista Grafici 3D GeoGebra vers.5 - vista Grafici 3D Marzo 2015 (manuale on-line, con aggiunte a cura di L. Tomasi) Questo articolo si riferisce a un componente della interfaccia utente di GeoGebra. Viste Menu Vista Algebra

Dettagli

1.1 Modello di un Processo di Rendering. Gestore delle Geometrie (Ricostruzione delle Geoemtrie e Clipping)

1.1 Modello di un Processo di Rendering. Gestore delle Geometrie (Ricostruzione delle Geoemtrie e Clipping) Capitolo 1 Esercizi sulla Pipeline di Rendering 1.1 Modello di un Processo di Rendering Componenti dell Architettura di Rendering: Processore Bus di Comunicazione Scheda Grafica Moduli della Pipeline di

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Ricostruzione stereo. Il nostro obiettivo. Ricostruzione del Cenacolo Vinciano. Ricostruire la profondità. d Y

Ricostruzione stereo. Il nostro obiettivo. Ricostruzione del Cenacolo Vinciano. Ricostruire la profondità. d Y Il nostro obiettivo Daniele Marini Ricostruzione stereo Ricostruire scenari 3D da più immagini per inserire oggetti di sintesi Ricostruire la profondità Ricostruzione del Cenacolo Vinciano Solo se abbiamo

Dettagli

Confronto tra software illuminotecnici

Confronto tra software illuminotecnici Agenzia Nazionale per le Nuove Tecnologie, l Energia e lo Sviluppo Economico Sostenibile RICERCA DI SISTEMA ELETTRICO Confronto tra software illuminotecnici F. Bisegna, F. Gugliermetti, M. Barbalace, L.

Dettagli

PROGRAMMAZIONE MODULARE DI MATEMATICA CLASSE SECONDA INDIRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO

PROGRAMMAZIONE MODULARE DI MATEMATICA CLASSE SECONDA INDIRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO PROGRAMMAZIONE MODULARE MATEMATICA CL SECONDA INRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO MODULO 1 : Frazioni algebriche ed equazioni fratte C1, M1, M3 Determinare il campo

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Information Visualization

Information Visualization Information Visualization Introduzione alla CG Prof. Andrea F. Abate abate@unisa.it http://www.unisa.it/docenti/andreafrancescoabate/index CG e VR: cosa sono e a cosa servono Con il termine Computer Graphics,

Dettagli

Ottica geometrica. L ottica geometrica tratta i. propagazione in linea retta e dei. rifrazione della luce.

Ottica geometrica. L ottica geometrica tratta i. propagazione in linea retta e dei. rifrazione della luce. Ottica geometrica L ottica geometrica tratta i fenomeni che si possono descrivere per mezzo della propagazione in linea retta e dei fenomeni di riflessione e la rifrazione della luce. L ottica geometrica

Dettagli

GEOGEBRA I OGGETTI GEOMETRICI

GEOGEBRA I OGGETTI GEOMETRICI GEOGEBRA I OGGETTI GEOMETRICI PROPRIETA : Finestra Proprietà (tasto destro mouse sull oggetto) Fondamentali: permette di assegnare o cambiare NOME, VALORE, di mostrare nascondere l oggetto, di mostrare

Dettagli

PROGRAMMAZIONE di MATEMATICA CLASSE PRIMA

PROGRAMMAZIONE di MATEMATICA CLASSE PRIMA PROGRAMMAZIONE di MATEMATICA 1.NUMERI CLASSE PRIMA Comprende il significato Comprendere il significato Insiemi numerici NQZ Utilizzare le tecniche e le procedure del calcolo aritmetico e algebrico rappresentandole

Dettagli

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO. L alunno ha rafforzato un atteggiamento positivo rispetto

Dettagli

CURRICOLO MATEMATICA

CURRICOLO MATEMATICA 1 CURRICOLO MATEMATICA Competenza 1 al termine della scuola dell Infanzia 2 NUMERI Raggruppare, ordinare, contare, misurare oggetti, grandezze ed eventi direttamente esperibili. Utilizzare calendari settimanali

Dettagli

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D)

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D) ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI () Una immagine (digitale) permette di percepire solo una rappresentazione 2D del mondo La visione 3D si pone lo scopo di percepire il mondo per come è in 3 dimensioni

Dettagli

Le ombre in OpenGl. Daniele Varin LS Ing. Informatica Corso di Elementi di Grafica Digitale http://varindaniele.altervista.org

Le ombre in OpenGl. Daniele Varin LS Ing. Informatica Corso di Elementi di Grafica Digitale http://varindaniele.altervista.org Le ombre in OpenGl Daniele Varin LS Ing. Informatica Corso di Elementi di Grafica Digitale http://varindaniele.altervista.org Punto di partenza In OpenGl le luci non proiettano ombre 2 Perché si introducono

Dettagli

Programmazione Matematica classe V A. Finalità

Programmazione Matematica classe V A. Finalità Finalità Acquisire una formazione culturale equilibrata in ambito scientifico; comprendere i nodi fondamentali dello sviluppo del pensiero scientifico, anche in una dimensione storica, e i nessi tra i

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

Integrazione numerica

Integrazione numerica Integrazione numerica Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 6-20-26 ottobre 2009 Indice 1 Formule di quadratura semplici e composite Formule di quadratura

Dettagli

Capitolo 6 Interazione luce-materia

Capitolo 6 Interazione luce-materia Capitolo 6 Interazione luce-materia Modelli di illuminazione Modello di illuminazione: formulazione matematica dell equazione del trasporto dell energia luminosa L equazione che risolve questo problema:

Dettagli

DISCIPLINA: MATEMATICA INDIRIZZO: FINANZA E MARKETING CLASSE: 1 FM DOCENTE : MARINA MARTINELLI. Testo in adozione Settembre Ottobre

DISCIPLINA: MATEMATICA INDIRIZZO: FINANZA E MARKETING CLASSE: 1 FM DOCENTE : MARINA MARTINELLI. Testo in adozione Settembre Ottobre Pagina 1 di 5 DISCIPLINA: MATEMATICA INDIRIZZO: FINANZA E MARKETING CLASSE: 1 FM DOCENTE : MARINA MARTINELLI Elenco moduli Argomenti Strumenti / Testi 1 I numeri Naturali, Interi e Razionali Addizione,

Dettagli

CLASSI PRIME tecnico 4 ORE

CLASSI PRIME tecnico 4 ORE PIANO ANNUALE a.s. 2012/2013 CLASSI PRIME tecnico 4 ORE Settembre Ottobre Novembre dicembre dicembre gennaio- 15 aprile 15 aprile 15 maggio Somministrazione di test di ingresso. Insiemi numerici Operazioni

Dettagli

PERCORSO DIDATTICO DI OTTICA GEOMETRICA

PERCORSO DIDATTICO DI OTTICA GEOMETRICA PERCORSO DIDATTICO DI OTTICA GEOMETRICA Tipo di scuola e classe: Liceo Scientifico, classe II Nodi concettuali: riflessione della luce; rifrazione della luce, riflessione totale, rifrazione attraverso

Dettagli

Corso di Laurea in Ingegneria Civile Analisi Matematica I

Corso di Laurea in Ingegneria Civile Analisi Matematica I Corso di Laurea in Ingegneria Civile Analisi Matematica I Lezioni A.A. 2003/2004, prof. G. Stefani primo semiperiodo 22/9/03-8/11/03 Testo consigliato: Robert A. Adams - Calcolo differenziale 1 - Casa

Dettagli

PDE Toolbox in Matlab

PDE Toolbox in Matlab PDE Toolbox in Matlab Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 12 Indice 1 Uso di PDE Toolbox con interfaccia grafica Problema e definizioni 2 Esercizi 3 Comandi

Dettagli

4. Funzioni elementari algebriche

4. Funzioni elementari algebriche ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari algebriche A. A. 2013-2014 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

LA SIMULAZIONE ILLUMINOTECNICA CON RADIANCE MEDIANTE ECOTECT

LA SIMULAZIONE ILLUMINOTECNICA CON RADIANCE MEDIANTE ECOTECT A02 059 Laura Bellia Carla Di Martino Gennaro Spada LA SIMULAZIONE ILLUMINOTECNICA CON RADIANCE MEDIANTE ECOTECT L ILLUMINAZIONE DI UNA CHIESA DI INTERESSE STORICO ARTISTICO Copyright MMX ARACNE editrice

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

STAMPANTI 3D: UNA NUOVA SFIDA PER LA MODELLISTICA MATEMATICA

STAMPANTI 3D: UNA NUOVA SFIDA PER LA MODELLISTICA MATEMATICA MADD-SPOT, 6, 2014 STAMPANTI 3D: UNA NUOVA SFIDA PER LA MODELLISTICA MATEMATICA DI EMILIANO CRISTIANI È in arrivo una nuova rivoluzione industriale? Sono in molti a pensarlo. Le stampanti 3D sono in grado

Dettagli

I appello - 26 Gennaio 2007

I appello - 26 Gennaio 2007 Facoltà di Ingegneria - Corso di Laurea in Ing. Informatica e delle Telecom. A.A.006/007 I appello - 6 Gennaio 007 Risolvere gli esercizi motivando tutte le risposte. (N.B. il quesito teorico è obbligatorio)

Dettagli

ELEMENTI DI STATISTICA PER IDROLOGIA

ELEMENTI DI STATISTICA PER IDROLOGIA Carlo Gregoretti Corso di Idraulica ed Idrologia Elementi di statist. per Idrolog.-7//4 ELEMETI DI STATISTICA PER IDROLOGIA Introduzione Una variabile si dice casuale quando assume valori che dipendono

Dettagli

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO Carlo Sintini www.matematicamente.it INDICE TAVOLE NUMERICHE Potenze e radici quadre e cube dei numeri fino a 200

Dettagli

Metodi Numerici per Equazioni Ellittiche

Metodi Numerici per Equazioni Ellittiche Metodi Numerici per Equazioni Ellittiche Vediamo ora di descrivere una tecnica per la risoluzione numerica della più semplice equazione ellittica lineare, l Equazione di Laplace: u xx + u yy = 0, (x, y)

Dettagli

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Francesco Zumbo www.francescozumbo.it http://it.geocities.com/zumbof/ Questi appunti vogliono essere

Dettagli

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5 ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA PER IL CORSO DI LAUREA IN SCIENZE DELLA FORMAZIONE PRIMARIA Ana Millán Gasca Luigi Regoliosi La lettura e lo studio del libro Pensare in matematica da parte degli

Dettagli

Verifica Geometrica Macchine Utensili

Verifica Geometrica Macchine Utensili OPTODYNE OPTODYNE Laser Metrology S.r.l. Via Veneto, 5 20044 Bernareggio (MI) ITALY TEL ++ 39-039 60 93 618 Email OPTODYNE@tin.it FAX ++ 39-039 6800 147 WWW.OPTODYNE.COM WWW.HAMARLASER.IT P. IVA - C.F.

Dettagli

CURRICOLO DI MATEMATICA SCUOLA PRIMARIA MATEMATICA SEZIONE A : Traguardi formativi

CURRICOLO DI MATEMATICA SCUOLA PRIMARIA MATEMATICA SEZIONE A : Traguardi formativi CURRICOLO DI MATEMATICA SCUOLA PRIMARIA MATEMATICA SEZIONE A : Traguardi formativi FINE CLASSE TERZA SCUOLA PRIMARIA FINE SCUOLA PRIMARIA COMPETENZE SPECIFICHE ABILITÀ CONOSCENZE ABILITÀ CONOSCENZE Utilizzare

Dettagli

Appunti sul corso di Complementi di Matematica- modulo Analisi Prof. B.Bacchelli

Appunti sul corso di Complementi di Matematica- modulo Analisi Prof. B.Bacchelli Appunti sul corso di Complementi di Matematica- modulo Analisi Prof. B.Bacchelli 09- Integrale doppio: Riferimenti: R.Adams, Calcolo ifferenziale 2. Capitoli 5.1, 5.2, 5.4. Esercizi 5.3, 5.4 Integrale

Dettagli

Rappresentazione di oggetti 3D

Rappresentazione di oggetti 3D Rappresentazione di oggetti 3D 1 Modellazione geometrica La modellazione geometrica riguarda le tecniche di rappresentazione di curve e superfici Surface modeling Rappresentazione della superficie di un

Dettagli

La categoria «ES» presenta (di solito) gli stessi comandi

La categoria «ES» presenta (di solito) gli stessi comandi Utilizzo delle calcolatrici FX 991 ES+ Parte II PARMA, 11 Marzo 2014 Prof. Francesco Bologna bolfra@gmail.com ARGOMENTI DELLA LEZIONE 1. Richiami lezione precedente 2.Calcolo delle statistiche di regressione:

Dettagli

Finalità (tratte dalle Indicazioni nazionali per il curricolo della scuola dell infanzia e del primo ciclo d istruzione)

Finalità (tratte dalle Indicazioni nazionali per il curricolo della scuola dell infanzia e del primo ciclo d istruzione) CURRICOLO DI MATEMATICA SCUOLA PRIMARIA Finalità (tratte dalle Indicazioni nazionali per il curricolo della scuola dell infanzia e del primo ciclo d istruzione) Le conoscenze matematiche contribuiscono

Dettagli

Tecniche avanzate. Quello che avanza... Image-based rendering. Quaternioni e rotazioni 3D. Intersezioni

Tecniche avanzate. Quello che avanza... Image-based rendering. Quaternioni e rotazioni 3D. Intersezioni Tecniche avanzate Quello che avanza... Image-based rendering Quaternioni e rotazioni 3D Intersezioni Grafica al Calcolatore Tecniche avanzate - 1 Image-based rendering Il problema è della grafica interattiva

Dettagli

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x FUNZIONI Esercizio 1 Studiare la funzione f(x) = ln ( ) x e disegnarne il grafico. x 1 Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: { e x per x 1 f(x) = α x + e 1 per 1

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Grafica Real-Time, Hardware Grafico e Linguaggi di Shading. Alessandro Martinelli

Grafica Real-Time, Hardware Grafico e Linguaggi di Shading. Alessandro Martinelli Grafica Real-Time, Hardware Grafico e Linguaggi di Shading Alessandro Martinelli Grafica Real Time Il concetto di 'Real Time' in ambito grafico ha una valenza molto particolare: Fino agli anni '80, solo

Dettagli

Il risultato di un analisi chimica è un informazione costituita da: un numero un incertezza un unità di misura

Il risultato di un analisi chimica è un informazione costituita da: un numero un incertezza un unità di misura Il risultato di un analisi chimica è un informazione costituita da: un numero un incertezza un unità di misura Conversione del risultato in informazione utile È necessario fare alcune considerazioni sul

Dettagli

I.I.S. "MARGHERITA DI SAVOIA" a.s. 20014-2015 LICEO LINGUISTICO classe I BL Programma di MATEMATICA

I.I.S. MARGHERITA DI SAVOIA a.s. 20014-2015 LICEO LINGUISTICO classe I BL Programma di MATEMATICA classe I BL Numeri naturali L insieme dei numeri naturali e le quattro operazioni aritmetiche. Le potenze. Espressioni. Divisibilità, numeri primi. M.C.D. e m.c.m. Numeri interi relativi L insieme dei

Dettagli

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego CONVITTO NAZIONALE MARIA LUIGIA di Parma CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12 Disciplina : MATEMATICA Docente Prof.ssa Paola Perego COMPETENZE CONOSCENZE Funzione esponenziale e logaritmica

Dettagli

Grafica al Calcolatore Fotorealismo - 1. Introduzione

Grafica al Calcolatore Fotorealismo - 1. Introduzione Fotorealismo Dove si elecano trucchi sagaci ed effetti speciali che servono ad aumentare con poca spesa il fotorealismo. Introduzione Environment map Light map Ombre geometriche Trasparenza Multi-pass

Dettagli

MATEMATICA OBIETTIVI DI APPRENDIMENTO TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE

MATEMATICA OBIETTIVI DI APPRENDIMENTO TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE Il bambino raggruppa e ordina oggetti e materiali secondo criteri diversi. Identifica alcune proprietà dei materiali. Confronta e valuta quantità. Utilizza simboli per registrare materiali e quantità.

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Corso di Grafica Computazionale

Corso di Grafica Computazionale Corso di Grafica Computazionale Lighting Docente: Massimiliano Corsini Laurea Specialistica in Ing. Informatica Università degli Studi di Siena Interazione Luce-Materia 2 Interazione luce-materia Cosa

Dettagli

3.1 CAPITOLO 3 FORMAZIONE DELLE IMMAGINI

3.1 CAPITOLO 3 FORMAZIONE DELLE IMMAGINI 3.1 CAPITOLO 3 FORMAZIONE DELLE IMMAGINI Il processo di formazione di una immagine da parte di un sistema ottico è facilmente descrivibile in termini di raggi. In figura la scatola rappresenta un generico

Dettagli

Algoritmo per il rilevamento di targhe

Algoritmo per il rilevamento di targhe Algoritmo per il rilevamento di targhe 19 maggio 2008 Nell affrontare il problema del riconoscimento delle targhe sono stati sviluppati due algoritmi che basano la loro ricerca su criteri differenti. Lo

Dettagli

Piano Lauree Scientifiche 2011-2012

Piano Lauree Scientifiche 2011-2012 Piano Lauree Scientifiche 2011-2012 «non si può intendere se prima non s impara a intender lingua, e conoscer i caratteri, nei quali è scritto. Egli è scritto in lingua matematica, e i caratteri sono triangoli,

Dettagli

Alla ricerca del rettangolo più bello

Alla ricerca del rettangolo più bello Alla ricerca del rettangolo più bello Livello scolare: biennio Abilità interessate Individuare nel mondo reale situazioni riconducibili alla similitudine e descrivere le figure con la terminologia specifica.

Dettagli