CORSO DI STATISTICA N.O. - II CANALE Esercizi

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CORSO DI STATISTICA N.O. - II CANALE Esercizi"

Transcript

1 CORSO DI STATISTICA N.O. - II CANALE Esercizi Dott.ssa CATERINA CONIGLIANI Facoltà di Economia Università Roma Tre 1 Esercizi su sintesi di distribuzioni semplici Esercizio 1.1 Data la seguente distribuzione di frequenze relative degli abbonati alla pay per view per squadra di calcio: Squadra Bari Bologna Lecce Milan Piacenza Roma Sampdoria Vicenza f i rappresentarla graficamente e calcolare la moda [R: Mo = Milan]. Esercizio 1.2 Data la seguente distribuzione delle macchine vendute per casa produttrice: Casa Fiat Ford Lancia Opel Renault Volkswagen n i rappresentarla graficamente e calcolare la moda [R: Mo = F iat]. Esercizio 1.3 Data la seguente distribuzione dei medici a tempo definito secondo la qualifica degli Istituti generali regionali di cura pubblica 1991: Qualifica Direttori Vice-direttori Primari Aiuti Assistenti n i rappresentarla graficamente e calcolare la moda e la mediana [R: Mo = Aiuti, Me = Aiuti]. 1

2 Statistica n.o. - II canale 2 Esercizio1.4 Data la seguente distribuzione di un insieme di scuole per tipo (Compendio 1996): Tipo materna elementare media secondaria tot n i rappresentarla graficamente e calcolare moda, mediana, quartili [R: M o = materna, Me = elementare, Q 1 = materna, Q 3 = media]. Esercizio1.5 Data la seguente distribuzione dei suicidi per il titolo di istruzione (Compendio 1996): Tipo analfabeta elementare media superiore tot n i rappresentarla graficamente e calcolare moda, mediana, quartili [R: M o = media, M e = media, Q 1 = elementare, Q 3 = media]. Esercizio 1.6 Data la seguente distribuzione delle vendite di auto per tipo (Quattroruote, aprile 1996): X utilitaria media super lusso n(x) rappresentarla graficamente e calcolare moda, mediana, quartili [R: M o = utilitaria, M e = utilitaria, Q 1 = utilitaria, Q 3 = media]. Esercizio 1.7 Rappresentare graficamente la seguente distribuzione relativa a tempi tra sbuffi di Geyser: X n(x) e individuare classe modale, mediana e media aritmetica. [R: µ = 72.7; Me = 75]. Esercizio 1.8 Data la seguente distribuzione degli appartamenti dichiarati abitabili a Milano nel 1932 secondo l ampiezza: n. vani n(x) rappresentarla graficamente e calcolare moda, mediana e quartili [R: Mo = 2, Me = 3, Q 1 = 2, Q 3 = 3].

3 Statistica n.o. - II canale 3 Esercizio 1.9 Data la seguente distribuzione di un collettivo di 15 studenti secondo il voto ottenuto all esame di Statistica: voto n(x) a) rappresentare graficamente la distribuzione e la funzione di ripartizione; b) calcolare la media aritmetica, la moda e la mediana; c) utilizzando i dati della tabella, costruire una distribuzione di frequenza in classi, con classi 18-20, 21-23, 24-26, 27-30, rappresentarla graficamente, e calcolare la media aritmetica, la classe modale e la mediana nell ipotesi di uniforme distribuzione del carattere all interno delle classi; confrontare i risultati con quelli del punto b). [R: b) µ = 25.4, Mo = 27, Me = 26; c) µ = 25.63, Me = 26]. Esercizio 1.10 Data la seguente distribuzione di pontefici secondo la durata del pontificato (in anni): durata (anni) e più tot n i a) calcolare la mediana e la media aritmetica chiudendo l ultima classe a 28; b) calcolare la mediana e la media aritmetica chiudendo l ultima classe a 40, e commentare; c) calcolare lo scostamento quadratico medio (chiudendo l ultima classe a 28); d) senza rifare tutti i calcoli, calcolare la mediana, la media aritmetica, lo scostamento quadratico medio della durata del pontificato in mesi (chiudendo l ultima classe a 28). [R : a) µ = 7.37, Me = 6; b) µ = 7.46, Me = 6; c) σ = 5.8; d) µ = 88.44, Me = 72, σ = 69.6]. Esercizio 1.11 Data la seguente distribuzione secondo il reddito (in milioni), per cui per ogni classe è noto l ammontare di reddito posseduto dagli individui della classe: reddito >100 tot n i ammontare a) calcolare la media aritmetica utilizzando l informazione sull ammontare di reddito per ogni classe; b) calcolare la media aritmetica ipotizzando l uniforme distribuzione del reddito nelle classi; [R : a) µ = 4.73; b) µ = 4.81].

4 Statistica n.o. - II canale 4 Esercizio 1.12 Data la seguente distribuzione relativa ai gradi di nuvolosità registrati presso un osservatorio di Parigi in 2192 giorni: gradi tot n i a) calcolare la classe modale; b) calcolare la media aritmetica e la varianza; c) calcolare la mediana e i quartili. [R : a) Mo = (80 100) ; b) µ = 60.5, σ 2 = ; c) Me = 70.3, Q 1 = 32.2, Q 3 = 88.0]. Esercizio 1.13 Consideriamo le temperature massime registrate a Catania negli anni : Anno Temperatura a) Calcolare media e lo scostamento quadratico medio. b) Senza rifare tutti i calcoli, calcolare media e scostamento quadratico medio delle temperature misurate in Farenhait (nota: F = 32 + C 9/5). [R: a) µ = 40.2; σ = 2.94; b) µ = ; σ = 5.292] Esercizio 1.14 In un pronto soccorso di un ospedale sono stati registrati il numero delle richieste di intervento giornaliere (X) su un arco di 100 giorni, ottenendo la seguente distribuzione di frequenza: X n(x) a) Fare la rappresentazione grafica della distribuzione e della sua funzione di ripartizione; b) calcolarne la media, la mediana e lo scostamento quadratico medio. [R: µ = 3.84; Me = 3; σ 2 = 4.47]

5 Statistica n.o. - II canale 5 Esercizio 1.15 In una classe di 24 studenti i voti riportati all esame di maturità sono stati i seguenti: a) calcolare la mediana e la media aritmetica; b) costruire la corrispondente distribuzione di frequenza (modalità per modalità), e su di essa calcolare: mediana, media aritmetica, primo e terzo quartile, decimo e settantesimo percentile; c) dopo aver effettuato una suddivisione in classi di ampiezza 4, calcolare nuovamente gli indici del punto b) ipotizzando l uniforme distribuzione del carattere nelle classi. Esercizio 1.16 Lungo una strada statale vi sono 7 distributori di benzina: due al km 8, tre al km 40, uno al km 61 e uno al km 106. I distributori hanno uguale capienza, vengono riforniti uno alla volta e richiedono rifornimenti con uguale frequenza. A quale km della strada si dovrà costruire un deposito di benzina da cui partano le autobotti con i rifornimenti per i distributori se si vogliono minimizzare i costi di trasporto, supposti proporzionali alle distanze? Perchè? [R: Me = km 40] Esercizio 1.17 Data la seguente distribuzione delle frequenze cumulate relative di un collettivo rispetto al carattere X: X F(X) a) fare la rappresentazione grafica della distribuzione e della sua funzione di ripartizione; b) individuare la classe modale; c) calcolare mediana e media aritmetica; d) calcolare la media aritmetica e la varianza della variabile Z=1-3X; e) calcolare la proporzione di unità che presentano un livello di X 12. [R: b) classe modale: (4-6); c) µ = 11.4, Me = 8.25; d) µ z = 33.2, σ 2 z = ; e) F (12) = 0.684] Esercizio 1.18 Una sessione è costituita da tre appelli di esame, a cui si presentano, rispettivamente, 80, 100 e 50 studenti; tutti vengono promossi. Il voto medio riportato al primo appello risulta pari a 26.4, con scostamento quadratico medio (s.q.m.) pari a 4.5. Al secondo appello il voto medio risulta pari a Al terzo appello si osserva uno s.q.m. pari a 5. Per l intera sessione il voto medio risulta pari a 27. a) Valutare il voto medio relativo al terzo appello. b) Sapendo che lo s.q.m. complessivo vale 5.5, determinare lo s.q.m. relativo al secondo appello. [R: µ 3 = 27.56; σ 2 = 6.36]

6 Statistica n.o. - II canale 6 Esercizio 1.19 In una popolazione di 1000 alberghi a tre stelle in località di montagna, mare e città, si è rilevato il prezzo medio (in migliaia di lire) di una stanza doppia per una notte (per il mese di settembre). I prezzi medi e gli scostamenti quadratici medi di ciasun gruppo e dell intera popolazione sono stati i seguenti: Ubicazione n. alberghi prezzo medio sqm Montagna Mare Città tot ricavare lo scostamento quadratico medio del prezzo degli alberghi in città. [R: σ città = 14.09] Esercizio 1.20 Sia data la seguente distribuzione delle aziende per numero di addetti, per la quale siano note le medie e gli scostamenti quadratici medi delle classi: Classi di addetti Aziende N. medio addetti S.q.m. fino a più di a) Calcolare la media del n. di addetti per azienda. b) Calcolare la varianza del n. di addetti per azienda. [R: µ = ; σ 2 = ;] Esercizio 1.21 Al censimento del 1981 le famiglie italiane secondo il numero di componenti (X) sono risultate così distribuite: X e più n(x) a) Fare la rappresentazione grafica della distribuzione di frequenza e della funzione di ripartizione. b) Calcolare moda, mediana e media aritmetica. c) Calcolare i quartili e il decimo e il trentesimo percentile. [R: b) Mo = 2, Me = 3, µ = 2.985; c) Q 1 = 2, Q 3 = 4, P 10 = 1, P 30 = 2]

7 Statistica n.o. - II canale 7 Esercizio 1.22 Data la seguente tabella: X n(x) a) Fare la rappresentazione grafica della distribuzione di frequenza e quella della sua funzione di ripartizione. b) Calcolare: la mediana, il primo e il terzo quartile. [R: Me = 3.67; Q 1 = 1.64; Q 3 = 10.5; ] Esercizio 1.23 Sia data la seguente distribuzione dei redditi: Classi di reddito (milioni) Frequenze relative fino a oltre Totale Calcolare media, s.q.m., un indice di asimmetria e la proporzione di unità con reddito compreso nell intervallo (µ σ, µ + σ). Commentare i risultati. [R: µ = 19.84; σ = 12.87; γ = 1.41; F (µ + σ) F (µ σ) = 0.725] Esercizio 1.24 Data la seguente distribuzione di frequenza: X n i a) fare la rappresentazione grafica della distribuzione; b) fare la rappresentazione grafica della funzione di ripartizione; c) calcolare la mediana e la media aritmetica; d) calcolare lo scostamento quadratico medio; e) calcolare un indice di asimmetria. [R: c) Me = 4.8, µ = 13.26; d) σ = 17.61; e) γ = 2.006]

8 Statistica n.o. - II canale 8 Esercizio 1.25 In una cittadina degli Stati Uniti è stata rilevata la concentrazione media giornaliera di ozono (X in parti di miliardi) fra l 1/5/74 e il 13/9/74, ottenendo la seguente distribuzione di frequenza: X n(x) a) Fare la rappresentazione grafica delle frequenze relative e delle frequenze relative cumulate. b) Calcolare un indice di dimensione, uno di variabilità ed uno di asimmetria a vostra scelta. c) Calcolare la proporzione di giorni con concentrazione media compresa nell intervallo (µ σ, µ + σ). d) Calcolare media e scostamento quadratico medio della variabile Z = 2X 150. [R: b) µ = 88.97; σ = 56.19; γ = 0.78; c) F (µ + σ) F (µ σ) = 0.672; d) µ z = 27.94, σ z = ] Esercizio 1.26 In un campione di 100 aziende della provincia di Milano è stata rilevata la superficie, ottenendo i seguenti risultati: Classe di superficie Numero di aziende a) Si rappresentino graficamente i dati nel modo che si ritiene più opportuno. b) Si determini la classe modale. c) Si calcolino la mediana e un indice di asimmetria. d) Si calcoli la proporzione di aziende con superficie 50. e) Si calcoli la proporzione di aziende con superficie 40. f) Si calcoli la proporzione di aziende con superficie >60 [R: b) classe modale: (0-10); c) Me=25.814, µ Me = 0.33; d) F (50) = 0.76; e) F (40) = 0.65; σ f) 1 F (60) = 0.22]

9 Statistica n.o. - II canale 9 2 Esercizi su concentrazione e numeri indici Esercizio 2.1 Data la seguente distribuzione unitaria: i a i a) calcolare un indice di concentrazione; b) costruire la corrispondente distribuzione di frequenza e su di essa calcolare un indice di concentrazione. [R: a) R = 0.4; b) R = 0.4] Esercizio 2.2 Data la seguente distribuzione per superficie ( in m 2) degli appartamenti esistenti nel comune di Bologna al 30/06/57: classi di superf. < >95 tot n i superf. tot calcolare un indice di concentrazione [R: R = 0.315] Esercizio 2.3 Data la seguente distribuzione del reddito familiare (X) in Italia nel 1977 (in milioni): X f i calcolare un indice di concentrazione [R: R = 0.34] Esercizio 2.4 Data la seguente distribuzione di 9 emittenti radio secondo gli introiti pubblicitari: i X i calcolare un indice di concentrazione [R: R = ]

10 Statistica n.o. - II canale 10 Esercizio 2.5 La distribuzione dei redditi di 150 famiglie è risultata la seguente: Classe di reddito N.di famiglie Reddito medio della classe Rappresentare la spezzata di concentrazione e calcolare il rapporto di concentrazione di Gini. [R: R = ] Esercizio 2.6 La tabella seguente riporta le distribuzioni degli investimenti in termini percentuali in due industrie A e B: Classe di inv. A B tot Calcolare, sia per A che per B, il rapporto di concentrazione di Gini. [R: R A = ; R B = 0.222] Esercizio 2.7 I seguenti dati esprimono il fatturato annuo (in migliaia di euro) di 8 imprese: Calcolare un indice di concentrazione Esercizio 2.8 La distribuzione percentuale di lavoratori autonomi in 10 circoscrizioni romane è risultata la seguente: I II III IV V VI VII VIII IX X Calcolare un indice per misurare la concentrazione dei lavoratori autonomi [R: R = 0.278]

11 Statistica n.o. - II canale 11 Esercizio 2.9 La distribuzione per continente dei casi accertati di AIDS nel 1982 e nel 1987 era la seguente: Continente Africa America Asia Europa Oceania Valutare se la concentrazione della malattia nelle diverse aree geografiche sia variata tra il 1982 e il [R: R 82 = ; R 87 = ]. Esercizio 2.10 La tabella seguente riporta i prezzi e le quantità vendute di due merci A e B in 4 anni: A B anni P i Q i P i Q i a) costruire i numeri indici semplici dei prezzi per le due merci, sia a base fissa all anno 1 che a base mobile b) calcolare i numeri indici sintetici dei prezzi con i metodi di Laspeyres, Paasche e Fisher con base l anno 1. [R : 2 I L = 1.083, 2 I P = 1.063; 3 I L = 0.917, 3 I P = 0.911; 4 I L = 0.80, 4 I P = 0.797]. Esercizio 2.11 La tabella seguente riporta i prezzi e le quantità vendute di tre beni in due tempi diversi: tempo 0 tempo 1 beni P i Q i P i Q i Calcolare i numeri indici sintetici dei prezzi (con base il tempo 0). [R: I L = 1.018, I P = 0.883]

12 Statistica n.o. - II canale 12 Esercizio 2.12 Data la serie dei prezzi di un certo bene dal periodo 1 al periodo 6: anno prezzi a) determinare la serie dei numeri indici con base 2 b) a partire dalla serie del punto a), determinare la serie dei numeri indici con base 4 c) a partire dalla serie del punto b), determinare la serie dei numeri indici a base mobile. d) cosa è accaduto al prezzo del bene tra il periodo 3 e il periodo 6? Calcolare la variazione percentuale del prezzo e valutare se vi è stata una perdita del potere di acquisto della moneta. Esercizio 2.13 La tabella seguente riporta i prezzi e le quantità vendute di due merci A e B in 4 anni: A B anni P i Q i P i Q i a) costruire la serie dei numeri indici dei prezzi di Laspeyres e di Paasche con base 1989; b) calcolare la serie dei numeri indici dei prezzi di Fisher e confrontarla con le due precedenti. [R : 90 I L = 0.87, 90 I P = 0.87; 91 I L = 0.85, 91 I P = 0.84; 92 I L = 0.80, 92 I P = 0.76]. Esercizio 2.14 La tabella seguente riporta una serie di numeri indici dei prezzi al consumo: Anno Base Base ricondurli tutti (dal 1993 al 1997) a base Esercizio 2.15 Per tre diversi titoli azionari, T1, T2 e T3, quotati alla borsa di milano in due diverse giornate (G1 e G2), disponiamo delle seguenti informazioni: G1 G2 Quotazioni in euro Valore scambiato Quotazioni in euro T T T Calcolare l indice sintetico dei prezzi di Laspeyres.

13 Statistica n.o. - II canale 13 Esercizio 2.16 Con riferimento al prezzo delle ciliegie, la serie dei numeri indici a base mobile è la seguente: a) ricavare la serie a base fissa con base 1996 per gli anni ; b) cosa è accaduto al prezzo delle ciliege tra il 1996 e il 2000? Calcolare la variazione percentuale del prezzo e valutare se vi è stata una perdita del potere di acquisto della moneta. c) ricavare la serie a base fissa con base 1998 per gli anni d) cosa è accaduto al prezzo delle ciliege tra il 1998 e il 2000? Calcolare la variazione percentuale del prezzo e valutare se vi è stata una perdita del potere di acquisto della moneta. [R : 96 I 97 = 1.08, 96 I 98 = 1.18, 96 I 99 = 1.29, 96 I 00 = 1.36, 96 I 01 = 1.50; 98 I 97 = 0.92, 98 I 98 = 1, 98I 99 = 1.10, 98 I 00 = 1.15, 98 I 01 = 1.27]. Esercizio 2.17 Data la seguente serie di numeri indici a base fissa (1990): a) ricavare la serie a base mobile; b) ricavare la serie a base fissa con base 1996 per gli anni [R : I 91 = 0.95, I 92 = 0.95, I 93 = 1.06, I 94 = 1.00, I 95 = 0.96, I 96 = 0.97, I 97 = 0.97, I 98 = 0.98, I 99 = 0.98, I 00 = 0.89, I 01 = 1.00; 96 I 97 = 0.97, 96 I 98 = 0.96, 96 I 99 = 0.94, 96 I 00 = 0.84, 96I 01 = 0.83]. Esercizio 2.18 La serie degli indici a base mobile degli occupati nell industria manifatturiera in 5 anni successivi è stata la seguente: a) determinare la variazione percentuale tra il quarto ed il quinto anno del numero degli occupati; b) costruire la serie degli indici a base fissa con base al tempo zero. Esercizio 2.19 La tabella seguente riporta i prezzi e le quantità scambiate di tre merci (A, B, C) in 3 anni: A B C anni P i Q i P i Q i P i Q i Calcolare sia per il 1996 che per il 1997 gli indici dei prezzi di Laspeyres e di Paasche prendendo il 1995 come anno base. [R : 96 I L = 0.93, 96 I P = 0.93; 97 I L = 0.96, 97 I P = 0.96].

14 Statistica n.o. - II canale 14 Esercizio 2.20 Le quotazioni del prezzo del petrolio brent ($ al barile) in 10 giorni successivi sono state le seguenti: giorni quotazioni a) determinare la serie dei numeri indici a base mobile; b) a partire dalla serie del punto a), determinare la serie dei numeri indici a base fissa con base 4. Esercizio 2.21 La seguente tabella riporta la serie trimestrale del Prodotto Interno Lordo (in milioni di euro) nel 2003 e 2004 (a prezzi costanti 1995): Anno Trimestre PIL 2003 I II III IV I II III IV Calcolare la variazione congiunturale (variazione percentuale rispetto al periodo precedente) e la variazione tendenziale (variazione percentuale rispetto allo stesso periodo dell anno precedente) nel secondo trimestre Esercizio 2.22 Sapendo che il valore dell Indice dei prezzi al consumo per l intera collettivita a marzo 2005 era 1.264, a febbraio 2006 era 1.287, a marzo 2006 era 1.290, calcolare il tasso di inflazione congiunturale e tendenziale a marzo [R : +0.2%, +2.1%].

15 Statistica n.o. - II canale 15 3 Esercizi sulle distribuzioni doppie Esercizio 3.1 Data la seguente tabella a doppia entrata relativa ai caratteri reddito mensile in milioni di lire (X) e numero di weekend dedicati a viaggiare (Y): Y X calcolare: a) la media e la varianza di X, la media e la varianza di Y, la Cov(X,Y), il coefficiente di correlazione di Bravais; b) la media di X quando Y è tra 2 e 3 weekend; c) la media e la varianza di Z=X+Y e di W=X-Y. [R: a) µ x = 1.98, σ 2 x = 1.01, µ y = 1.83, σ 2 y = 1.67, σ xy = 0.11, r = 0.08; b) µ x y (2 3) = 1.86; c) µ z = 3.81; σ 2 z = 2.9; µ w = 0.15; σ 2 w = 2.46] Esercizio 3.2 Data la seguente distribuzione doppia: Y X a) calcolare la media delle due distribuzioni marginali, le varianze, la covarianza, il coefficiente di correlazione di Bravais. b) determinare la distribuzione del rapporto W=X/Y e calcolarne media e varianza. [R: a) µ x = 14.25, µ y = 2.125, σ 2 x = 44.44, σ 2 y = 0.61, σ xy = 3.47, r = 0.67; b) µ w = 6.75; σ 2 w = 4.937] Esercizio 3.3 Data la seguente distribuzione doppia: Y X a) calcolare la media delle due distribuzioni marginali, le varianze, la covarianza, il coefficiente di correlazione di Bravais; b) calcolare la media di X quando Y cade nella terza classe; c) determinare la distribuzione della combinazione lineare Z=X+Y e calcolarne media e varianza; d) verificare le proprietà delle combinazioni lineari. [R: a) µ x = 7.2, µ y = 3.4, σ 2 x = 9.76, σ 2 y = 1.44, σ xy = 0, r = 0; b) µ x y (4 6) = 7.2]

16 Statistica n.o. - II canale 16 Esercizio 3.4 Data la seguente tabella a doppia entrata relativa ai caratteri spese mensili per generi alimentari (X) e per generi non alimentari (Y ) in milioni di lire (valori centrali delle classi) rilevate su un collettivo di 150 famiglie: Y X a) calcolare la media e la varianza di X, la media e la varianza di Y, la Cov(X, Y ), il coefficiente di correlazione di Bravais; b) calcolare la media e la varianza di X quando Y = 2.5; c) costruire la tabella relativa alla distribuzione della spesa complessiva familiare Z = X + Y, e calcolarne media e varianza; d) calcolare media e varianza di Z a partire dalle quantità calcolate al punto a) e verificare che si ottengono gli stessi risultati del punto c). [R: a) µ x = 0.782, µ y = 2.467, σ 2 x = 0.055, σ 2 y = 0.671, σ xy = 0.035, r = 0.183; b) µ x y=2.5 = 0.773, σ 2 x y=2.5 = 0.054; c) µ z = 3.249; σ 2 z = 0.796] Esercizio 3.5 In un collettivo di 50 famiglie è stata rilevata la distribuzione congiunta dei redditi mensili da lavoro del marito (X) e della moglie (Y ) espressi in migliaia di euro (valori centrali delle classi): Y X a) fare la rappresentazione grafica delle tre distribuzioni della X condizionate da Y = 0, Y = 1, Y = 2, e calcolarne le medie; b) calcolare Cov(X, Y ) e il coefficiente di correlazione di Bravais; c) calcolare il numero di famiglie per le quali il reddito del marito è pari ad almeno 2 mila euro e quello della moglie ad almeno mille; d) costruire la tabella relativa alla distribuzione del reddito complessivo familiare Z = X + Y, e calcolarne media e varianza. [R: a) µ x y=0 = 2.22, µ x y=1 = 1.92, µ x y=2 = 1.25; b) σ xy = 0.216, r = 0.369; c) 18; d) µ z = 2.72; σ 2 z = ] Esercizio 3.6 Per la seguente serie di coppie di valori: X X 5 Y Y 4 67 si sa che il coefficiente di correlazione r xy =1. Si determinino i due valori mancanti X 5 e Y 4. [R: X 5 = 13; Y 4 = 52]

17 Statistica n.o. - II canale 17 Esercizio 3.7 Si consideri il valore dei depositi in miliardi nelle aziende di credito e presso le amministrazioni postali in Italia nel 1987: Aziende di credito Amministrazioni postali Totale I due tipi di deposito sono così distribuiti (percentualmente) nelle due ripartizioni del Centro- Nord e Mezzogiorno: Aziende di credito Amministrazioni postali Centro-Nord 79.9% 65.9% Mezzogiorno 20.1% 34.1% Totale 100% 100% a) Sulla base di queste informazioni si costruisca la tabella che classifica congiuntamente i valori dei depositi per ripartizione territoriale e tipo di deposito. b) Calcolare un indice adeguato per misurare la dipendenza tra i due caratteri. [R: χ 2 = ] Esercizio 3.8 Data la seguente tabella a doppia entrata: Y tot X tot completarla nell ipotesi di indipendenza assoluta tra i due caratteri. aritmetica e la mediana di Y. [R: µ y = 4.4; Me y = 4] Calcolare poi la media Esercizio 3.9 Data la seguente tabella: a) riempirla in modo che risulti χ 2 rel =1; b) senza svolgere i calcoli, quanto vale χ 2? [R: χ 2 = 150] Y 1 6 tot X tot

18 Statistica n.o. - II canale 18 Esercizio 3.10 Data la seguente tabella a doppia entrata: a) riempirla in modo che risulti χ 2 rel = 1; b) calcolare poi χ 2. [R: χ 2 = 200] Y 1 3 tot X tot Esercizio 3.11 Per saggiare il giudizio sulla corrispondenza fra documentazione statistica e realtà dei medici, è stato chiesto a un campione di essi se le statistiche ufficiali italiane sulle malattie infettive rappresentino la situazione reale: Giudizio Ruolo Tutte Solo alcune Nessuna Tot Medico condotto Mutualistico Ospedaliero Altri Tot Valutare se vi è dipendenza tra giudizio e ruolo dei medici. [R: χ 2 = 1.74] Esercizio 3.12 In 115 supermercati sono stati rilevati il prezzo di vendita (X) ed il numero delle confezioni vendute (Y) di un certo tipo di prodotto ottenendo la seguente distribuzione doppia: Y X Tot Tot a) Valutare se vi è dipendenza assoluta e dipendenza lineare tra prezzo di vendita e numero di confezioni vendute. Commentare i risultati. b) Quanti supermercati hanno venduto almeno 170 confezioni ad un prezzo non superiore a 0.80?

19 Statistica n.o. - II canale 19 Esercizio 3.13 Per la seguente tabella: X Y Y 1 Y 2 Y 3 Y senza svolgere i calcoli, determinare χ 2 e χ 2 rel. [R: χ2 = 47; χ 2 rel = 1] Esercizio 3.14 Data la seguente distribuzione doppia: Y X commentare i valori che si ottengono per il χ 2 e per r xy.[r: χ 2 rel = 0.5; r xy = 0] Esercizio 3.15 Valutare se vi è dipendenza tra la regione di provenienza e la facoltà di iscrizione per un campione di studenti iscritti al I anno dell Università di Bologna nel 1974: Facoltà Provenienza Sud-Isole Centro Nord Tot A B C D Tot [R: χ 2 = ]

20 Statistica n.o. - II canale 20 4 Esercizi sulla regressione Esercizio 4.1 In 5 famiglie sono stati rilevati i seguenti redditi (X) e risparmi (Y): X Y a) determinare l equazione della retta di regressione di Y su X; b) stimare il presumibile valore del risparmio per una famiglia con reddito pari a 50: Ŷ(50); c) determinare il valore del coefficiente di correlazione r xy. [R: Ŷ= X; Ŷ(50)=31.5; r xy = 0.75] Esercizio 4.2 Per due variabili statistiche X e Y si hanno le seguenti coppie di osservazioni: X Y Determinare i parametri della retta di regressione Ŷ =â + bx e valutarne la bontà di adattamento tramite l indice R 2. Posto poi che si osservi X=12, sulla base della retta stimata, qual è il presumibile valore della Y? [R: â = 5.75, b = 0.39; R 2 = 0.94; Ŷ(12)=1.07] Esercizio 4.3 Per una distribuzione doppia si è stimata la retta di regressione X i =10-2Y i. Individuare quale, fra le seguenti, è la possibile equazione della retta di regressione di Y su X e motivare la scelta: a) Ŷi= 4+0.4X i b) Ŷi= X i c) Ŷi= X i d) Ŷi= X i. Esercizio 4.4 Con riferimento ai dati dell esercizio 3.2, determinare i parametri della retta di regressione di X su Y. Esercizio 4.5 Con riferimento ai dati dell esercizio 3.3, determinare i parametri della retta di regressione di X su Y e quelli della retta di regressione di Y su X.

21 Statistica n.o. - II canale 21 Esercizio 4.6 Con riferimento ai dati dell esercizio 3.5, determinare i parametri della retta di regressione di Y su X. Esercizio 4.7 Con riferimento ai dati dell esercizio 3.12, determinare i parametri della retta di regressione di X su Y. Esercizio 4.8 Data la variabile statistica doppia (X,Y), per cui è noto che var(x)=81var(y), indicare quali tra i seguenti valori del coefficiente angolare della retta di regressione di X su Y: 2, 0, 15 non sono accettabili, motivando la risposta fornita. [R: il valore 15 non è accettabile]. Esercizio 4.9 Al fine di stabilire se esiste una relazione statistica tra l altezza degli alberi di ciliegie (Y) ed il diametro medio delle ciliegie prodotte (X), si considerino le osservazioni della seguente tabella: Diametro (cm.) Altezza (m.) a) Calcolare la retta di regressione di X su Y. Stabilire se X e Y sono: incorrelate, correlate positivamente oppure correlate negativamente. b) Calcolare la varianza residua, la varianza spiegata e l indice di accostamento lineare. c) Si preveda, sulla base della relazione trovata al punto a), il diametro delle ciliegie prodotte da un albero di altezza 3.5. Commentare il risultato. d) Si esprima l altezza delle piante in centimetri e si indichi con W la corrispondente variabile statistica. Senza rifare i calcoli, a partire dai parametri della funzione di regressione trovata al punto a), determinare la funzione di regressione lineare di X su W. [R: X = 1.26y 3.53, σxy = 0.326; V ar res = , V ar tot = 0.5, R 2 = 0.82; X (3.5) = 0.88; X = w 3.53]

22 Statistica n.o. - II canale 22 Esercizio 4.10 In un campione di 12 famiglie si sono rilevati i pesi del padre (X) e del figlio primogenito (Y) qui di seguito riportati: X Y Stimare i parametri della retta di regressione della Y sulla X e calcolarne l R 2. [R: Ŷ = x, R2 = 0.46] Esercizio 4.11 In un campione di 15 famiglie si è rilevato il reddito annuo e la spesa per generi alimentari: Reddito Spesa Si stimino i parametri della retta di regressione della spesa per alimenti in funzione del reddito netto annuo e si determini la bontà di adattamento della relazione stimata. [R: Ŷ = x, R2 = 0.93] Esercizio 4.12 In una indagine campionaria si sono rilevati i seguenti dati sulla superficie in ettari (X) e sul rendimento in q/ha (Y) di 10 aziende cerealicole: (3, 27) (2, 26) (4, 30) (3, 28) (4, 32) (2, 30) (6, 33) (5, 29) (4, 31) (6, 31) Si stimino i parametri della retta di regressione del rendimento in funzione della dimenzione aziendale. [R: â = 25.64, b = 1.04] Esercizio 4.13 Si considerino i seguenti dati relativi al numero di ore di studio (X) di un campione casuale di 8 studenti per la preparazione dell esame di statistica ed il voto (Y) riportato: X Y trovare la retta di regressione delle votazioni riportate sulle ore di studio [R: Ŷ = x] Esercizio 4.14 Si siano osservate le seguenti coppie di valori per le variabili X e Y: X Y Determinare l equazione della retta che esprime la Y in funzione della X. Rappresentare sul piano cartesiano i punti osservati e la retta interpolante. [R: β 0 = 0.548, β 1 = 0.636]

23 Statistica n.o. - II canale 23 Esercizio 4.15 I voti in Economia (X) ed in Statistica (Y) riportati da 10 studenti sono stati i seguenti: X Y Sapendo che Var(X)=15.16, Var(Y)=16.09, Cov(X,Y)=14.78, determinare l equazione della retta che esprime la Y in funzione della X. [R: â = 0.505, b = 0.975] Esercizio 4.16 Negli anni , l ascolto di televisione (Y) nella fascia ha avuto il seguente andamento (dati Auditel, in milioni di ascoltatori): Anno Y Interpolare tale distribuzione con una funzione di tipo Ŷ =â b t e sulla base di questo modello prevedere il numero di ascoltatori (in milioni) per l anno [R: â = 0.66, b = 1.20; Ŷ (1996) = 3.4] Esercizio 4.17 Per le seguenti 5 coppie di osservazioni: X Y si vuole interpolare la Y con la funzione Ŷ =ĉ 0+ĉ 1 X 2. a) determinare i parametri ĉ 0 e ĉ 1 ; b) valutare la bontà di adattamento di tale funzione. [R: ĉ 0 = 0.546, ĉ 1 = 1.086; R 2 = 0.98] Esercizio 4.18 Date le seguenti coppie di osservazioni: X Y a) interpolare con la funzione Ŷ =â+ bx 2 ; b) confrontare la varianza residua (cioè il danno) che si ha interpolando con tale parabola con quella che si ha interpolando con la retta Ŷ =â+ bx. Che cosa possiamo concludere? [R: â = 2.078, b = 3.54; V ar res ( X 2 ) = 0.81, V ar res (X) = 47.74] Esercizio 4.19 Date le seguenti coppie di valori (X, Y): (3, 5) (6, 12.5) (9, 14) (15, 35) (25, 65) sulla base dei quadrati dei coefficienti di correlazione individuare quale di queste due funzioni Ŷ=â 1 + b 1 X Ŷ=â 2 + b 2 X 2 approssima meglio la relazione esistente tra X e Y, e stimarne i parametri. [R: si adatta meglio la prima funzione, con R 2 = 0.984, â 1 = 5.832, b 1 = 2.77].

24 Statistica n.o. - II canale 24 Esercizio 4.20 Per un campione di 8 famiglie con i seguenti redditi Y (in euro): 3.000; 3.250; 3.500; 3.750; 4.000; 4.250; 4.500; si sono riscontrate, rispettivamente, le seguenti spese per il vestiario X (in euro): 285; 320; 350; 380; 415; 450; 455; 485 a) si stimino i parametri della retta di regressione della spesa per vestiario (X) in funzione del reddito (Y), e si determini la bontà di adattamento della relazione stimata; b) senza rifare tutti i calcoli, si stimino i parametri della retta di regressione della spesa per vestiario in lire in funzione del reddito in lire. [R: a) R 2 = 0.986, α = , β = 0.115; b) α = , β = 0.115]

CORSO DI STATISTICA N.O. - II CANALE Esercizi

CORSO DI STATISTICA N.O. - II CANALE Esercizi CORSO DI STATISTICA N.O. - II CANALE Esercizi Dott.ssa CATERINA CONIGLIANI Facoltà di Economia Università Roma Tre 1 Esercizi su sintesi di distribuzioni semplici Esercizio 1.1 Data la seguente distribuzione

Dettagli

CORSO DI STATISTICA N.O. - II CANALE Esercizi

CORSO DI STATISTICA N.O. - II CANALE Esercizi CORSO DI STATISTICA N.O. - II CANALE Esercizi Dott.ssa CATERINA CONIGLIANI Facoltà di Economia Università Roma Tre 1 Esercizi su sintesi di distribuzioni semplici Esercizio 1.1 Data la seguente distribuzione

Dettagli

Esercizi di riepilogo Statistica III canale, anno 2008

Esercizi di riepilogo Statistica III canale, anno 2008 Esercizio 1 - Esercizio 5 esame 22 giugno 2004 Esercizi di riepilogo Statistica III canale, anno 2008 Data la seguente distribuzione di 100 dipendenti di un azienda in base al tempo impiegato (in minuti)

Dettagli

Esercitazioni del corso di Statistica - III canale Prof. Mortera e Vicard a.a. 2010/2011

Esercitazioni del corso di Statistica - III canale Prof. Mortera e Vicard a.a. 2010/2011 Esercitazioni del corso di Statistica - III canale Prof. Mortera e Vicard a.a. 2010/2011 Esercizi di statistica descrittiva 1. Secondo i dati ISTAT 1997 sull occupazione, la Lombardia e il Veneto presentano

Dettagli

Statistica corso base Canale N Z prof. Francesco Maria Sanna. Prove scritte di esame a.a. 2012-13

Statistica corso base Canale N Z prof. Francesco Maria Sanna. Prove scritte di esame a.a. 2012-13 Statistica corso base Canale N Z prof. Francesco Maria Sanna Prova scritta del 8/1/2013 Prove scritte di esame a.a. 2012-13 Esercizio 1 (5 punti). Nella seguente tabella è riportata la distribuzione delle

Dettagli

Esercitazioni del corso di Statistica Prof. Mortera a.a. 2008/2009

Esercitazioni del corso di Statistica Prof. Mortera a.a. 2008/2009 Esercitazioni del corso di Statistica Prof. Mortera a.a. 2008/2009 Esercizi di statistica descrittiva 1. Secondo i dati ISTAT 1997 sull occupazione, la Lombardia e il Veneto presentano le seguenti distribuzione

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

STATISTICA (A-K) a.a. 2007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 2007

STATISTICA (A-K) a.a. 2007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 2007 A STATISTICA (A-K) a.a. 007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 007 STESS N.O. RD 00 GORU N.O. RD 006 ) La distribuzione del numero degli occupati (valori x 000) in una provincia

Dettagli

STATISTICA (I MODULO INFERENZA STATISTICA) Esercitazione I 27/4/2007

STATISTICA (I MODULO INFERENZA STATISTICA) Esercitazione I 27/4/2007 Esercitazione I 7/4/007 In una scatola contenente 0 pezzi di un articolo elettronico risultano essere difettosi. Si estraggono a caso due pezzi, uno alla volta senza reimmissione. Quale è la probabilità

Dettagli

CORSO INTENSIVO DI STATISTICA I (V.O.) Esercizi

CORSO INTENSIVO DI STATISTICA I (V.O.) Esercizi 1 CORSO INTENSIVO DI STATISTICA I (V.O.) Esercizi Dott.ssa CATERINA CONIGLIANI Facoltà di Economia Università Roma Tre 1 Esercizi di statistica descrittiva Esercizio 1.1 (Prof. Pieraccini, 20 6-00) In

Dettagli

Soluzioni Esercizi elementari

Soluzioni Esercizi elementari Soluzioni sercizi elementari Capitolo. carattere: itolo di Studio, carattere qualitativo ordinato modalità: Diploma, Licenza media, Laurea, Licenza elementare unità statistiche: Individui. carattere: Fatturato,

Dettagli

Preparazione all esonero di statistica del 21 ottobre 2014

Preparazione all esonero di statistica del 21 ottobre 2014 Cognome Nome 1 parte Date le seguenti coppie ordinate relative al peso e all'altezza di alcuni giovani costruire una tabella a doppia entrata con frequenze assolute e percentuali. (90,170) (98,180) (80,170)

Dettagli

La categoria «ES» presenta (di solito) gli stessi comandi

La categoria «ES» presenta (di solito) gli stessi comandi Utilizzo delle calcolatrici FX 991 ES+ Parte II PARMA, 11 Marzo 2014 Prof. Francesco Bologna bolfra@gmail.com ARGOMENTI DELLA LEZIONE 1. Richiami lezione precedente 2.Calcolo delle statistiche di regressione:

Dettagli

Statistica. Alfonso Iodice D Enza iodicede@unina.it

Statistica. Alfonso Iodice D Enza iodicede@unina.it Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica 1 / 16 Outline 1 () Statistica 2 / 16 Outline 1 2 () Statistica 2 / 16 Outline 1 2 () Statistica 2 / 16

Dettagli

Tabella per l'analisi dei risultati

Tabella per l'analisi dei risultati Vai a... UniCh Test V_Statistica_Eliminatorie Quiz V_Statistica_Eliminatorie Aggiorna Quiz Gruppi visibili Tutti i partecipanti Info Anteprima Modifica Risultati Riepilogo Rivalutazione Valutazione manuale

Dettagli

Facoltà di ECONOMIA Corso di Statistica a.a. 2005/2006 Esame del 27/09/2006 Statistica descrittiva

Facoltà di ECONOMIA Corso di Statistica a.a. 2005/2006 Esame del 27/09/2006 Statistica descrittiva Esame del 27/09/2006 Statistica descrittiva 1. Un grossista di apparecchiature informatiche ha rilevato l ammontare totale in migliaia di euro degli ordini effettuati nel 2005 dai suoi principali clienti

Dettagli

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini)

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Esercizio 1 In uno studio sugli affitti mensili, condotto su un campione casuale di 14 monolocali nella città nella città

Dettagli

STATISTICA DESCRITTIVA UNIVARIATA

STATISTICA DESCRITTIVA UNIVARIATA Capitolo zero: STATISTICA DESCRITTIVA UNIVARIATA La STATISTICA è la scienza che si occupa di fenomeni collettivi che richiedono lo studio di un grande numero di dati. Il termine STATISTICA deriva dalla

Dettagli

Anno Accademico 2014-2015. Corso di Laurea in Economia Aziendale Università di Bologna STATISTICA

Anno Accademico 2014-2015. Corso di Laurea in Economia Aziendale Università di Bologna STATISTICA Statistica, CLEA p. 1/68 Anno Accademico 2014-2015 Corso di Laurea in Economia Aziendale Università di Bologna STATISTICA Monia Lupparelli monia.lupparelli@unibo.it http://www2.stat.unibo.it/lupparelli

Dettagli

1 Associazione tra variabili quantitative COVARIANZA E CORRELAZIONE

1 Associazione tra variabili quantitative COVARIANZA E CORRELAZIONE 1 Associazione tra variabili quantitative ASSOCIAZIONE FRA CARATTERI QUANTITATIVI: COVARIANZA E CORRELAZIONE 2 Associazione tra variabili quantitative Un esempio Prezzo medio per Nr. Albergo cliente (Euro)

Dettagli

Grafici delle distribuzioni di frequenza

Grafici delle distribuzioni di frequenza Grafici delle distribuzioni di frequenza L osservazione del grafico può far notare irregolarità o comportamenti anomali non direttamente osservabili sui dati; ad esempio errori di misurazione 1) Diagramma

Dettagli

1. Richiami di Statistica. Stefano Di Colli

1. Richiami di Statistica. Stefano Di Colli 1. Richiami di Statistica Metodi Statistici per il Credito e la Finanza Stefano Di Colli Dati: Fonti e Tipi I dati sperimentali sono provenienti da un contesto delimitato, definito per rispettare le caratteristiche

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

Statistica Applicata all edilizia Lezione 2: Analisi descrittiva dei dati

Statistica Applicata all edilizia Lezione 2: Analisi descrittiva dei dati Lezione 2: Analisi descrittiva dei dati E-mail: orietta.nicolis@unibg.it 1 marzo 2011 Prograa 1 Analisi grafica dei dati 2 Indici di posizione Indici di dispersione Il boxplot 3 4 Prograa Analisi grafica

Dettagli

Compito scritto di Statistica 1 del 3-9-02 Corso di studio in Economia e finanza A.A.2001/02

Compito scritto di Statistica 1 del 3-9-02 Corso di studio in Economia e finanza A.A.2001/02 Compito scritto di Statistica 1 del 3-9-02 Corso di studio in Economia e finanza A.A.2001/02 1) La tabella che segue mostra il numero dei figli di un campione di donne in età superiore ai 40 anni, che

Dettagli

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice cap 0 Romane - def_layout 1 12/06/12 07.51 Pagina V Prefazione xiii Capitolo 1 Nozioni introduttive 1 1.1 Introduzione 1 1.2 Cenni storici sullo sviluppo della Statistica 2 1.3 La Statistica nelle scienze

Dettagli

Statistica Statistica 1+2 (COSTANZO MISURACA) C. di L. in Economia Aziendale - Appello del 11/01/2013. Cognome Nome Matr Firma

Statistica Statistica 1+2 (COSTANZO MISURACA) C. di L. in Economia Aziendale - Appello del 11/01/2013. Cognome Nome Matr Firma Statistica Statistica 1+2 (COSTANZO MISURACA) C. di L. in Economia Aziendale - Appello del 11/01/2013 I seguenti dati rappresentano i valori di mercato di 30 azioni scambiate sulla borsa di New York (in

Dettagli

INDICE PREFAZIONE VII

INDICE PREFAZIONE VII INDICE PREFAZIONE VII CAPITOLO 1. LA STATISTICA E I CONCETTI FONDAMENTALI 1 1.1. Un po di storia 3 1.2. Fenomeno collettivo, popolazione, unità statistica 4 1.3. Caratteri e modalità 6 1.4. Classificazione

Dettagli

Correzione dell Esame di Statistica Descrittiva (Mod. B) 1 Appello - 28 Marzo 2007 Facoltà di Astronomia

Correzione dell Esame di Statistica Descrittiva (Mod. B) 1 Appello - 28 Marzo 2007 Facoltà di Astronomia Correzione dell Esame di Statistica Descrittiva (Mod. B) 1 Appello - 8 Marzo 007 Facoltà di Astronomia ESERCIZIO 1 La seguente tabella riporta la distribuzione congiunta della situazione lavorativa e dello

Dettagli

Statistica (Prof. Capitanio) Slide n. 1. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Statistica (Prof. Capitanio) Slide n. 1. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Statistica (Prof. Capitanio) Slide n. 1 Materiale di supporto per le lezioni. Non sostituisce il libro di testo MEDIA GEOMETRICA M g = x g = n n x i i=1 1 PROPRIETA 1) Identità di prodotto ( ) n n M =

Dettagli

Esercizi di Statistica

Esercizi di Statistica Esercizi di Statistica Selezione di esercizi proposti durante le esercitazioni dei corsi di Statistica tenute presso la Facoltà di Economia dell Università di Salerno Versione del 17 ottobre 2006 2 Per

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA

ESERCIZI DI STATISTICA DESCRITTIVA ESERCIZI DI STATISTICA DESCRITTIVA ES1 Data la seguente serie di dati su Sesso e Altezza di 8 pazienti, riempire opportunamente due tabelle per rappresentare le distribuzioni di frequenze dei due caratteri,

Dettagli

Lezione n. 2 (a cura di Chiara Rossi)

Lezione n. 2 (a cura di Chiara Rossi) Lezione n. 2 (a cura di Chiara Rossi) QUANTILE Data una variabile casuale X, si definisce Quantile superiore x p : X P (X x p ) = p Quantile inferiore x p : X P (X x p ) = p p p=0.05 x p x p Graficamente,

Dettagli

ATTI PARLAMENTARI XIV LEGISLATURA CAMERA DEI DEPUTATI SULLA SITUAZIONE ECONOMICA DEL PAESE. (Anno 2001)

ATTI PARLAMENTARI XIV LEGISLATURA CAMERA DEI DEPUTATI SULLA SITUAZIONE ECONOMICA DEL PAESE. (Anno 2001) ATTI PARLAMENTARI XIV LEGISLATURA CAMERA DEI DEPUTATI Doc. XI n. 1 RELAZIONE GENERALE SULLA SITUAZIONE ECONOMICA DEL PAESE (Anno 2001) (Articolo 2, lettera b, della legge 27 febbraio 1967, n. 48) Presentata

Dettagli

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili

Dettagli

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA STATISTICA ECONOMICA STATISTICA PER L ECONOMIA a.a. 2009-2010 Facoltà di Economia, Università Roma Tre Archivio Statistico delle Imprese Attive (ASIA) L archivio è costituito dalle unità economiche che

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

Facoltà di Economia Prove d esame di Statistica corso base Corso di laurea in Economia e Commercio anni 2009-2011

Facoltà di Economia Prove d esame di Statistica corso base Corso di laurea in Economia e Commercio anni 2009-2011 Facoltà di Economia Prove d esame di Statistica corso base Corso di laurea in Economia e Commercio anni 2009-2011 1 - Esame del 12/1/2009 Esercizio 1 - La tabella successiva riporta la distribuzione degli

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 4 A. Si supponga che la durata in giorni delle lampadine prodotte

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

Elementi di statistica descrittiva I 31 Marzo 2009

Elementi di statistica descrittiva I 31 Marzo 2009 Il Concetti generali di Statistica) Corso Esperto in Logistica e Trasporti Elementi di Statistica applicata Elementi di statistica descrittiva I Marzo 009 Concetti Generali di Statistica F. Caliò franca.calio@polimi.it

Dettagli

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE STATISTICA DESCRITTIVA SCHEDA N. : REGRESSIONE LINEARE Nella Scheda precedente abbiamo visto che il coefficiente di correlazione fra due variabili quantitative X e Y fornisce informazioni sull esistenza

Dettagli

Metodi di previsione

Metodi di previsione Metodi di previsione Giovanni Righini Università degli Studi di Milano Corso di Logistica I metodi di previsione I metodi di previsione sono usati per ricavare informazioni a sostegno dei processi decisionali

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA A. A. 2008-2009 FACOLTÀ DI ECONOMIA. Programma del modulo di STATISTICA I (6 crediti)

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA A. A. 2008-2009 FACOLTÀ DI ECONOMIA. Programma del modulo di STATISTICA I (6 crediti) UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA A. A. 2008-2009 FACOLTÀ DI ECONOMIA Programma del modulo di STATISTICA I (6 crediti) ECOCOM (lettere A-Lh): ECOCOM (lettere Li-Z): ECOBAN: ECOAMM (Lettere A-Lh):

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media.

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. FORMA DI UNA DISTRIBUZIONE Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. Le prime informazioni sulla forma di

Dettagli

STATISTICA (L-Z) - Parte I Esercitazione 3

STATISTICA (L-Z) - Parte I Esercitazione 3 STATISTICA (L-Z) - Parte I Esercitazione 3 A.A. 2009/2010 Debora Slanzi debora.slanzi@unive.it 1 Esercizio 1 In un gruppo di 20 persone sono state rilevate due variabili, il sesso e l età In relazione

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

ANALISI DI CORRELAZIONE

ANALISI DI CORRELAZIONE ANALISI DI CORRELAZIONE Esempio: Dati raccolti da n = 129 studenti di Pavia (A.A. 21/2) Altezza (cm) Peso (Kg) Voto Algebra e Geometria Voto Fisica I Valutare la correlazione delle seguenti coppie: Peso

Dettagli

Esercitazioni del corso di Statistica Prof. Mortera a.a. 2010/2011. Esercizi di stima puntuale, intervalli di confidenza e test T 2 = 1 2 X

Esercitazioni del corso di Statistica Prof. Mortera a.a. 2010/2011. Esercizi di stima puntuale, intervalli di confidenza e test T 2 = 1 2 X Esercitazioni del corso di Statistica Prof. Mortera a.a. 2010/2011 Esercizi di stima puntuale, intervalli di confidenza e test 1. Si consideri il campione (X 1, X 2, X 3, X 4 ) composto da variabili i.i.d.

Dettagli

Esercizio 1 Calcolare il montante F di 10.000 con un interesse semplice del 15% annuo, dopo 4 anni. [16.000 ]

Esercizio 1 Calcolare il montante F di 10.000 con un interesse semplice del 15% annuo, dopo 4 anni. [16.000 ] Esercizio 1 Calcolare il montante F di 10.000 con un interesse semplice del 15% annuo, dopo 4 anni. [16.000 ] Esercizio 2 Del precedente esercizio calcolare il montante in regime di capitalizzazione composta.

Dettagli

FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA

FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA NB Come potete vedere facendo la somma dei punteggi il numero di quesiti è superiore a quello

Dettagli

COORTI 2006/07 2010/11 Facoltà di Economia sede di Milano, corsi di laurea triennali diurni

COORTI 2006/07 2010/11 Facoltà di Economia sede di Milano, corsi di laurea triennali diurni COORTI 2006/07 2010/11 Facoltà di Economia sede di Milano, corsi di laurea triennali diurni immatricolati al primo anno (1), % iscritti al secondo anno (2), al terzo (3) % laureati Note entro di maggio

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Un breve riepilogo: caratteri, unità statistiche e collettivo UNITA STATISTICA: oggetto dell osservazione

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

La Stampa in Italia (2010 2012)

La Stampa in Italia (2010 2012) (2010 2012) Roma 5 giugno 2013 La crisi dell editoria quotidiana e periodica: la negativa congiuntura economica, l evoluzione tecnologica e i fattori di criticità strutturali L editoria quotidiana e periodica

Dettagli

Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009

Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009 Le obbligazioni: misure di rendimento e rischio Economia degli Intermediari Finanziari 4 maggio 009 A.A. 008-009 Agenda 1. Introduzione ai concetti di rendimento e rischio. Il rendimento delle obbligazioni

Dettagli

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti )

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Esercizio 1 Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Qualitativo Sconnesso: Marca di Jeans preferita, Partito votato nelle ultime elezioni,

Dettagli

Analisi delle relazioni tra due caratteri

Analisi delle relazioni tra due caratteri Analisi delle relazioni tra due caratteri Le misure di connessione misurano il grado di associazione tra due caratteri qualsiasi sotto il profilo statistico (e non causale in quanto non è compito della

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

VARIABILI MACROECONOMICHE Graf. 2.1 La provincia di Modena è notoriamente caratterizzata da una buona economia. Ciò è confermato anche dall andamento del reddito procapite elaborato dall Istituto Tagliacarne

Dettagli

Metodi Matematici e Informatici per la Biologia----31 Maggio 2010

Metodi Matematici e Informatici per la Biologia----31 Maggio 2010 Metodi Matematici e Informatici per la Biologia----31 Maggio 2010 COMPITO 4 (3 CREDITI) Nome: Cognome: Matricola: ISTRUZIONI Gli esercizi che seguono sono di tre tipi: Domande Vero/Falso: cerchiate V o

Dettagli

1. L analisi statistica

1. L analisi statistica 1. L analisi statistica Di cosa parleremo La statistica è una scienza, strumentale ad altre, concernente la determinazione dei metodi scientifici da seguire per raccogliere, elaborare e valutare i dati

Dettagli

Calcolo delle Probabilità e Statistica CLASSI TERZE

Calcolo delle Probabilità e Statistica CLASSI TERZE Calcolo delle Probabilità e Statistica CLASSI TERZE Descrizione dei fenomeni collettivi 1. Unità statistica e dato statistico L unità statistica è il più piccolo elemento su cui è possibile effettuare

Dettagli

La regressione lineare multipla

La regressione lineare multipla 13 La regressione lineare multipla Introduzione 2 13.1 Il modello di regressione multipla 2 13.2 L analisi dei residui nel modello di regressione multipla 9 13.3 Il test per la verifica della significatività

Dettagli

MATEMATICA E STATISTICA CORSO A SCIENZE BIOLOGICHE MOLECOLARI ESERCIZI PER LA PRIMA PROVA IN ITINERE DI RECUPERO

MATEMATICA E STATISTICA CORSO A SCIENZE BIOLOGICHE MOLECOLARI ESERCIZI PER LA PRIMA PROVA IN ITINERE DI RECUPERO MATEMATICA E STATISTICA CORSO A SCIENZE BIOLOGICHE MOLECOLARI ESERCIZI PER LA PRIMA PROVA IN ITINERE DI RECUPERO ARGOMENTO: PERCENTUALI 1-Se in un anno in una popolazione i nuovi nati sono l 1,2% della

Dettagli

ESERCIZIO N 4. Fatturato Supermercati [0;500) 340 [500;1000) 368 [1000;5000) 480 [5000;10000) 37 [10000;20000) 15 taglia = 1240

ESERCIZIO N 4. Fatturato Supermercati [0;500) 340 [500;1000) 368 [1000;5000) 480 [5000;10000) 37 [10000;20000) 15 taglia = 1240 ESERCIZIO N 4 Fatturato Supermercati [0;500) 340 [500;1000) 368 [1000;5000) 480 [5000;10000) 37 [10000;20000) 15 taglia = 1240 PUNTO a CALCOLO MODA E QUARTILI La moda rappresenta quell'elemento del campione

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Presentazione del Rapporto L economia del Molise Pietro de Matteis

Presentazione del Rapporto L economia del Molise Pietro de Matteis Presentazione del Rapporto L economia del Molise Pietro de Matteis Filiale di Campobasso, Banca d Italia Campobasso, 18 giugno 2015 L economia italiana La prolungata flessione del PIL si è attenuata Andamento

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI 1. L azienda Wood produce legno compensato per costruzioni

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

Il comportamento economico delle famiglie straniere

Il comportamento economico delle famiglie straniere STUDI E RICERCHE SULL ECONOMIA DELL IMMIGRAZIONE Il comportamento economico delle straniere Redditi, consumi, risparmi e povertà delle straniere in Italia nel 2010 Elaborazioni su dati Banca d Italia Perché

Dettagli

6. Modelli statistici: analisi della regressione lineare

6. Modelli statistici: analisi della regressione lineare BIOSTATISTICA 6. Modelli statistici: analisi della regressione lineare Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Il mercato del credito

Il mercato del credito Il mercato del credito 1 Gli sportelli bancari In riferimento alla distribuzione del numero di istituti bancari per sede amministrativa e del numero di sportelli per localizzazione geografica, i dati statistici

Dettagli

Investimenti fissi lordi per branca proprietaria, stock di capitale e ammortamenti Anni 1970-2009

Investimenti fissi lordi per branca proprietaria, stock di capitale e ammortamenti Anni 1970-2009 1 luglio 2010 Investimenti fissi lordi per branca proprietaria, stock di capitale e ammortamenti Anni 1970- L Istat rende disponibili le serie storiche degli investimenti per branca proprietaria per gli

Dettagli

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114

Dettagli

Corso di Analisi Statistica per le Imprese (9 CFU) Prof. L. Neri a.a. 2011-2012

Corso di Analisi Statistica per le Imprese (9 CFU) Prof. L. Neri a.a. 2011-2012 Corso di Analisi Statistica per le Imprese (9 CFU) Prof. L. Neri a.a. 2011-2012 1 Riepilogo di alcuni concetti base Concetti di base: unità e collettivo statistico; popolazione e campione; caratteri e

Dettagli

La congiuntura. italiana. La stima trimestrale del Pil

La congiuntura. italiana. La stima trimestrale del Pil La congiuntura italiana N. 6 LUGLIO 2015 Secondo i dati congiunturali più recenti la lieve ripresa dell attività economica nel primo trimestre sta proseguendo. Tuttavia le indicazioni degli indicatori

Dettagli

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. Strumenti di Valutazione di un Prodotto Finanziario

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. Strumenti di Valutazione di un Prodotto Finanziario AREA FINANZA DISPENSA FINANZA Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto Strumenti di Valutazione di un Prodotto Finanziario ORGANISMO BILATERALE PER LA FORMAZIONE IN CAMPANIA Strumenti

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Calcolo delle probabilità Il Sig. Rossi abita nella città X e lavora nella città Y, poco distante.

Dettagli

STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo 3 febbraio 2015. Modelli continui di probabilità: la v.c. uniforme continua

STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo 3 febbraio 2015. Modelli continui di probabilità: la v.c. uniforme continua STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo febbraio 2015 Modelli continui di probabilità: la v.c. uniforme continua Esercizio 1 Anna ha una gift card da 50 euro. Non si sa se sia mai stata utilizzata

Dettagli

Flessibilità e Trasparenza per un Nuovo Mercato degli Affitti DANIELA PERCOCO. MILANO 30 Gennaio 2014

Flessibilità e Trasparenza per un Nuovo Mercato degli Affitti DANIELA PERCOCO. MILANO 30 Gennaio 2014 Flessibilità e Trasparenza per un Nuovo Mercato degli Affitti DANIELA PERCOCO MILANO 30 Gennaio 2014 Temi trattati Il mercato della locazione in Italia: trend recenti di contratti, domanda, offerta, quotazioni

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it RIPASSO SULLE MATRICI 1 Addizione tra matrici Moltiplicazione Matrice diagonale Matrice identità Matrice trasposta

Dettagli

Grafici. Lezione 4. Fondamenti di Informatica 2 Giuseppe Manco Ester Zumpano

Grafici. Lezione 4. Fondamenti di Informatica 2 Giuseppe Manco Ester Zumpano Fondamenti di Informatica 2 Giuseppe Manco Ester Zumpano Grafici Lezione 4 Grafici e cartine Grafici [1/13 1/13] Rappresentare graficamente le informazioni per renderle interessanti e facilmente comprensibili.

Dettagli

ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008

ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008 ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008 A. Il modello macroeconomico in economia chiusa e senza settore pubblico. A.1. Un sistema economico

Dettagli

CONSUMI E DIMENSIONI DEL

CONSUMI E DIMENSIONI DEL CONSUMI E DIMENSIONI DEL BIOLOGICO IN ITALIA FABIO DEL BRAVO ISMEA 12 settembre 2015 www.ismea.it www.ismeaservizi.it AGENDA Il contesto Le dinamiche recenti Il valore del mercato bio Il ruolo della GDO

Dettagli

a) Determinare i numeri indice a base fissa del fatturato con base 2007=100 e commentare i risultati ottenuti per gli anni 2008 e 2012

a) Determinare i numeri indice a base fissa del fatturato con base 2007=100 e commentare i risultati ottenuti per gli anni 2008 e 2012 ESERCIZIO 1 Nella tabella che segue sono riportate le variazioni percentuali, rispetto all anno precedente, del fatturato di un azienda. Sulla base dei dati contenuti in tabella a) Determinare i numeri

Dettagli

Finanza Aziendale. Lezione 13. Introduzione al costo del capitale

Finanza Aziendale. Lezione 13. Introduzione al costo del capitale Finanza Aziendale Lezione 13 Introduzione al costo del capitale Scopo della lezione Applicare la teoria del CAPM alle scelte di finanza d azienda 2 Il rischio sistematico E originato dalle variabili macroeconomiche

Dettagli

Statistica. L. Freddi. L. Freddi Statistica

Statistica. L. Freddi. L. Freddi Statistica Statistica L. Freddi Statistica La statistica è un insieme di metodi e tecniche per: raccogliere informazioni su un fenomeno sintetizzare l informazione (elaborare i dati) generalizzare i risultati ottenuti

Dettagli

Osservatorio Non Food I Ediz. Anno 2003 (dati anno solare 2002)

Osservatorio Non Food I Ediz. Anno 2003 (dati anno solare 2002) Osservatorio Non Food I Ediz. Anno 2003 (dati anno solare 2002) Abstract A cura di Marco Cuppini, Direttore Studi e Ricerche Indicod-Ecr The global language of business www.gs1.org In collaborazione con

Dettagli

Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte

Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Anno scolastico 01-01 I Docenti della Disciplina Salerno, settembre 01 Anno scolastico

Dettagli

RAPIDE. Nel 2001 la spesa media mensile. La povertà in Italia nel 2001 POVERTÀ NEL TEMPO E SUL TERRITORIO. 17 luglio 2002

RAPIDE. Nel 2001 la spesa media mensile. La povertà in Italia nel 2001 POVERTÀ NEL TEMPO E SUL TERRITORIO. 17 luglio 2002 SOTTO LA SOGLIA DI POVERTÀ IL 12% DELLE FAMIGLIE La povertà in Italia nel 2001 di povertà viene calcolata sulla base del numero di L incidenza famiglie (e relativi componenti) che presentano spese per

Dettagli

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione 1 PROBLEMI DI SCELTA Problemi di Scelta Campo di Scelta Funzione Obiettivo Modello Matematico Scelte in condizioni di Certezza Scelte in condizioni di Incertezza Effetti Immediati Effetti Differiti Effetti

Dettagli

Statistica descrittiva

Statistica descrittiva Corso di Laurea in Ingegneria per l Ambiente ed il Territorio Corso di Costruzioni Idrauliche A.A. 2004-05 www.dica.unict.it/users/costruzioni Statistica descrittiva Ing. Antonino Cancelliere Dipartimento

Dettagli