LEZIONE 16 A = Verifichiamo se qualcuna fra le entrate a di A è suo autovalore. determinare per quale entrata a di A risulta rk(a ai 2 ) 1.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LEZIONE 16 A = Verifichiamo se qualcuna fra le entrate a di A è suo autovalore. determinare per quale entrata a di A risulta rk(a ai 2 ) 1."

Transcript

1 LEZIONE Autovalori, autovettori ed autospazi di matrici. Introduciamo la seguente definizione. Definizione Siano k = R, C e A k n,n. Un numero λ k si dice autovalore di A su k) se rka λi n ) n 1. Se λ k, k = R, C, è un autovalore di A, l insieme E A λ) k n delle soluzioni del sistema A λi n )X = n,1 viene detto autospazio di A relativo a λ: ogni X E A λ) si dice autovettore di A relativo a λ. Quindi gli autovalori di A sono i λ R tali che il sistema A λi n )X = n,1 abbia soluzioni non banali. Esempio Si consideri A = Verifichiamo se qualcuna fra le entrate a di A è suo autovalore. determinare per quale entrata a di A risulta rka ai 2 ) 1. Poiché 2 rka I 2 ) = rk 3 5 rka 3I 2 ) = rk ) = 2, rka 2I 2 ) = rk 3 6 ) = 2, rka + 4I 2 ) = rk Si tratta di ) = 1, ) = 2, deduciamo che l unica entrata di A che sia suo autovalore è 2. Verifichiamo che anche 5 è autovalore di A. Infatti rka + 5I 2 ) = rk Per calcolare E A 2) R 2 si deve risolvere = ) x = y : 1 Typeset by AMS-TEX

2 AUTOVALORI, AUTOVETTORI ED AUTOSPAZI DI MATRICI E A 2) = { a2, 1) a R } R 2. Similmente per determinare E A 5) R 2 si deve risolvere ) x = y : E A 5) = { a1, 3) a R } R 2. Da questo esempio ricaviamo alcune osservazioni. Non è detto che gli autovalori di una matrice vadano cercati fra le entrate della matrice stessa 5 non è entrata di A). Non è detto che gli autovalori di una matrice siano le sue entrate diagonali della matrice stessa 2 e 5 non sono entrate diagonali di A). Come vedremo la ricerca degli autovalori di una matrice o di un endomorfismo è un problema assai più sottile, talvolta difficile o anche impossibile da risolvere in maniera esatta! Sia A k n,n : ricordo che un autovalore di A è un elemento λ k tale che rka λi n ) n 1 o, equivalentemente, un elemento λ k tale che deta λi n ) = si vedano la Proposizione e il Corollario 4.3.5). Sviluppandolo con la regola di Laplace si può verificare facilmente che deta ti n ) è un polinomio nella variabile t ed a coefficienti in k di grado esattamente n. Più precisamente 1) n t n + a 1 t n 1 + a 2 t n a n 1 t + a n, dove i coefficienti a i sono polinomi nelle entrate di A. Definizione Siano k = R, C e A k n,n. Il polinomio deta ti n ) è chiamato polinomio caratteristico di A. L equazione è detta equazione caratteristica di A. Quindi Proposizione Siano k = R, C e A k n,n. Gli autovalori di A su k sono le radici in k del polinomio caratteristico di A. In particolare A ha al massimo n autovalori a due a due distinti. Quindi, se A R n,n con n dispari, A ha almeno un autovalore in R, invece se n è pari A può non avere autovalori in R. Esempio Sia P R n,n C n,n una matrice ortogonale e sia λ C una radice del suo polinomio caratteristico. Se X = x 1,..., x n ) E A λ) C n allora t P X ) P X ) = t X t P P X = t XI n X = t XX = x x 2 n.

3 LEZIONE 16 3 D altra parte t P X ) P X ) = t λx ) λx ) = λ 2 = t XX = λ 2 x x 2 n). Dal confronto delle due relzioni così ottenute ricaviamo che λ è un numero complesso di modulo 1. In particolare se λ R allora λ = ±1. Se, per esempio, n è dispari deduciamo che una matrice ortogonale P R n,n ha sempre l autovalore reale ±1. Ciò il seguente interessante significato geometrico: ogni rotazione nello spazio ha un asse fisso, cioè è una rotazione intorno ad un asse. Esempio Si consideri la matrice 1 A = R 2,2. 1 Si noti che A è ortogonale speciale. Gli eventuali autovalori di A sono le radici in R di t 1 1 t = t Concludiamo che A non ha autovalori in R. Invece i suoi autovalori su C sono ±i, che hanno modulo 1. Per calcolare E A i) si deve risolvere i 1 x = : 1 i y E A i) = { a1, i) a C } C 2. Similmente per determinare E A i) risolviamo i 1 x = 1 i y : E A i) = { a1, i) a C } C 2. Esempio Ritorniamo all Esempio Allora gli autovalori di 1 2 A = R 2,2 3 4 sono le radici in R) di 1 t t = t2 + 3t 1 = t 2)t + 5). In particolare gli unici autovalori di A sono 2 e 5.

4 AUTOVALORI, AUTOVETTORI ED AUTOSPAZI DI MATRICI Esempio Sia A = R 3, Allora gli autovalori di A sono le radici in R) di 1 t t t = t + 3)2 t 3), sicché gli autovalori di A sono ±3. Per calcolare E A 3) si deve risolvere x y z = : E A 3) = { a2, 1, 3) a R } R 3. Similmente per determinare E A 3) risolviamo x y = : z E A 3) = { a b, a, b) a, b R } = { a 1, 1, )+b 1,, 1) a, b R } R 3. Esempio Sia dunque A = R 3,3 1 2 t 1 1 t 1 1 t = t 1)2 t 2). In particolare gli autovalori di A sono 1 e 2. Per calcolare E A 1) risolviamo il sistema x y =, z

5 LEZIONE 16 5 il cui spazio delle soluzioni è E A 1) = { a, 1, ) a R } R 3. Similmente calcoliamo E A 2) a partire dal sistema x y = : 1 z il suo spazio delle soluzioni è E A 2) = { a1, 1, ) a R } R 3. Esempio Sia A = R 3,3 1 2 dunque 1 t 2 1 t t = tt2 4t + 5). In particolare A ha un unico autovalore in R. Per calcolare E A ) risolviamo il sistema x y =, 1 2 z il cui spazio delle soluzioni è E A ) = { a2, 1, 1) a R } R 3. Per esercizio determinare gli autovalori complessi di A ed i relativi autospazi. Si noti che in tutti i casi sopra esaminati la dimensione di un certo autospazio E A λ) è limitata dalla molteplicità di λ come radice del polinomio caratteristico p A t). Questo è un risultato generale di cui omettiamo la dimostrazione. Definizione Siano k = R, C, A k n,n e λ k un suo autovalore. Chiamiamo molteplicità algebrica la sua molteplicità m a λ, A) di λ come radice di p A t). Chiamiamo molteplicità geometrica il numero m g λ, A) = n rka λi n ). In ogni caso A k n,n ha esattamente n autovalori complessi se contati con la loro molteplicità algebrica. Si noti che, in base a quanto visto nelle Lezioni 2 e 3, si ha m g λ, A) è il numero di parametri liberi da cui dipendono le soluzioni del sistema omogeneo A λi n )X = n,1.

6 DIAGONALIZZAZIONE DI MATRICI Proposizione Siano k = R, C, A k n,n e λ k un suo autovalore. Allora 1 m g λ, A) m a λ, A) Diagonalizzazione di matrici. Introduciamo la seguente importante definizione. Definizione Siano k = R, C e A k n,n. La matrice A si dice diagonalizzabile su k) se esiste una matrice P k n,n invertibile tale che P 1 AP sia una matrice diagonale. Il problema della digonalizzabilità di una matrice quadrata A è strettamente legato alle nozioni di autovalore ed autovettore. Supponiamo che A k n,n diagonalizzabile e sia P k n,n invertibile tale che P 1 AP sia diagonale, diciamo D = diagλ 1, λ 2,..., λ n ). Si noti che l identità matriciale P 1 AP = D equivale, nell ipotesi che P sia invertibile, e AP = P D. Sia P j k n la j esima colonna di P, che è non nulla perché P è invertibile: allora l uguaglianza AP = P D letta sulla colonna j esima diviene AP j = λ j P j, j = 1,..., n. Quindi P j è un autovettore di A e λ j è il relativo autovalore. Concludiamo che, se A è diagonalizzabile, che P ha per colonne n autovettori di A linearmente indipendenti e che l elemento j esimo sulla diagonale di D è esattamente l autovalore corrispondente alla colonna j esima di P. Viceversa, supponiamo di avere n autovettori di A, diciamo P 1,..., P n, tali che la matrice P avente P j come colonna j esima sia invertibile. Allora, procedendo a ritroso con il ragionamento sopra, si verifica che A è diagonalizzabile e che Λ = P 1 AP è una matrice avente l entrata di posizione j, j) coincidente con l autovalore relativo a P j. Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n abbia o meno autovalori ed autovettori. Osservazione Chiaramente ogni matrice diagonale D è diagonalizzabile! Infatti presa P = I n si ha P 1 DP = D. Esempio Si consideri la matrice si veda l Esempio ) A = R 3, Come visto nell Esempio , A ha i due autovalori ±3 e E A 3) = { a2, 1, 3) a R } R 3, E A 3) = { a 1, 1, ) + b 1,, 1) a, b R } R 3.

7 Siano P 1 = 2, 1, 3) = 2 1, P 2 = 1, 1, ) = 3 LEZIONE La matrice P avente tali colonne è , P 3 = 1,, 1) = 1. 1 ha rango 3, dunque è invertibile per esempio detp ) = 6 ). Per quanto visto sopra sappiamo a priori che P 1 AP = diag3, 3, 3) = verificarlo per esercizio). Ricordo che gli autovalori di A k n,n sono le radici λ 1,..., λ h R del polinomio caratteristico p A t). Inoltre ad ognuno degli autovalori λ i k di A rimangono associati due numeri interi non negativi, la sua molteplicità algebrica m a λ, A) e la sua molteplicità geometrica m g λ, A). La somma delle molteplicità delle radici di un polinomio è pari al grado del polinomio stesso. Quindi m a λ 1, A) + + m a λ h, A) n, e, se vale l uguaglianza, tutte le radici di p A t) devono essere in R. Quindi, se λ 1,..., λ h k sono le radici di p A t), tenendo conto della Proposizione 2.2.2, al massimo possiamo determinare m g λ 1, A) + + m g λ h, A) m a λ 1, A) + + m a λ h, A) n autovettori linearmente indipendenti. Se vale l uguaglianza, tutte le radici λ di p A t) devono essere in k e si deve avere m g λ, A) = m a λ, A) per ognuna di esse. In particolare, se o non tutte le radici di p a t) sono in k oppure se lo sono ma esiste almeno una di esse per cui m g λ, A) < m a λ, A), la matrice A non è diagonalizzabile. Esempio Si considerino le matrici di R 3,3 C 3,3 A 1 = , A 2 =

8 DIAGONALIZZAZIONE DI MATRICI SIMMETRICHE Nell Esempio abbiamo visto che A 1 ha come autovalori i numeri 1 e 2 e che m a 2, A) = 1 = m g 2, A), m a 1, A) = 2 > 1 = m g 1, A). Nell Esempio abbiamo visto che A 2 ha come unico autovalore in R il numero e che m a, A) = 1 = m g, A). Invece su C tale matrice ha i numeri, 2 + i e 2 i come autovalori e m a, A) = 1 = m g, A), m a 2 + i, A) = 1 = m g 2 + i, A), m a 2 i, A) = 1 = m g 2 i, A). Concludiamo che le due matrici date non sono diagonalizzabili su R. Invece A 2 è diagonalizzabile su C mentre A 1 non lo è. Viene naturale porsi il problema di dare un criterio per stabilire se una data matrice sia diagonalizzabile o meno su R o C. Si ha il seguente risultato fondamentale Proposizione Siano k = R, C e A k n,n. La matrice A è diagonalizzabile su k se e solo se valgono le due seguenti condizioni: i) tutte le radici di p A t) sono in k; ii) per ogni radice λ di p a t) risulta m g λ, A) = m g λ, A) Diagonalizzazione di matrici simmetriche. Come visto nel paragrafo precedente, il fatto che una matrice sia diagonalizzabile o meno non può essere, in generale, stabilito a priori ma solo dopo lo studio dei suoi autospazi. C è però una classe di matrici la cui diagonalizzabilità è assicurata da un risultato generale di cui omettiamo la dimostrazione e su cui torneremo nelle prossime lezioni. Proposizione Sia A Sim n R). Allora A è diagonalizzabile. Si noti che la proposizione precedente assicura la diagonalizzabilità su R, cioè l esistenza di una matrice invertibile P R n,n tale che P 1 AP = D R n,n sia diagonale. Esempio Sia Risulta A = t t t = t3 + 3t + 2 = t + 1) 2 t 2), Concludiamo che gli autovalori di A sono 1 e 2: inoltre per la Proposizione m a 1, A) = m g 1, A) = 2 e m a 2, A) = m g 2, A) = 1. Per determinare E A 1) risolviamo il sistema x y z =.

9 LEZIONE 16 9 Quindi E A 1) = { a1, 1, ) + b1, 1, 2) a, b R}. Per determinare E A 2) risolviamo il sistema x y = z Quindi E A 2) = { a1, 1, 1) a R }. Posto P = risulta P 1 AP = Osservazione Per renderci conto della potenza della Proposizione osserviamo che, spesso, è assai difficile determinare esattamente gli autovalori di una matrice: può però essere utile poternme determinare la diagonalizzabilità. Per esempio 21 3/ /4 π e /4 e 1 1/11 3/2 π A = è senza dubbio diagonalizzabile perché simmetrica a coefficienti reali.

DIAGONALIZZAZIONE. M(f) =

DIAGONALIZZAZIONE. M(f) = DIAGONALIZZAZIONE Esercizi Esercizio 1. Sia f End(R 3 ) associato alla matrice M(f) = 0 1 2 0. 2 (1) Determinare gli autovalori di f e le relative molteplicità. (2) Determinare gli autospazi di f e trovare,

Dettagli

Endomorfismi e matrici simmetriche

Endomorfismi e matrici simmetriche CAPITOLO Endomorfismi e matrici simmetriche Esercizio.. [Esercizio 5) cap. 9 del testo Geometria e algebra lineare di Manara, Perotti, Scapellato] Calcolare una base ortonormale di R 3 formata da autovettori

Dettagli

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m LEZIONE 4 41 Equazioni matriciali Negli Esempi 336 e 337 si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = B 2,, AX p = B p aventi la stessa matrice incompleta A Tale tipo di problema si presenta

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

POTENZE DI MATRICI QUADRATE

POTENZE DI MATRICI QUADRATE POTENZE DI MATRICI QUADRATE In alcune applicazioni pratiche, quali lo studio di sistemi dinamici discreti, può essere necessario calcolare le potenze A k, per k N\{0}, di una matrice quadrata A M n n (R)

Dettagli

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h.

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h. LEZIONE 15 15.1. Polinomi a coefficienti complessi e loro e loro radici. In questo paragrafo descriveremo alcune proprietà dei polinomi a coefficienti complessi e delle loro radici. Già nel precedente

Dettagli

LEZIONE 4. { x + y + z = 1 x y + 2z = 3

LEZIONE 4. { x + y + z = 1 x y + 2z = 3 LEZIONE 4 4.. Operazioni elementari di riga. Abbiamo visto, nella precedente lezione, quanto sia semplice risolvere sistemi di equazioni lineari aventi matrice incompleta fortemente ridotta per righe.

Dettagli

LEZIONE 9. Figura 9.1.1

LEZIONE 9. Figura 9.1.1 LEZIONE 9 9.1. Equazioni cartesiane di piani. Abbiamo visto come rappresentare parametricamente un piano. Un altro interessante metodo di rappresentazione di un piano nello spazio è tramite la sua equazione

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.

Dettagli

LEZIONE 3. Typeset by AMS-TEX

LEZIONE 3. Typeset by AMS-TEX LEZIONE 3 3 Risoluzione di sistemi Supponiamo che AX = B sia un sistema di equazioni lineari Ad esso associamo la sua matrice completa (A B Per la Proposizione 236 sappiamo di poter trasformare, con operazioni

Dettagli

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

(P x) (P y) = x P t (P y) = x (P t P )y = x y. Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A.

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A. Alcuni esercii sulla diagonaliaione di matrici Eserciio Dire se la matrice A 4 8 è diagonaliabile sul 3 3 campo dei reali Se lo è calcolare una base spettrale e la relativa forma diagonale di A Svolgimento

Dettagli

Autovalori ed autovettori di una matrice

Autovalori ed autovettori di una matrice Autovalori ed autovettori di una matrice Lucia Gastaldi DICATAM http://www.ing.unibs.it/gastaldi/ Indice 1 Definizioni di autovalori ed autovettori Autovalori ed autovettori 2 Metodo delle potenze 3 Calcolo

Dettagli

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione CONICHE Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oy sia data la conica C di equazione 7 2 + 2 3y + 5y 2 + 32 3 = 0. Calcolare le equazioni di una rototraslazione che riduce

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

Applicazioni lineari e diagonalizzazione pagina 1 di 5

Applicazioni lineari e diagonalizzazione pagina 1 di 5 pplicazioni lineari e diagonalizzazione pagina 1 di 5 PPLIZIONI LINERI 01. Dire quali delle seguenti applicazioni tra IR-spazi vettoriali sono lineari a. f :IR 2 IR 3 f(x y =(x y πy b. f :IR 3 IR 3 f(x

Dettagli

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof.

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof. Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A. 2015-2016 ESERCIZI DA CONSEGNARE prof. Cigliola Consegna per Martedì 6 Ottobre Esercizio 1. Una matrice quadrata A si

Dettagli

REGISTRO DELLE LEZIONI

REGISTRO DELLE LEZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007

Dettagli

Caso di A non regolare

Caso di A non regolare Caso di A non regolare December 2, 2 Una matrice A è regolare quando è quadrata e in corrispondenza di ogni autovalore di molteplicità algebrica m si ha una caduta di rango pari proprio a m Ovvero: rk

Dettagli

RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI. a 11 a 12 a 1n a 21 a 22 a 2n. a m1 a m2 a mn

RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI. a 11 a 12 a 1n a 21 a 22 a 2n. a m1 a m2 a mn RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI LUCIA GASTALDI 1. Matrici. Operazioni fondamentali. Una matrice A è un insieme di m n numeri reali (o complessi) ordinati, rappresentato nella tabella

Dettagli

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo LEZIONE 9 9.1. Prodotto misto. Siano dati i tre vettori geometrici u, v, w V 3 (O) definiamo prodotto misto di u, v e w il numero u, v w. Fissiamo un sistema di riferimento O ı j k in S 3. Se u = u x ı

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

ESERCIZI SUI SISTEMI LINEARI

ESERCIZI SUI SISTEMI LINEARI ESERCIZI SUI SISTEMI LINEARI Consideriamo ora il sistema lineare omogeneo a coefficienti costanti associato alla matrice A M n n, cioè SLO Vale il seguente = A. Teorema. Sia v R n \ } e sia λ C. Condizione

Dettagli

STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI

STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI M. G. BUSATO STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI mgbstudio.net PAGINA INTENZIONALMENTE VUOTA SOMMARIO In questo scritto viene compiuto lo studio dettagliato

Dettagli

Autovalori e autovettori di una matrice quadrata

Autovalori e autovettori di una matrice quadrata rgomento bis utovalori e autovettori di una matrice quadrata Trasformazioni di R n Consideriamo una matrice quadrata di ordine n a coefficienti, ad esempio, in R. Essa rappresenta una trasformazione di

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Forma canonica di Jordan

Forma canonica di Jordan Capitolo INTRODUZIONE Forma canonica di Jordan Siano λ i, per i =,, h, gli autovalori distinti della matrice A e siano r i i corrispondenti gradi di molteplicità all interno del polinomio caratteristico:

Dettagli

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi:

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: SPAZI VETTORIALI Esercizi Esercizio. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: V := { (a, a, a) V a R }, V 2 := { (a, b, a) V a, b R }, V 3 := { (a, 2a, a + b)

Dettagli

Tempo a disposizione: 150 minuti. 1 È dato l endomorfismo f : R 3 R 3 definito dalle relazioni

Tempo a disposizione: 150 minuti. 1 È dato l endomorfismo f : R 3 R 3 definito dalle relazioni Università degli Studi di Catania Anno Accademico 2014-2015 Corso di Laurea in Informatica Prova in itinere di Matematica Discreta (12 CFU) 17 Aprile 2015 Prova completa Tempo a disposizione: 150 minuti

Dettagli

Ingegneria Civile. Compito di Geometria del 06/09/05. E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni

Ingegneria Civile. Compito di Geometria del 06/09/05. E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni Ingegneria Civile. Compito di Geometria del 06/09/05 E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni I f(,, 0) = (h +,h+, ) f(,, ) = (h,h, h) f(0,, ) = (,h, h) con h parametro reale. ) Studiare

Dettagli

LEZIONE 30. Se x = 1 si dice che x è un versore. Se poi y = (y 1,..., y n ) R n poniamo. Ricordiamo che vale la cosiddetta disuguaglianza triangolare

LEZIONE 30. Se x = 1 si dice che x è un versore. Se poi y = (y 1,..., y n ) R n poniamo. Ricordiamo che vale la cosiddetta disuguaglianza triangolare LEZIONE 30 30.1. Insiemi aperti e chiusi in R n. Nel corso di Analisi sono state introdotte alcune nozioni di topologia di R, come la nozione di aperto, di chiuso, di punto d accumulazione. Lo scopo di

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

LEZIONE 27. C = { P = (x, y) x 2 /a 2 y 2 /b 2 = 1 }. C si dice iperbole di semiassi a e b (in forma canonica). L equazione

LEZIONE 27. C = { P = (x, y) x 2 /a 2 y 2 /b 2 = 1 }. C si dice iperbole di semiassi a e b (in forma canonica). L equazione LEZIONE 27 27.1. Ellisse, iperbole, parabola. Nelle prossime lezioni illustreremo come la teoria delle forme quadratiche e della riduzione ortogonale si applichi allo studio di alcuni oggetti geometrici

Dettagli

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono

Dettagli

Parte 12a. Trasformazioni del piano. Forme quadratiche

Parte 12a. Trasformazioni del piano. Forme quadratiche Parte 12a Trasformazioni del piano Forme quadratiche A Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Trasformazioni del piano, 1 2 Cambiamento di coordinate, 8 3 Forme quadratiche,

Dettagli

Complementi di Algebra e Fondamenti di Geometria

Complementi di Algebra e Fondamenti di Geometria Complementi di Algebra e Fondamenti di Geometria Capitolo 3 Forma canonica di Jordan M. Ciampa Ingegneria Elettrica, a.a. 29/2 Capitolo 3 Forma canonica di Jordan Nel Capitolo si è discusso il problema

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI - - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle

Dettagli

Dipendenza e indipendenza lineare

Dipendenza e indipendenza lineare Dipendenza e indipendenza lineare Luciano Battaia Questi appunti () ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia campus

Dettagli

Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A =

Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A = Esercitazione di Calcolo Numerico 22 Aprile 29. Determinare la fattorizzazione LU della matrice a A = 3a 2 a 2a a a 2 ed utilizzarla per calcolare il det(a). 2. Calcolare il determinante della matrice

Dettagli

Capitolo 6. Sistemi lineari di equazioni differenziali. 1

Capitolo 6. Sistemi lineari di equazioni differenziali. 1 Capitolo 6 Sistemi lineari di equazioni differenziali L integrale generale In questo capitolo utilizzeremo la forma canonica di Jordan per studiare alcuni tipi di equazioni differenziali Un sistema lineare

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5.

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5. SISTEMI LINEARI Esercizi Esercizio. Risolvere, se possibile, i seguenti sistemi: x y z = 0 x + y + z = 3x + y + z = 0 x y = 4x + z = 0, x y z = 0. Svolgimento. Procediamo con operazioni elementari di riga

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

ALGEBRA LINEARE. [Nozioni Fondamentali] A CURA DI ALESSANDRO PAGHI. PROFESSORE: Antonio Pasini (

ALGEBRA LINEARE. [Nozioni Fondamentali] A CURA DI ALESSANDRO PAGHI. PROFESSORE: Antonio Pasini ( ALGEBRA LINEARE [Nozioni Fondamentali] A CURA DI ALESSANDRO PAGHI PROFESSORE: Antonio Pasini ( http://www3.diism.unisi.it/people/person.php?id=3 ) LINK AL CORSO ANNO 2013/2014: http://www3.diism.unisi.it/fac/index.php?bodyinc=didattica/inc.insegnamento.php&id=54635&aa=2013

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Appendice 1. Spazi vettoriali

Appendice 1. Spazi vettoriali Appendice. Spazi vettoriali Indice Spazi vettoriali 2 2 Dipendenza lineare 2 3 Basi 3 4 Prodotto scalare 3 5 Applicazioni lineari 4 6 Applicazione lineare trasposta 5 7 Tensori 5 8 Decomposizione spettrale

Dettagli

1 Cambiamenti di coordinate nel piano.

1 Cambiamenti di coordinate nel piano. Cambiamenti di coordinate nel piano.. Coordinate cartesiane Coordinate cartesiane su una retta. Sia r una retta: dare un sistema di coordinate su r significa fissare un punto O di r e un vettore u = U

Dettagli

6. Spazi euclidei ed hermitiani

6. Spazi euclidei ed hermitiani 6. Spazi euclidei ed hermitiani 6.1 In [GA] 5.4 abbiamo definito il prodotto scalare fra vettori di R n (che d ora in poi chiameremo prodotto scalare standard su R n ) e abbiamo considerato le seguenti

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle più volte.. Stabilire il tipo di

Dettagli

Capitolo 5. La forma canonica di un operatore lineare. 1

Capitolo 5. La forma canonica di un operatore lineare. 1 Capitolo 5. La forma canonica di un operatore lineare. 1. Richiami sui polinomi. Sia p(t) = a + a 1 t + + a n t n un polinomio a coefficienti complessi, di grado deg(p(t)) = n >. Quindi a n. Il coefficiente

Dettagli

TEN Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2.

TEN Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2. TEN 2008. Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2. Lemma 1. Sia n Z. Sia p > 2 un numero primo. (a) n è un quadrato modulo p se e solo se n p 1 2 1 mod p; (b) Sia n 0

Dettagli

Noi ci occuperemo esclusivamente dei casi n = 2 e n = 3. Se n = 2, la quadrica Q p sarà detta conica di equazione p, e indicata con C p.

Noi ci occuperemo esclusivamente dei casi n = 2 e n = 3. Se n = 2, la quadrica Q p sarà detta conica di equazione p, e indicata con C p. Durante il corso abbiamo studiato insiemi (rette e piani) che possono essere descritti come luogo di zeri di equazioni (o sistemi) di primo grado. Adesso vedremo come applicare quanto visto per studiare

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Matematica II,

Matematica II, Matematica II,.05.04 Diamo qui la nozione di determinante di una matrice quadrata, le sue prime proprieta, e ne deriviamo una caratterizzazione delle matrici non singolari e una formula per l inversa di

Dettagli

Elementi di Algebra Lineare. Spazio Vettoriale (lineare)

Elementi di Algebra Lineare. Spazio Vettoriale (lineare) Elementi di Algebra Lineare Spazio Vettoriale (lineare) Uno spazio vettoriale su un corpo F è una quadrupla (X, F, +, ) costituita da: un insieme di elementi X, detti vettori, un corpo F, i cui elementi

Dettagli

Giuseppe Accascina. Note del corso di Geometria e Algebra

Giuseppe Accascina. Note del corso di Geometria e Algebra Giuseppe Accascina Note del corso di Geometria e Algebra Corso di Laurea Specialistica in Ingegneria Gestionale Anno Accademico 26-27 ii Istruzioni per l uso Faremo spesso riferimento a ciò che è stato

Dettagli

Appunti di Geometria - 5

Appunti di Geometria - 5 Appunti di Geometria - 5 Samuele Mongodi - s.mongodi@sns.it Segnatura di un prodotto scalare Richiami Sia V uno spazio vettoriale reale di dimensione n; sia, : V V R un prodotto scalare. Data una base

Dettagli

Prodotti scalari e matrici

Prodotti scalari e matrici Prodotti scalari e matrici 1 Forme bilineari e matrici In questa sezione vogliamo studiare la corrispondenza biunivoca che esiste tra l insieme delle forme bilineari su di un certo spazio vettoriale V

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché

Dettagli

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione

Dettagli

LEZIONE 10. S(C,ρ) Figura 10.1

LEZIONE 10. S(C,ρ) Figura 10.1 LEZIONE 10 10.1. Sfere nello spazio. In questa lezione studieremo alcuni oggetti geometrici non lineari, circonferenze e sfere nello spazio A 3. Poiché le proprietà delle circonferenze nel piano sono del

Dettagli

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI ANALISI DEI SISTEMI LTI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori

Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori Esercizio 1 Corso di Matematica II Anno Accademico 29 21. Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori May 7, 21 Commenti e correzioni sono benvenuti. Mi scuso se ci fosse qualche

Dettagli

Equazioni esponenziali e logaritmi

Equazioni esponenziali e logaritmi Copyright c 2008 Pasquale Terrecuso Tutti i diritti sono riservati. Equazioni esponenziali e logaritmi 2 equazioni esponenziali..................................................... 3 casi particolari............................................................

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 7 - CALCOLO NUMERICO CON MATRICI Richiami teorici Operazioni fondamentali Siano A = {a ij } e B = {b ij }, i = 1,..., m, j = 1,..., n due

Dettagli

ii 1.20 Rango di una matrice Studio dei sistemi lineari Teoremi di Cramer e Rouché-Capelli......

ii 1.20 Rango di una matrice Studio dei sistemi lineari Teoremi di Cramer e Rouché-Capelli...... Indice Prefazione vii 1 Matrici e sistemi lineari 1 1.1 Le matrici di numeri reali................. 1 1.2 Nomenclatura in uso per le matrici............ 3 1.3 Matrici ridotte per righe e matrici ridotte

Dettagli

Catene di Markov. 8 ottobre 2009

Catene di Markov. 8 ottobre 2009 Catene di Markov 8 ottobre 2009 Definizione 1. Si dice catena di Markov (finita) un sistema dotato di un numero finito n di stati {1, 2,..., n} che soddisfi la seguente ipotesi: la probabilità che il sistema

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

1 Introduzione alle matrici quadrate 2 2 a coefficienti in R.

1 Introduzione alle matrici quadrate 2 2 a coefficienti in R. 1 Introduzione alle matrici quadrate 2 2 a coefficienti in R Per introdurre il concetto di matrice, a 2 righe e 2 colonne, iniziamo col considerare griglie o tabelle di numeri Gli elementi della griglia,

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1 APPLICAZIONI LINEARI Applicazioni lineari tra spazi R n spazi di matrici spazi di polinomi e matrice associata rispetto ad una coppia di basi Endomorismi e matrice associata rispetto

Dettagli

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x

Dettagli

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Capitolo IV SPAZI VETTORIALI EUCLIDEI Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.

Dettagli

I numeri sulla Mole Antonelliana.

I numeri sulla Mole Antonelliana. Ārgomenti svolti: Serie di numeri di Fibonacci. Potenza n-esima di matrici. Autovalori ed autovettori. Formula di Binet. LeLing: Fibonacci, Autovalori e Autovettori. Ēsercizi consigliati: Geoling 6. I

Dettagli

Anno 4 Matrice inversa

Anno 4 Matrice inversa Anno 4 Matrice inversa 1 Introduzione In questa lezione parleremo della matrice inversa di una matrice quadrata: definizione metodo per individuarla Al termine della lezione sarai in grado di: descrivere

Dettagli

Matematica B - a.a 2006/07 p. 0

Matematica B - a.a 2006/07 p. 0 Matematica B - a.a 2006/07 p. 0 Prodotto scalare Definizione 1. Sia V uno spazio vettoriale su R. Si chiama prodotto scalare una funzione che ad ogni coppia di vettori (u, v) associa un numero (reale)

Dettagli

1 Disquazioni di primo grado

1 Disquazioni di primo grado 1 Disquazioni di primo grado 1 1 Disquazioni di primo grado Si assumono assodate le regole per la risoluzione delle equazioni lineari Ricordando che una disuguaglianza è una scrittura tra due espressioni

Dettagli

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1.

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Le matrici Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Siano m, n N\{0}. Una matrice m n a coefficienti in K è una tabella di m n elementi di K disposti

Dettagli

I numeri sulla Mole Antonelliana.

I numeri sulla Mole Antonelliana. I numeri sulla Mole Antonelliana. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. I voli dei numeri Ecco i numeri sulla Mole:,,, 3,, 8, 3,, 34,, 89, 44, 33, 377, 6,

Dettagli

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1 . Scimone a.s 1997 98 pag 1 TEORI DELLE MTRICI Dato un campo K, definiamo matrice ad elementi in K di tipo (m, n) un insieme di numeri ordinati secondo righe e colonne in una tabella rettangolare del tipo

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

RICETTE INDICE. Capitolo 1 Come trovare forme di Jordan. Pagina 2. Capitolo 2 Come studiare coniche e quadriche. Pagina 6

RICETTE INDICE. Capitolo 1 Come trovare forme di Jordan. Pagina 2. Capitolo 2 Come studiare coniche e quadriche. Pagina 6 RICETTE In questo file fornisco ricette per determinare forme di Jordan, polinomi minimi e per studiare coniche e quadriche, limitandomi al come si fa, senza fornire troppe spiegazioni sui perche. Per

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica erasmo@galois.it LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti

Dettagli

Note sulle funzioni convesse/concave

Note sulle funzioni convesse/concave Note sulle funzioni convesse/concave 4th December 2008 1 Definizioni e proprietà delle funzioni convesse/concave. Definizione 1.1 Un insieme A IR n è detto convesso se per ogni x 1 e x 2 punti di A, il

Dettagli

Esercitazioni di Geometria A: curve algebriche

Esercitazioni di Geometria A: curve algebriche Esercitazioni di Geometria A: curve algebriche 24-25 maggio 2016 Esercizio 1 Sia P 2 il piano proiettivo complesso munito delle coordinate proiettive (x 0 : x 1 : x 2 ). Sia r la retta proiettiva di equazione

Dettagli

2 Complementi di teoria degli operatori

2 Complementi di teoria degli operatori 2 Complementi di teoria degli operatori Richiamiamo le proprietà sulla diagonalizzazione degli operatori Sia V uno spazio vettoriale 12 su K di dimensione finita, V = {v 1,, v n } una base di V e T : V

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Esercizi di Geometria Affine

Esercizi di Geometria Affine Esercizi di Geometria Affine Sansonetto Nicola dicembre 01 Geometria Affine nel Piano Esercizio 1. Nel piano affine standard A (R) dotato del riferimento canonico, si consideri la retta τ di equazione

Dettagli

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI LE MATRICI DEFINIZIONE: Una matrice è un insieme di numeri disposti su righe e colonne. 1 3 7 M = 2 5 1 M è

Dettagli