ESERCIZIO 1. (a) Quanta carica attraversa un punto del filo in 5,0 min?
|
|
- Gianluigi Simoni
- 5 anni fa
- Visualizzazioni
Transcript
1 ESECIZIO Un filo è percorso dalla corrente di 3,0 A. (a) Quanta carica attraversa un punto del filo in 5,0 min? (b) Se la corrente è dovuta a un flusso di elettroni, quanti elettroni passano per un punto in questo tempo?
2 ESECIZIO (a) Quanta carica attraversa un punto del filo in 5,0 min? Q I Q I t C t (b) Se la corrente è dovuta a un flusso di elettroni, quanti elettroni passano per un punto in questo tempo? n e Q q e,6 0 elettroni
3 ESECIZIO Una carica di 0 C scorre attraverso un punto in un filo in,0 min? Si trovi la corrente nel filo. ΔQ 0 I 0, 67A Δt 60
4 ESECIZIO 3 Un filo di 0 m, che ha la resistenza di 0,4 Ω, è percorsa da una corrente di 5 A. (a) Qual è la differenza di potenziale ai capi del filo? (b) Qual è il modulo del campo elettrico nel filo?
5 ESECIZIO 3 (a) Qual è la differenza di potenziale ai capi del filo? V I 5 0,4 V (b) Qual è il modulo del campo elettrico nel filo? E V 0,V l 0 / m
6 ESECIZIO 4 Qual è la differenza di potenziale ai capi di una prolunga di 30 m realizzata con un filo di rame, avente diametro di,30 mm, attraverso il quale passa una corrente di 3 A. 8 8 ρl ρl, , S π r π (0,65 0 ),37 0 Ω V I 38,4 0 3, 5V
7 ESECIZIO 5 Qual è la potenza dissipata in un resistore 0 Ω se la differenza di potenziale ai suoi capi è di 50 V. V 50 P 50W 0
8 ESECIZIO 6 Una batteria con una f.e.m. di V ha la tensione ai morsetti di,4 V quando eroga 0 A al motorino di avviamento di un automobile. Qual è la resistenza interna della batteria?
9 ESECIZIO 6 Qual è la resistenza interna della batteria? I ΔV r f.e.m. ΔV f. e. m. ri r f. e. m. ΔV I,4 0 0,03Ω
10 ESISTENZE IN SEIE ED IN PAALLELO
11 ESISTENZE IN SEIE Diremo che due o più resistenze sono disposte in serie se in ognuna di esse scorre la stessa corrente I. V V I I A I Siano V e V le cadute di potenziale ai capi di ognuna delle resistenze. Per la prima legge di Ohm, si avrà: Detta V la tensione totale ai capi di A, per la conservazione dell energia essa sarà pari alla somma delle tensioni ai capi di ciascuna resistenza: V V + V
12 V ESISTENZE IN SEIE Chiameremo ESISTENZA EQUIVALENTE eq, la resistenza che messa al posto delle due originarie, richiamerebbe la stessa corrente nel circuito. A A eq I I I eq Uguagliando questa espressione alla: V V + V I + I I ( + ) troviamo che eq + ESISTENZA EQUIVALENTE DI ESISTENZE IN SEIE Analogamente, se avessimo più resistenze in serie la eq sarebbe data dalla somma di ognuna di esse.
13 ESISTENZE IN PAALLELO Diremo che due o più resistenze sono disposte in parallelo se la tensione V ai capi di ognuna é la stessa. A I I N I Siano I ed I le correnti che attraversano ciascuna delle resistenze. Poiché la carica elettrica si conserva, la corrente che arriva al nodo N deve essere uguale alla somma delle correnti che ne esce (prima legge di Kirchhoff). Perciò: I I + I
14 ESISTENZE IN PAALLELO Quando due resistenze sono in parallelo, ognuna é soggetta alla stessa tensione V. Pertanto: V V I I Troviamo ora la resistenza equivalente delle due resistenze in parallelo. A I I N I I A eq
15 ESISTENZE IN PAALLELO La resistenza equivalente in questo caso deve soddisfare la relazione: I V eq Combinando questa espressione con le precedenti, troviamo: V eq V + V + eq eq + ESISTENZA EQUIVALENTE DI DUE ESISTENZE IN PAALLELO
16 ESISTENZE IN PAALLELO Analogamente nel caso di tre resistenze in parallelo: 3 eq + + ESISTENZA EQUIVALENTE DI TE ESISTENZE IN PAALLELO eq + +
17 ESECIZIO 7 Dato il circuito in figura, (a) si trovi la resistenza equivalente tra i punti A e ; (b) se la caduta di potenziale tra A e é di V, si trovi la corrente in ciascun resistore. Ω A 3Ω 6Ω
18 ESECIZIO 7 (a) si trovi la resistenza equivalente tra i punti A e I tre resistori sono disposti in parallelo, quindi la eq sarà data da: eq A eq Ω eq
19 ESECIZIO 7 (b) se la caduta di potenziale tra A e é di V, si trovi la corrente in ciascun resistore. Poiché i resistori d sono disposti in parallelo, ognuno di essi avrà ai suoi capi una tensione pari a V A V, quindi: i i i 3 V A V V A A A 4A A A i i i 3 Ω 3Ω 3 6Ω
20 ESECIZIO 8 Dato il circuito in figura, (a) si trovi la resistenza equivalente tra i punti A e ; (b) se la caduta di potenziale tra A e é di V, si trovi la corrente in ciascun resistore. 0Ω 6Ω A 3 8Ω 4 8Ω 5 8Ω
21 ESECIZIO 8 (a) si trovi la resistenza equivalente tra i punti A e ; Per risolvere il circuito, dobbiamo come primo passo calcolare la resistenza equivalente al parallelo tra 3 ed 4, che chiameremo Ω 6Ω 34 4Ω A 34 4Ω 5 8Ω
22 ESECIZIO 8 (a) si trovi la resistenza equivalente tra i punti A e ; A questo punto dobbiamo calcolare le resistenze equivalenti alla serie di ed ( ) ed alla serie di 34 ed 5 ( 345 ) Ω Ω A 6Ω 345 Ω
23 ESECIZIO 8 (a) si trovi la resistenza equivalente tra i punti A e ; In ultimo calcoliamo il parallelo tra ed 345, ottenendo la resistenza equivalente tra i punti A e. eq eq 48 7 Ω 6,86Ω A eq
24 ESECIZIO 8 (b) se la caduta di potenziale tra A e é di V, si trovi la corrente in ciascun resistore. Per calcolare la corrente in ciascun resistore, dobbiamo considerare le resistenze equivalenti ai capi delle quali c é una tensione pari a V A Ω. Consideriamo il tratto superiore del circuito: A 6Ω A i i i Quindi la corrente che scorre nel ramo superiore sarà: VA 3 i i i 0,75A 6 4 Essa sarà la stessa in entrambi i resistori poiché sono in serie.
25 ESECIZIO 8 Consideriamo ora il tratto inferiore del circuito: A i 3 3 8Ω 5 8Ω A 34 4Ω 5 8Ω i 34 i 4 i 5 4 8Ω i V A 345 i34 i5 345 A La caduta di tensione ai capi di 34 e quindi di 3 e di 4, poiché essi sono disposti in parallelo, sarà, : V i 4 4V
26 ESECIZIO 8 Quindi le correnti su 3 ed 4 sono date da: i i 3 4 V 34 V ,5A 0,5A A i 3 i 4 3 8Ω 4 8Ω 5 8Ω i 5
27 ESECIZIO 9 Un campo magnetico uniforme di modulo,5 T é orientato nella direzione z positiva. Si trovi la forza che agisce su una particella di carica Q +,5 nc, se la sua velocità é: (a) 400 km/s nella direzione y positiva; (b) 800 km/s nella direzione z positiva; (c) 00 km/s nella direzione z negativa; (d) 400 km/s nel piano yz, verso l alto, lungo una retta che forma un angolo di 30 con l asse z.
28 ESECIZIO 9 (a) 400 km/s nella direzione y positiva z F qv Q v y F x F q v senθ, , N
29 ESECIZIO 9 (b) 800 km/s nella direzione z positiva z Q v y θ 0 x F q v senθ q v 0 0N
30 ESECIZIO 9 (c) 00 km/s nella direzione z negativa z y θ Q θ 80 v x F q v senθ q v 0 0N
31 ESECIZIO 9 (d) 400 km/s nel piano yz, verso l alto, lungo una retta che forma un angolo di 30 con l asse z. z Q θ v θ 30 y F x F q v senθ q v 0,5 7,5 0 4 N
32 ESECIZIO 0 Un segmento di filo rettilineo lungo m forma un angolo di 60 con un campo magnetico uniforme di 4000G. Si trovi il modulo della forza che agisce sul filo, se in esso scorre una corrente di,5 A. F l I senθ, sen60 θ 3 0,87N
33 ESECIZIO Una bobina rettangolare di 50 spire ha i lati di 6,0 cm e 8,0 cm ed é percorsa dalla corrente di,0 A. Essa é orientata come mostrato in figura, ed é imperniata sull asse z. Il lato sul piano xy forma un angolo θ con l asse x. (a) Si trovi il modulo del momento magnetico della bobina e se ne indichi il la direzione orientata; (b) che angolo forma il momento magnetico della bobina con l asse x? (c) Si trovi il momento di forza che sarebbe esercitato dalla bobina se ci fosse un campo magnetico uniforme di 5000G nella direzione x positiva.
34 ESECIZIO z L 6 cm L L 8 cm L IA y N 50, Numero di spire θ x
35 ESECIZIO (a) Si trovi il modulo del momento magnetico della bobina e se ne indichi il la direzione orientata; M NI A ,48Am z La direzione orientata é la stessa del versore normale alla superficie della bobina. M θ y x
36 ESECIZIO (b) che angolo forma il momento magnetico della bobina con l asse x? z L angolo che forma il momento magnetico della bobina con l asse x é pari a θ θ M θ y x
37 ESECIZIO (c) si trovi il momento di forza che sarebbe esercitato dalla bobina se ci fosse un campo magnetico uniforme di 5000G nella direzione x positiva. Il momento torcente massimo si realizza quando la bobina é parallela al campo magnetico, quindi l angolo che forma la normale con l asse x é pari a θ90 M z θ y τ M N I 0, A 4 0,7Nm x
38 ESECIZIO (c) si trovi il momento di forza che sarebbe esercitato dalla bobina se ci fosse un campo magnetico uniforme di 5000G nella direzione x positiva. z I L L F F X τ 0 IL τ Nτ NI I IL L I x A 0,7Nm L L I A
39 ESECIZIO Si dimostri che la forza di Laplace agente su un filo metallico, percorso da una corrente I, posto in una regione in cui è presente un campo costante ed uniforme, può essere derivata dalla forza di Lorentz sui portatori di carica. A I l v I nqva dove n è il numero di portatori di carica, q è la carica di un singolo portatore, v è la velocità di deriva ed A è la sezione del conduttore come in figura. Scriviamo la forza di Lorentz per un singolo portatore di carica:
40 ESECIZIO F L qvsenθ Per avere la forza di Lorentz per tutti i portatori di carica si dovrà moltiplicare la forza per il numero di portatori totali cioè il numero di portatori in tutto il volume del filo, quindi: F TOT nal qvsenθ icordando che: naqv I Possiamo riscrivere la F TOT come: F TOT Ilsenθ
Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15
Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15 Esercizio 1 (9 punti): Una distribuzione di carica è costituita da un guscio sferico
Corrente ele)rica. Cariche in movimento e legge di Ohm
Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma la risultante istante
CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2
COENTE ELETTICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V isolati tra loro V > V 1 V V 1 Li colleghiamo mediante un conduttore Fase transitoria: sotto
GRANDEZZE ELETTRICHE E COMPONENTI
Capitolo3:Layout 1 17-10-2012 15:33 Pagina 73 CAPITOLO 3 GRANDEZZE ELETTRICHE E COMPONENTI OBIETTIVI Conoscere le grandezze fisiche necessarie alla trattazione dei circuiti elettrici Comprendere la necessità
Q t CORRENTI ELETTRICHE
CORRENTI ELETTRICHE La corrente elettrica è un flusso di particelle cariche. L intensità di una corrente è definita come la quantità di carica netta che attraversa nell unità di tempo una superficie: I
Correnti e circuiti a corrente continua. La corrente elettrica
Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media
Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ
Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Che cos è la corrente elettrica? Nei conduttori metallici la corrente è un flusso di elettroni. L intensità della corrente è il rapporto tra la quantità
Michele D'Amico (premiere) 6 May 2012
Michele D'Amico (premiere) CORRENTE ELETTRICA 6 May 2012 Introduzione La corrente elettrica può essere definita come il movimento ordinato di cariche elettriche, dove per convenzione si stabilisce la direzione
LA CORRENTE ELETTRICA CONTINUA
LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico
LA CORRENTE ELETTRICA
L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso
approfondimento Corrente elettrica e circuiti in corrente continua
approfondimento Corrente elettrica e circuiti in corrente continua Corrente elettrica e forza elettromotrice La conduzione nei metalli: Resistenza e legge di Ohm Energia e potenza nei circuiti elettrici
La corrente elettrica
Lampadina Ferro da stiro Altoparlante Moto di cariche elettrice Nei metalli i portatori di carica sono gli elettroni Agitazione termica - moto caotico velocità media 10 5 m/s Non costituiscono una corrente
LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it
LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.
Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione
Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione 1. L elettrone ha una massa di 9.1 10-31 kg ed una carica elettrica di -1.6 10-19 C. Ricordando che la forza gravitazionale
1 LA CORRENTE ELETTRICA CONTINUA
1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo
TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA
TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA Evidenza dell interazione magnetica; sorgenti delle azioni magnetiche; forze tra poli magnetici, il campo magnetico Forza magnetica su una carica in moto; particella
Corrente elettrica. La disputa Galvani - Volta
Corrente elettrica La disputa Galvani - Volta Galvani scopre che due bastoncini di metalli diversi, in una rana, ne fanno contrarre i muscoli Lo interpreta come energia vitale Volta attribuisce il fenomeno
ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica
ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTRODINAMICA + Correnti + Campi Magnetici + Induzione e Induttanza + Equazioni di Maxwell
Corrente Elettrica. dq dt
Corrente Elettrica Finora abbiamo considerato le cariche elettriche fisse: Elettrostatica Consideriamole adesso in movimento! La carica in moto forma una corrente elettrica. L intensità di corrente è uguale
Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale
Circuiti Elettrici Corrente elettrica Legge di Ohm Elementi di circuito: resistori, generatori di differenza di potenziale Leggi di Kirchhoff Elementi di circuito: voltmetri, amperometri, condensatori
Esercizi svolti di Elettrotecnica
Marco Gilli Dipartimento di Elettronica Politecnico di Torino Esercizi svolti di Elettrotecnica Politecnico di Torino TOINO Maggio 2003 Indice Leggi di Kirchhoff 5 2 Legge di Ohm e partitori 5 3 esistenze
Il Corso di Fisica per Scienze Biologiche
Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia
9. Urti e conservazione della quantità di moto.
9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due
Sia data la rete di fig. 1 costituita da tre resistori,,, e da due generatori indipendenti ideali di corrente ed. Fig. 1
Analisi delle reti 1. Analisi nodale (metodo dei potenziali dei nodi) 1.1 Analisi nodale in assenza di generatori di tensione L'analisi nodale, detta altresì metodo dei potenziali ai nodi, è un procedimento
V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.
LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. PREMESSA: Anche intuitivamente dovrebbe a questo punto essere ormai chiaro
Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica
Corrente elettrica LA CORRENTE ELETTRICA CONTINUA Cos è la corrente elettrica? La corrente elettrica è un flusso di elettroni che si spostano dentro un conduttore dal polo negativo verso il polo positivo
IL TRASFORMATORE Prof. S. Giannitto Il trasformatore è una macchina in grado di operare solo in corrente alternata, perché sfrutta i principi dell'elettromagnetismo legati ai flussi variabili. Il trasformatore
Definizione di mutua induzione
Mutua induzione Definizione di mutua induzione Una induttanza produce un campo magnetico proporzionale alla corrente che vi scorre. Se le linee di forza di questo campo magnetico intersecano una seconda
CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente.
CORRENTE ELETTRICA Si definisce CORRENTE ELETTRICA un moto ordinato di cariche elettriche. Il moto ordinato è distinto dal moto termico, che è invece disordinato, ed è sovrapposto a questo. Il moto ordinato
CORRENTE ELETTRICA. φ 1
COENTE ELETTCA lim t Q/ tdq/dt ntensità di corrente φ φ > φ φ La definizione implica la scelta di un verso positivo della corrente. Per convenzione, il verso positivo della corrente è parallelo al moto
Elettronica Analogica. Luxx Luca Carabetta. Nello studio dell elettronica analogica ci serviamo di alcune grandezze:
Grandezze elettriche Serie e Parallelo Legge di Ohm, Principi di Kirchhoff Elettronica Analogica Luxx Luca Carabetta Premessa L elettronica Analogica, si appoggia su segnali che possono avere infiniti
Generatore di Forza Elettromotrice
CIRCUITI ELETTRICI Corrente Elettrica 1. La corrente elettrica è un flusso ordinato di carica elettrica. 2. L intensità di corrente elettrica (i) è definita come la quantità di carica che attraversa una
1. Esercizio. (a) la corrente che passa in ogni lampadina (b) la potenza dissipata in ogni lampadina. Soluzione.
1. Esercizio Due lampadine hanno resistenza pari a R 1 = 45 Ω e R 2 = 75 Ω rispettivamente, e possono essere collegate in serie o in parallelo ad una batteria che fornisce una differenza di potenziale
LINEE AEREE PARALLELE
LINEE AEREE PARALLELE Coefficiente di autoinduzione di una linea bifilare Sia data la linea riportata in fig. 1 Fig. 1 Linea bifilare a conduttori paralleli essa è costituita da due conduttori aerei paralleli
I poli magnetici isolati non esistono
Il campo magnetico Le prime osservazioni dei fenomeni magnetici risalgono all antichità Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro Un ago magnetico libero
20) Ricalcolare la resistenza ad una temperatura di 70 C.
ISTITUTO TECNICO AERONAUTICO G.P. CHIRONI NUORO Anno Sc. 2010/2011 Docente: Fadda Andrea Antonio RACCOLTA DI TEST ED ESERCIZI CLASSE 3^ 1) Quali particelle compongono un atomo? A) elettroni, protoni, neutroni
F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.
Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,
Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra:
1. Esercizio Calcolare il potenziale elettrico nel punto A sull asse di simmetria della distribuzione di cariche in figura. Quanto lavoro bisogna spendere per portare una carica da 2 µc dall infinito al
Correnti e circuiti a corrente continua. La corrente elettrica
Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media
dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;
CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S
Unità realizzata con la collaborazione dell alunno GIANMARCO BERTONATI (Elaborato d Esame a.s.:2011/2012 classe 3 D)
1 Unità realizzata con la collaborazione dell alunno GIANMARCO BERTONATI (Elaborato d Esame a.s.:2011/2012 classe 3 D) 2 circuito realizzato dall alunno Gianmarco Bertonati grazie al quali ha potuto spiegare
Impianto elettrico nelle applicazioni aeronautiche
Impianto elettrico nelle applicazioni aeronautiche Indice generale Richiami delle leggi principali...2 La prima legge di Ohm...2 Resistenze in serie...3 Resistenze in parallelo...5 Secondo principio di
a b c Figura 1 Generatori ideali di tensione
Generatori di tensione e di corrente 1. La tensione ideale e generatori di corrente Un generatore ideale è quel dispositivo (bipolo) che fornisce una quantità di energia praticamente infinita (generatore
Generatore di forza elettromotrice f.e.m.
Generatore di forza elettromotrice f.e.m. Un dispositivo che mantiene una differenza di potenziale tra una coppia di terminali batterie generatori elettrici celle solari termopile celle a combustibile
I CIRCUITI ELETTRICI. Prima di tutto occorre mettersi d accordo anche sui nomi di alcune parti dei circuiti stessi.
I CIRCUITI ELETTRICI Prima di tutto occorre mettersi d accordo anche sui nomi di alcune parti dei circuiti stessi. Definiamo ramo un tratto di circuito senza diramazioni (tratto evidenziato in rosso nella
funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/
mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/ funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI Struttura dell'atomo (nucleo, protoni, neutroni, elettroni); cariche elettriche elementari (elettrone,
Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013
Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici a Corrente Alternata Sergio Benenti 7 settembre 2013? ndice 2 Circuiti elettrici a corrente alternata 1 21 Circuito
L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare
L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare Cap.4 giroscopio, magnetismo e forza di Lorentz teoria del giroscopio Abbiamo finora preso in considerazione le condizionidi equilibrio
19 Il campo elettrico - 3. Le linee del campo elettrico
Moto di una carica in un campo elettrico uniforme Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice se il campo elettrico è uniforme,
Esercizi e considerazioni pratiche sulla legge di ohm e la potenza
Esercizi e considerazioni pratiche sulla legge di ohm e la potenza Come detto precedentemente la legge di ohm lega la tensione e la corrente con un altro parametro detto "resistenza". Di seguito sono presenti
Lezione 18. Magnetismo WWW.SLIDETUBE.IT
Lezione 18 Magnetismo Cenni di magnetismo Già a Talete (600 a.c.) era noto che la magnetitite ed alcune altre pietre naturali (minerali di ferro, trovati a Magnesia in Asia Minore) avevano la proprietà
CORRENTE ELETTRICA Corso di Fisica per la Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2007
CORRENTE ELETTRICA INTRODUZIONE Dopo lo studio dell elettrostatica, nella quale abbiamo descritto distribuzioni e sistemi di cariche elettriche in quiete, passiamo allo studio di fenomeni nei quali le
Transitori del primo ordine
Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli
E 0 = E 1 2 + E 0. 2 = E h. = 3.2kV / m. 2 1 x. κ 1. κ 2 κ 1 E 1 = κ 2 E 2. = κ 1 E 1 x ε 0 = 8
Solo Ingegneria dell Informazione e Ingegneria dell Energia (Canale 2 e DM 59) Problema Due condensatori piani C e C, uguali ad armature quadrate separate dalla distanza, sono connessi in parallelo. Lo
Carica positiva e carica negativa
Elettrostatica Fin dal 600 a.c. si erano studiati alcuni effetti prodotti dallo sfregamento di una resina fossile, l ambra (dal cui nome in greco electron deriva il termine elettricità) con alcuni tipi
Prova intercorso di Fisica 2 dott. Esposito 27/11/2009
Prova intercorso di Fisica 2 dott. Esposito 27/11/2009 Anno di corso: 1) Una carica puntiforme q=-8.5 10-6 C è posta a distanza R=12 cm da un piano uniformemente carico condensità di carica superficiale
Elettronica I Generatore equivalente; massimo trasferimento di potenza; sovrapposizione degli effetti
Elettronica I Generatore equivalente; massimo trasferimento di potenza; sovrapposizione degli effetti Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema email:
MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME
6. IL CONDNSATOR FNOMNI DI LTTROSTATICA MOTO DI UNA CARICA IN UN CAMPO LTTRICO UNIFORM Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice
. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d
Esercizio 1 Un automobile viaggia a velocità v 0 su una strada inclinata di un angolo θ rispetto alla superficie terrestre, e deve superare un burrone largo d (si veda la figura, in cui è indicato anche
FAM. Serie 34: Elettrodinamica IX. Esercizio 1 Legge di Faraday e legge di Lenz. C. Ferrari. Considera una spira come nella figura qui sotto
Serie 34: Elettrodinamica IX FAM C. Ferrari Esercizio 1 Legge di Faraday e legge di Lenz Considera una spira come nella figura qui sotto n C S 1. Disegna la corrente indotta nella spira se il campo magnetico
Corrente elettrica stazionaria
Corrente elettrica stazionaria Negli atomi di un metallo gli elettroni periferici non si legano ai singoli atomi, ma sono liberi di muoversi nel reticolo formato dagli ioni positivi e sono detti elettroni
Magnetismo. limatura di ferro. Fenomeno noto fin dall antichità. Da Magnesia città dell Asia Minore - Magnetite
Magnetismo Alcuni minerali (ossidi di ferro) attirano la limatura di ferro. Fenomeno noto fin dall antichità. Da Magnesia città dell Asia Minore - Magnetite Proprietà non uniforme. Se si ricava opportuno
MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).
MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica
Grandezze scalari e vettoriali
Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze
Capitolo 7. Circuiti magnetici
Capitolo 7. Circuiti magnetici Esercizio 7.1 Dato il circuito in figura 7.1 funzionante in regime stazionario, sono noti: R1 = 7.333 Ω, R2 = 2 Ω, R3 = 7 Ω δ1 = 1 mm, δ2 = 1.3 mm, δ3 = 1.5 mm Α = 8 cm 2,
Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE
Induzione magnetica INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Che cos è l induzione magnetica? Si parla di induzione magnetica quando si misura una intensità di corrente diversa da zero che attraversa
ENERGIA ELETTRICA: Generatori e tipi di collegamento. Istituto Paritario Scuole Pie Napoletane - Anno Scolastico 2012-13 -
ENERGIA ELETTRICA: Generatori e tipi di collegamento Quando un conduttore in movimento attraversa le linee di forza di un campo magnetico, nel conduttore si genera una forza elettromotrice indotta in grado
Nome e Cognome. Nella copia da riconsegnare si scrivano solo il risultato numerico e la formula finale. Non riportare tutto il procedimento.
Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali: Corso di Fisica AA 13/14 Test di ammissione all'orale di Fisica. Appello del 16 Marzo 2015 Nome e Cognome Nella copia da riconsegnare si scrivano
La corrente e le leggi di Ohm
La corrente e le leggi di Ohm Elettroni di conduzione La conduzione elettrica, che definiremo successivamente, consiste nel passaggio di cariche elettriche da un punto ad un altro di un corpo conduttore.
X = Z sinj Q = VI sinj
bbiamo già parlato dei triangoli dell impedenza e delle potenze. Notiamo la similitudine dei due triangoli rettangoli. Perciò possiamo indifferentemente calcolare: (fattore di potenza) Il fattore di potenza
Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia
Nome..Cognome.. Classe 4G 4 dicembre 8 VERIFIC DI FISIC: lavoro ed energia Domande ) Energia cinetica: (punti:.5) a) fornisci la definizione più generale possibile di energia cinetica, specificando l equazione
Macchina sincrona (alternatore)
Macchina sincrona (alternatore) Principio di funzionamento Le macchine sincrone si dividono in: macchina sincrona isotropa, se è realizzata la simmetria del flusso; macchina sincrona anisotropa, quanto
La corrente e le leggi di Ohm
La corrente e le leggi di Ohm Elettroni di conduzione La conduzione elettrica, che definiremo successivamente, consiste nel passaggio di cariche elettriche da un punto ad un altro di un corpo conduttore.
28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6
28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 Lavoro, forza costante: W = F r Problema 1 Quanto lavoro viene compiuto dalla forza di
Tesina di scienze. L Elettricità. Le forze elettriche
Tesina di scienze L Elettricità Le forze elettriche In natura esistono due forme di elettricità: quella negativa e quella positiva. Queste due energie si attraggono fra loro, mentre gli stessi tipi di
Corso di fisica generale con elementi di fisica tecnica
Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 3 Campi magnetici e forza
Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo.
Febbraio 1. Un aereo in volo orizzontale, alla velocità costante di 360 km/h, lascia cadere delle provviste per un accampamento da un altezza di 200 metri. Determina a quale distanza dall accampamento
Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino
Lunedì 20 dicembre 2010 Docente del corso: prof. V. Maiorino Se la Terra si spostasse all improvviso su un orbita dieci volte più lontana dal Sole rispetto all attuale, di quanto dovrebbe variare la massa
(c) dipende linearmente dalla distanza dal centro della sfera. Domanda n5: Il campo elettrico all'interno di un conduttore sferico di raggio R e'
FISICA per BIOLOGIA Esercizi: Elettricita' e Magnetismo Indicare la lettera corrispondente alla risposta corretta. Domanda n1: La carica elettrica e' quantizzata, cioe' la carica piu' piccola misurata
E l e t t r o m a g n e t i s m o. Saggio Finale
Corso abilitante IX ciclo Classe di concorso A038 ( Fisica ) Anno Accademico 2007 / 2008 (1 anno ) Specializzando: ( matr. 3801/SS ) E l e t t r o m a g n e t i s m o prof. Saggio Finale 1. Presentazione
Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo.
Lavoro ed energia 1. Forze conservative 2. Energia potenziale 3. Conservazione dell energia meccanica 4. Conservazione dell energia nel moto del pendolo 5. Esempio: energia potenziale gravitazionale 6.
Capitolo II Le reti elettriche
Capitolo II Le reti elettriche Fino ad ora abbiamo immaginato di disporre di due soli bipoli da collegare attraverso i loro morsetti; supponiamo ora, invece, di disporre di l bipoli e di collegarli tra
Conduzione e Corrente Elettrica
Conduzione e Corrente Elettrica I conduttori (metallici) sono solidi costituiti da atomi disposti in maniera ordinata nello spazio, che hanno perso uno o più elettroni (negativi) che sono liberi dimuoversinello
isolanti e conduttori
1. ELETTROMAGNETISMO 1.1. Carica elettrica 1.1.1. Storia: Franklin Thomson Rutherford Millikan 1.1.2. L atomo: struttura elettroni di valenza (legame metallico) isolanti e conduttori ATOMO legge di conservazione
FISICA DELLA BICICLETTA
FISICA DELLA BICICLETTA Con immagini scelte dalla 3 SB PREMESSA: LEGGI FISICHE Velocità periferica (tangenziale) del moto circolare uniforme : v = 2πr / T = 2πrf Velocità angolare: ω = θ / t ; per un giro
Misura di e/m. Marilena Teri, Valerio Toso & Ettore Zaffaroni (gruppo Lu4)
Misura di e/m Marilena Teri, Valerio Toso & Ettore Zaffaroni (gruppo Lu4) 1 Introduzione 1.1 Introduzione ai fenomeni in esame Un elettrone all interno di un campo elettrico risente della forza elettrica
RIASSUNTO DI FISICA 3 a LICEO
RIASSUNTO DI FISICA 3 a LICEO ELETTROLOGIA 1) CONCETTI FONDAMENTALI Cariche elettriche: cariche elettriche dello stesso segno si respingono e cariche elettriche di segno opposto si attraggono. Conduttore:
Esempi di funzione. Scheda Tre
Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.
GEOMETRIA DELLE MASSE
1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro
Lezione 4 24 Gennaio
LabCont1: Laboratorio di Controlli 1 II Trim. 2007 Docente: Luca Schenato Lezione 4 24 Gennaio Stesori: Simone Valmorbida, Stefano Meloni, Matteo Marzilli 4.1 Il motore in corrente continua Il motore in
CONDUTTORI, CAPACITA' E DIELETTRICI
CONDUTTORI, CAPACITA' E DIELETTRICI Capacità di un conduttore isolato Se trasferiamo una carica elettrica su di un conduttore isolato questa si distribuisce sulla superficie in modo che il conduttore sia
LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.
7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,
bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo
Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.
5 10 17 26 37 2,,,,,,... 2 3 4 5 6
MATEMATICA GENERALE 2014 - CTF Funzioni e successioni - Esercizi Docente: ALESSANDRO GAMBINI 1. a) Rappresenta mediante espressione analitica la seguente successione numerica. Motiva la tua risposta. 5
Induzione e.m. generazione di corrente dovuta al moto relativo del magnete rispetto alla spira. un campo magnetico variabile genera una corrente
Induzione e.m. generazione di corrente dovuta al moto relativo del magnete rispetto alla spira un campo magnetico variabile genera una corrente INDUZIONE ELETTROMAGNETICA - ESPERIENZA 1 magnete N S µ-amperometro
B. Vogliamo determinare l equazione della retta
Risoluzione quesiti ordinamento Quesito N.1 Indicata con α la misura dell angolo CAB, si ha che: 1 Area ( ABC ) = AC AB sinα = 3 sinα π 3 sinα = 3 sinα = 1 α = Il triangolo è quindi retto in A. La misura
Istituto Tecnico dei Trasporti e Logistica Nautico San Giorgio Genova A/S 2012/2013 Programma Didattico Svolto Elettrotecnica ed Elettronica
Docenti: Coppola Filippo Sergio Sacco Giuseppe Istituto Tecnico dei Trasporti e Logistica Nautico San Giorgio Genova A/S 2012/2013 Programma Didattico Svolto Classe 3A2 Elettrotecnica ed Elettronica Modulo
La corrente elettrica
La corrente elettrica La corrente elettrica è un movimento di cariche elettriche che hanno tutte lo stesso segno e si muovono nello stesso verso. Si ha corrente quando: 1. Ci sono cariche elettriche; 2.
La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente
Unità G16 - La corrente elettrica continua La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente 1 Lezione 1 - La corrente elettrica