1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI."

Transcript

1 1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. Tutti i fenomeni elettrici e magnetici hanno origine da cariche elettriche. Per comprendere a fondo la definizione di carica elettrica occorre risalire alla struttura degli atomi. L atomo più semplice che conosciamo è quello di idrogeno, costituito da un protone ed un elettrone che vi gravita attorno. Questo può succedere solo perché protone ed elettrone sono vicendevolmente attratti fra loro da una proprietà denominata carica elettrica. Corpi contraddistinti da cariche di segno concordante si respingono, mentre corpi con segno opposto si attraggono, proprio come nell esempio appena citato dove protone ed elettrone hanno valore assoluto uguale 1 ma segno contrario. Normalmente in un atomo si hanno elettroni e protoni in numero uguale e di conseguenza l atomo stesso risulta neutro. Quando un atomo acquista o perde elettroni diventa una particella carica elettricamente chiamata ione, nel primo caso si parla di ione negativo nel secondo di ione positivo. 1 Valore corrispondente a 1,6*10 esp-19 coulomb. 9

2 Figura 1.1- struttura di un atomo. Oltre a tenere uniti gli atomi, le cariche elettriche sono responsabili anche delle interazioni fra atomi e fra molecole nonché delle reazioni chimiche. L intensità della forza con cui due cariche si attraggono o si respingono risulta direttamente proporzionale al prodotto delle cariche ed inversamente proporzionale al quadrato della distanza fra le stesse cariche. La legge di Coulomb esprime analiticamente quanto appena descritto: F 1 Q1Q = [1.1] 4 πε r dove la forza F è espressa in Newton (N), e Q sono le cariche misurate in Coulomb (C), r la distanza fra le cariche espressa in metri ed ε è una costante che dipende dal mezzo in cui si trovano le cariche (nel caso di cariche poste in aria si approssima ε a /N m²) Q1 ε 0 costante dielettrica nel vuoto pari a 8,85 10¹² C² 10

3 1.1-Il campo elettrico. Errore. Il segnalibro non è definito. Si definisce campo elettrico (E) una regione di spazio estesa intorno ad un oggetto dotato di carica elettrica, detto sorgente di campo, nella quale si manifestano -per effetto della distribuzione di cariche elettriche- delle forze di natura elettrica che agiscono sui corpi elettrizzati posti all interno del campo. Analiticamente il campo elettrico generato dalla carica Q è definito come: E = F q [1.] Errore. Il segnalibro non è definito.dove q è una piccola carica di prova positiva e F la forza di Coulomb. Posso ora ricavare il valore di campo generato dalla carica Q in ogni punto al suo intorno, partendo dalla formula appena scritta e dalla legge di Coulomb: 1 Q E = [1.3] 4 πε r 0 La direzione del campo elettrico è la stessa della forza di Coulomb, per cui, avendo posto la carica di prova positiva, il campo risulterà attrattivo per Q negativa, repulsivo per Q positiva. L andamento del campo elettrico nello spazio è generalmente rappresentato mediante linee di campo. Tale rappresentazione consente di esprimere la distribuzione nello spazio del modulo, della direzione e del verso del campo vettoriale. Le convenzioni adottate nella rappresentazione di E tramite linee di forza sono le seguenti: 11

4 la tangente a una linea di forza, in ogni punto, da la direzione di E nel punto; il numero delle linee che attraversano una superficie normale alle linee stesse, è direttamente proporzionale all intensità del campo in quell area. Dove le linee si addensano il campo elettrico è più intenso. Figura 1. Linee di forza del campo elettrico generate da: a) una carica q+ puntiforme; b) un dipolo (cariche uguali ma di segno opposto q+ q-). Il campo elettrico non ha un valore costante nello spazio, esso decresce mano a mano che ci si allontana della carica Q. Questo risulta evidente anche solo osservando le linee di forza che si diradano allontanandosi dalla carica. E possibile descrivere il campo elettrico anche tramite una grandezza scalare: il potenziale elettrico V. Ipotizzando di spostare una carica di prova punto A a un punto B dello spazio, si compirebbe un lavoro W AB da un. La differenza di potenziale elettrico, spesso indicata con la sigla d.d.p., è definita come: q 0 V WAB V [1.4] A B = q 0 1

5 L unità di misura maggiormente usata per la d.d.p. è il volt (V). Per approssimazione, ponendo il punto A ad una distanza infinita da tutte le cariche, si può attribuire arbitrariamente a potenziale elettrico in un punto P come: V A valore 0. Si può così definire il W V = q 0 [1.5] Il potenziale elettrico vicino ad una carica positiva isolata risulta dunque positivo, infatti deve essere compiuto un lavoro positivo da un agente esterno per spingervi una carica elettrica positiva da un punto infinitamente lontano. 1.-Il campo magnetico. Il campo magnetico H è, come il campo elettrico, una grandezza vettoriale. La sua unità di misura è l ampere/ metro (A/m) nel sistema MKS oppure l Oersted (Or) nel sistema CGS. Il campo magnetico è generato da cariche elettriche in movimento, ossia in presenza di correnti. Quando un elettrone si muove attraverso un materiale conduttore, ad esempio attraverso un oggetto metallico, una certa quantità di carica viene trasportata da un estremità all altra. E definita intensità di corrente la quantità di carica che attraversa la sezione del conduttore nell unità di tempo: Q I = t [1.6] Se si considerano due fili rettilinei attraversati da correnti e I e separati I1 da una distanza r molto piccola rispetto alla loro lunghezza, si osserva che sui 13

6 conduttori agisce una forza attrattiva se le due correnti hanno lo stesso verso, repulsiva qualora il verso sia opposto. L intensità della forza agente su un tratto l del filo è: F = μ I1I l π r [1.7] Dove μ è una costante detta permeabilità magnetica che dipende dal mezzo materiale interposto. Nel caso il mezzo sia il vuoto, μ assume il valore μ 0 = π N A, valore che si può utilizzare, approssimando, anche per l aria. F nella formula precedente è identificabile come forza magnetica. Analogamente a quanto detto per il campo elettrico, si può pensare ad un campo magnetico generato da una corrente che modifica lo spazio circostante. Nel caso sovracitato di due fili, la corrente I1 genera un campo capace di interagire con spazio circostante e quindi con il filo. Per descrivere la componente magnetica è possibile far riferimento all intensità del campo magnetico (H) ma anche all induzione magnetica (B). Le due grandezze sono direttamente proporzionali e sono legate fra loro dalla relazione: B = μh [1.8] μ nota come permeabilità magnetica, dipende dalla proprietà del mezzo in cui si effettuano le misure. Nel caso del filo rettilineo percorso da corrente I, l intensità del vettore induzione magnetica nel vuoto è: B = μ0 π I r [1.9] dove μ 0 è la permeabilità magnetica nel vuoto. Per rappresentare il campo magnetico si usano, come nel caso del campo elettrico, linee di campo. 14

7 Figura 1.3 Campo di induzione magnetica prodotto da un conduttore percorso da corrente I. Nel caso di un conduttore rettilineo le linee di campo sono raffigurabili con circonferenze concentriche attorno al filo. Per definizione il campo magnetico in un punto è diretto come la tangente alla linea di campo in quel punto. A differenza del campo elettrico, la forza magnetica non ha direzione concorde al campo. Come si nota nella figura 1.3 la forza magnetica fra i due conduttori è perpendicolare alle direzioni del campo e delle correnti. Una situazione particolare si ha quando si considera il campo generato da una corrente circolare. In questo caso le linee di campo conseguenti risultano del tutto simili a quelle ben note generate da un magnete. 15

8 Figura 1.4 Linee di forza del campo magnetico generate dalla corrente circolare I. Un magnete è costituito da un polo Nord, da cui fuoriescono le linee di campo, e da un polo Sud in cui le linee entrano. Si potrebbe pensare ad un analogia con le cariche elettriche positive e negative, tuttavia nel caso di un magnete i due poli risultano essere non isolabili. Procedendo infatti a successive suddivisioni del magnete originario, si ripresentano sempre comunque un polo nord e uno sud nella forma di dipolo magnetico. Ciò nonostante, l analogia fra campo magnetico di una spira e quello di una calamita, ha portato Ampére all ipotesi, poi confermata, che i campi magnetici siano sempre dovuti a correnti elettriche. 1.3-Le onde elettromagnetiche. Sino ad ora si sono trattate situazioni che contemplano cariche elettriche ferme o correnti costanti. Se si considerano campi elettrici e magnetici variabili Questo per convenzione. 16

9 nel tempo, si nota che una variazione di campo elettrico da origine ad un campo magnetico e che, viceversa, ad una variazione di quest ultimo corrisponde la comparsa di un campo elettrico. Considerate queste proprietà, Maxwell fu in grado di predire l esistenza di onde elettromagnetiche. Esse sono costituite da una catena di campi elettrici e magnetici capaci di generarsi reciprocamente e di propagarsi nello spazio, indipendentemente dalle cariche e correnti che le hanno generate. Le oscillazioni dei campi elettrici e magnetici che costituiscono un onda elettromagnetica sono, ad elevate distanze dalla sorgente (ovvero in campo lontano), sinusoidali, in fase fra loro e ortogonali alla direzione di propagazione e costituiscono quella che è chiamata onda piana. Figura 1.5 Rappresentazione del campo elettromagnetico. Si definisce intensità o densità di potenza (I), l energia trasportata da un onda elettromagnetica nell unità di tempo e di superficie perpendicolare alla direzione di propagazione. Analiticamente si definisce I con l equazione: I ε μ = E eff [1.10] 17

10 dove E eff è il valore efficace dell intensità del campo elettrico E, che per un onda sinusoidale è: E E max eff = [1.11] Così se si esprime I in W/ m², E in V/m e H in A/m, si ha che nel vuoto 3 I = E eff Caratteristiche delle onde elettromagnetiche e spettro d onda. Gli elementi distintivi delle onde elettromagnetiche sono la lunghezza d onda (λ), la frequenza (ν) e la velocità di propagazione (c) collegate fra loro dalla relazione: c = λ ν [1.1] Si definisce lunghezza d onda la distanza fra due massimi (o minimi) della curva; si dice periodo (T) il tempo necessario per compiere un oscillazione completa. Ne consegue la relazione c = λ T considerando che la velocità per definizione è data da spazio/tempo. Comparando quest ultima relazione alla [1.1] si comprende facilmente che la frequenza è pari all inverso del periodo. Sapendo che la velocità di propagazione è una costante universale, pari nel vuoto a circa Km/s, le onde si differenziano sostanzialmente per lunghezza d onda ovvero per la frequenza. Una classificazione dello spettro elettromagnetico è riportata di seguito. 3 Per approssimazione anche nell aria. 18

11 Figura 1.6 Spettro d onda elettromagnetica. Una parte di queste frequenze risulta particolarmente importante nel lavoro in corso, si tratta delle frequenze generate da conduttori della rete elettrica e da sistemi di telecomunicazione, frequenze che vanno da quelle delle onde radio a quelle denominate ELF. 19

Elettrostatica. 1. La carica elettrica 2. La legge di Coulomb 3. Il campo elettrostatico 4. Il potenziale elettrico 5. Condensatori e dielettrici

Elettrostatica. 1. La carica elettrica 2. La legge di Coulomb 3. Il campo elettrostatico 4. Il potenziale elettrico 5. Condensatori e dielettrici Elettrostatica 1. La carica elettrica 2. La legge di Coulomb 3. Il campo elettrostatico 4. Il potenziale elettrico 5. Condensatori e dielettrici Prof. Giovanni Ianne 1 L ELETTRIZZAZIONE PER STROFINIO Un

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 1 Carica elettrica, legge

Dettagli

Carica positiva e carica negativa

Carica positiva e carica negativa Elettrostatica Fin dal 600 a.c. si erano studiati alcuni effetti prodotti dallo sfregamento di una resina fossile, l ambra (dal cui nome in greco electron deriva il termine elettricità) con alcuni tipi

Dettagli

Il magnetismo. Il campo magnetico

Il magnetismo. Il campo magnetico Il magnetismo Un magnete (o calamita) è un corpo che genera intorno a sé un campo di forza che attrae il ferro Un magnete naturale è un minerale contenente magnetite, il cui nome deriva dal greco "pietra

Dettagli

I poli magnetici isolati non esistono

I poli magnetici isolati non esistono Il campo magnetico Le prime osservazioni dei fenomeni magnetici risalgono all antichità Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro Un ago magnetico libero

Dettagli

RIASSUNTO DI FISICA 3 a LICEO

RIASSUNTO DI FISICA 3 a LICEO RIASSUNTO DI FISICA 3 a LICEO ELETTROLOGIA 1) CONCETTI FONDAMENTALI Cariche elettriche: cariche elettriche dello stesso segno si respingono e cariche elettriche di segno opposto si attraggono. Conduttore:

Dettagli

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Il campo magnetico 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz 1 Lezione 1 - Fenomeni magnetici I campi magnetici possono essere

Dettagli

funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/

funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/ mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/ funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI Struttura dell'atomo (nucleo, protoni, neutroni, elettroni); cariche elettriche elementari (elettrone,

Dettagli

Limature di ferro orientate secondo le linee del campo magnetico generato da una barra

Limature di ferro orientate secondo le linee del campo magnetico generato da una barra Magnetismo naturale Un magnete (o calamita) è un corpo che genera una forza su un altro magnete che può essere sia attrattiva che repulsiva. Intorno al magnete c è un campo magnetico. Il nome deriva dal

Dettagli

CdL Professioni Sanitarie A.A. 2012/2013. Unità 7: Forze elettriche e magnetiche

CdL Professioni Sanitarie A.A. 2012/2013. Unità 7: Forze elettriche e magnetiche L. Zampieri Fisica per CdL Professioni Sanitarie A.A. 12/13 CdL Professioni Sanitarie A.A. 2012/2013 Unità 7: Forze elettriche e magnetiche Forza elettrica e corrente Carica elettrica e legge di Coulomb

Dettagli

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2015 / 2016

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2015 / 2016 Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2015 / 2016 FISICA ELETTROMAGNETISMO FISICA MODERNA classe 5 B MAG. 2016 Esercitazione di Fisica in preparazione all Esame di Stato A.S. 2015-2016

Dettagli

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTRODINAMICA + Correnti + Campi Magnetici + Induzione e Induttanza + Equazioni di Maxwell

Dettagli

Lezione 18. Magnetismo WWW.SLIDETUBE.IT

Lezione 18. Magnetismo WWW.SLIDETUBE.IT Lezione 18 Magnetismo Cenni di magnetismo Già a Talete (600 a.c.) era noto che la magnetitite ed alcune altre pietre naturali (minerali di ferro, trovati a Magnesia in Asia Minore) avevano la proprietà

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 3 Campi magnetici e forza

Dettagli

IL CAMPO MAGNETICO. V Scientifico Prof.ssa Delfino M. G.

IL CAMPO MAGNETICO. V Scientifico Prof.ssa Delfino M. G. IL CAMPO MAGNETICO V Scientifico Prof.ssa Delfino M. G. UNITÀ - IL CAMPO MAGNETICO 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Dettagli

Campi elettrici, magnetici ed elettromagnetici

Campi elettrici, magnetici ed elettromagnetici Campi elettrici, magnetici ed elettromagnetici Anna Maria Vandelli Dipartimento di Sanità Pubblica AUSL Modena SPSAL Sassuolo Campo Elettrico: si definisce campo elettrico il fenomeno fisico che conferisce

Dettagli

Campi elettrici, magnetici ed elettromagnetici. Anna Maria Vandelli Dipartimento di Sanità Pubblica AUSL Modena SPSAL Sassuolo

Campi elettrici, magnetici ed elettromagnetici. Anna Maria Vandelli Dipartimento di Sanità Pubblica AUSL Modena SPSAL Sassuolo Campi elettrici, magnetici ed elettromagnetici Anna Maria Vandelli Dipartimento di Sanità Pubblica AUSL Modena SPSAL Sassuolo Campo Elettrico: si definisce campo elettrico il fenomeno fisico che conferisce

Dettagli

Q 1 = +3 10-5 C carica numero 1 Q 2 = +4 10-5 C carica numero 2 forza esercitata tra le cariche distanza tra le cariche, incognita

Q 1 = +3 10-5 C carica numero 1 Q 2 = +4 10-5 C carica numero 2 forza esercitata tra le cariche distanza tra le cariche, incognita Problema n 1 A quale distanza, una dall'altra bisogna porre nel vuoto due cariche (Q 1 =3 10-5 C e Q 2 =4 10-5 C) perché esse esercitino una sull'altra la forza di 200 N? Q 1 = +3 10-5 C carica numero

Dettagli

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Induzione magnetica INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Che cos è l induzione magnetica? Si parla di induzione magnetica quando si misura una intensità di corrente diversa da zero che attraversa

Dettagli

Magnetismo. limatura di ferro. Fenomeno noto fin dall antichità. Da Magnesia città dell Asia Minore - Magnetite

Magnetismo. limatura di ferro. Fenomeno noto fin dall antichità. Da Magnesia città dell Asia Minore - Magnetite Magnetismo Alcuni minerali (ossidi di ferro) attirano la limatura di ferro. Fenomeno noto fin dall antichità. Da Magnesia città dell Asia Minore - Magnetite Proprietà non uniforme. Se si ricava opportuno

Dettagli

MAGNETISMO ed ELETTROMAGNETISMO

MAGNETISMO ed ELETTROMAGNETISMO MAGNETIMO ed ELETTROMAGNETIMO INTRODUZIONE: CAMPO MAGNETICO NEL VUOTO appiamo dalla fisica che un pezzo di minerale di ferro come la magnetite presenta la proprietà di attrarre spontaneamente a se altri

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA

TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA Evidenza dell interazione magnetica; sorgenti delle azioni magnetiche; forze tra poli magnetici, il campo magnetico Forza magnetica su una carica in moto; particella

Dettagli

27/05/2013. essendo μ 0 la permeabilità magnetica nel vuoto:

27/05/2013. essendo μ 0 la permeabilità magnetica nel vuoto: 7/05/013 L unità i carica magnetica nel S.I. è il Weber (Wb). L espressione qualitativa elle interazioni magnetiche è ata alla legge i Coulomb per il magnetismo: F K 0 1 1 4 0 1 esseno μ 0 la permeabilità

Dettagli

Dipartimento di Fisica Programmazione classi seconde Anno scolastico2010-2011

Dipartimento di Fisica Programmazione classi seconde Anno scolastico2010-2011 Liceo Tecnico Chimica Industriale Meccanica Elettrotecnica e Automazione Elettronica e Telecomunicazioni Istituto Tecnico Industriale Statale Alessandro Volta Via Assisana, 40/E - loc. Piscille - 06087

Dettagli

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente.

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente. CORRENTE ELETTRICA Si definisce CORRENTE ELETTRICA un moto ordinato di cariche elettriche. Il moto ordinato è distinto dal moto termico, che è invece disordinato, ed è sovrapposto a questo. Il moto ordinato

Dettagli

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTRODINAMICA + Correnti + Campi Magnetici + Induzione e Induttanza + Equazioni di Maxwell

Dettagli

Fenomeni magnetici. VII secolo: magnetite (FeO.Fe 2 O 3 ) attira limatura di ferro:

Fenomeni magnetici. VII secolo: magnetite (FeO.Fe 2 O 3 ) attira limatura di ferro: Fenomeni magnetici VII secolo: magnetite (FeO.Fe 2 O 3 ) attira limatura di ferro: proprietà non uniforme nel materiale; si manifesta in determinate parti. campioni cilindrici (magneti) nei quali tale

Dettagli

Tesina di scienze. L Elettricità. Le forze elettriche

Tesina di scienze. L Elettricità. Le forze elettriche Tesina di scienze L Elettricità Le forze elettriche In natura esistono due forme di elettricità: quella negativa e quella positiva. Queste due energie si attraggono fra loro, mentre gli stessi tipi di

Dettagli

Elettrostatica e fenomeni elettrici

Elettrostatica e fenomeni elettrici Elettrostatica e fenomeni elettrici Introduzione all'elettricità La parola elettricità deriva dal greco élecktron che significa ambra. La ragione di questa etimologia è presto spiegata: la proprietà dell'ambra

Dettagli

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino Lunedì 20 dicembre 2010 Docente del corso: prof. V. Maiorino Se la Terra si spostasse all improvviso su un orbita dieci volte più lontana dal Sole rispetto all attuale, di quanto dovrebbe variare la massa

Dettagli

ALCUNI CONCETTI FONDAMENTALI

ALCUNI CONCETTI FONDAMENTALI ALCUNI CONCETTI FONDAMENTALI 1.1 Introduzione La carica elettrica è una proprietà fisica fondamentale della materia che si assume per acquisita. Le correnti elettriche sono cariche elettriche in moto.

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzione elettromagnetica 1. Induzione elettromagnetica 2. Esperienze di Faraday 3. Legge di Faraday Neumann Lenz Induzione elettromagnetica (1) La rivoluzione determinata dall'utilizzo dell'energia elettrica

Dettagli

SCIENZE INTEGRATE FISICA

SCIENZE INTEGRATE FISICA CLASSE DISCIPLINA ORE SETTIMANALI TIPO DI PROVA PER GIUDIZIO SOSPESO MODULO 1: Il moto e l energia I concetti di sistema di riferimento e le grandezze cinematiche. I diversi tipi di rappresentazione del

Dettagli

isolanti e conduttori

isolanti e conduttori 1. ELETTROMAGNETISMO 1.1. Carica elettrica 1.1.1. Storia: Franklin Thomson Rutherford Millikan 1.1.2. L atomo: struttura elettroni di valenza (legame metallico) isolanti e conduttori ATOMO legge di conservazione

Dettagli

Unità didattica 2 Campo elettrico e potenziale elettrico. Competenze

Unità didattica 2 Campo elettrico e potenziale elettrico. Competenze Unità didattica 2 Campo elettrico e potenziale elettrico Competenze Definire il campo elettrico e descrivere come il campo elettrico è disegnato dalle linee di campo. Applicare l equazione dell intensità

Dettagli

1 di 3 07/06/2010 14.04

1 di 3 07/06/2010 14.04 Principi 1 http://digilander.libero.it/emmepi347/la%20pagina%20di%20elettronic... 1 di 3 07/06/2010 14.04 Community emmepi347 Profilo Blog Video Sito Foto Amici Esplora L'atomo Ogni materiale conosciuto

Dettagli

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione 1. L elettrone ha una massa di 9.1 10-31 kg ed una carica elettrica di -1.6 10-19 C. Ricordando che la forza gravitazionale

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Energia potenziale elettrica Simone Alghisi Liceo Scientifico Luzzago Novembre 2013 Simone Alghisi (Liceo Scientifico Luzzago) Energia potenziale elettrica Novembre 2013 1 / 14 Ripasso Quando spingiamo

Dettagli

Argomenti delle lezioni del corso di Elettromagnetismo 2010-11

Argomenti delle lezioni del corso di Elettromagnetismo 2010-11 Argomenti delle lezioni del corso di Elettromagnetismo 2010-11 14 marzo (2 ore) Introduzione al corso, modalità del corso, libri di testo, esercitazioni. Il fenomeno dell elettricità. Elettrizzazione per

Dettagli

Corrente elettrica. Daniel Gessuti

Corrente elettrica. Daniel Gessuti Corrente elettrica Daniel Gessuti indice 1 Definizioni 1 Definizione di corrente 1 Definizione di resistenza 2 2 Effetto Joule 3 Circuiti in parallelo 4 3 Circuiti in serie 5 4 Il campo magnetico 5 Fenomeni

Dettagli

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA 1. La Legge di Coulomb Esercizio 1. Durante la scarica a terra di un fulmine scorre una corrente di.5 10 4 A per

Dettagli

Elettricità e magnetismo

Elettricità e magnetismo E1 Cos'è l'elettricità La carica elettrica è una proprietà delle particelle elementari (protoni e elettroni) che formano l'atomo. I protoni hanno carica elettrica positiva. Gli elettroni hanno carica elettrica

Dettagli

MAGNETISMO - prima parte. pina di vito 1

MAGNETISMO - prima parte. pina di vito 1 MAGNETISMO - prima parte 1 Magneti magneti naturali: magnetite (minerale del ferro Fe3O4) magneti artificiali: composti di Fe, Ni, Co poli magnetici: Nord e Sud I nomi dei poli magnetici derivano dall

Dettagli

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. 1d (giorno) contiene all incirca (a) 8640 s; (b) 9 10 4 s; (c) 86 10 2 s; (d) 1.44 10 3 s; (e) nessuno di questi valori. 2. Sono

Dettagli

LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI

LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI Prof. Euro Sampaolesi IL CAMPO MAGNETICO TERRESTRE Le linee del magnete-terra escono dal Polo geomagnetico Nord ed entrano nel

Dettagli

Elettronica I Grandezze elettriche e unità di misura

Elettronica I Grandezze elettriche e unità di misura Elettronica I Grandezze elettriche e unità di misura Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Indice. Prefazione all edizione italiana Prefazione all edizione americana. Capitolo 1 Introduzione: onde e fasori 1

Indice. Prefazione all edizione italiana Prefazione all edizione americana. Capitolo 1 Introduzione: onde e fasori 1 Indice Prefazione all edizione italiana Prefazione all edizione americana VII IX Capitolo 1 Introduzione: onde e fasori 1 Generalità 1 1.1 Dimensioni, unità di misura e notazione 2 1.2 La natura dell elettromagnetismo

Dettagli

Soluzione: 2 ) Cosa si intende per calore?

Soluzione: 2 ) Cosa si intende per calore? 1 ) Volendo calcolare di quanto è aumentata la temperatura di un corpo al quale è stata somministrata una certa quantità di calore, è necessario conoscere: A. Il calore specifico e la massa del corpo.

Dettagli

Fisica Applicata, Area Infermieristica, M. Ruspa ELETTROMAGNETISMO

Fisica Applicata, Area Infermieristica, M. Ruspa ELETTROMAGNETISMO ELETTROMAGNETISMO Seconda legge di Ohm Seconda legge di Ohm La resistenza elettrica di un conduttore di sezione S e lunghezza l si calcola come: Unità di misura: R = resistenza elettrica in Ω l = lunghezza

Dettagli

FISICA (modulo 1) PROVA SCRITTA 10/02/2014

FISICA (modulo 1) PROVA SCRITTA 10/02/2014 FISICA (modulo 1) PROVA SCRITTA 10/02/2014 ESERCIZI E1. Un proiettile del peso di m = 10 g viene sparato orizzontalmente con velocità v i contro un blocco di legno di massa M = 0.5 Kg, fermo su una superficie

Dettagli

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica Potenziale Elettrico Q V 4pe 0 R Q 4pe 0 r C R R R r r B q B r A A independenza dal cammino Superfici Equipotenziali Due modi per analizzare i problemi Con le forze o i campi (vettori) per determinare

Dettagli

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA Concetti e grandezze fondamentali CAMPO ELETTRICO: è un campo vettoriale di forze,

Dettagli

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma la risultante istante

Dettagli

Due cariche positive si respingono, due cariche negative si respingono, una carica positiva e una negativa si attraggono.

Due cariche positive si respingono, due cariche negative si respingono, una carica positiva e una negativa si attraggono. 2012 11 08 pagina 1 Carica elettrica Esistono cariche elettriche di due tipi: positiva e negativa. Due cariche positive si respingono, due cariche negative si respingono, una carica positiva e una negativa

Dettagli

APPUNTI DI ELETTROMAGNETISMO E RADIOTECNICA. Coordinatore del Progetto prof. Vito Potente Stesura a cura del docente ing.

APPUNTI DI ELETTROMAGNETISMO E RADIOTECNICA. Coordinatore del Progetto prof. Vito Potente Stesura a cura del docente ing. APPUNTI DI ELETTROMAGNETISMO E RADIOTECNICA Coordinatore del Progetto prof. Vito Potente Stesura a cura del docente ing. Marcello Surace 1 Si richiamano le definizioni delle leggi fondamentali, invitando

Dettagli

Inizia presentazione

Inizia presentazione Inizia presentazione Che si misura in ampère può essere generata In simboli A da pile dal movimento di spire conduttrici all interno di campi magnetici come per esempio nelle dinamo e negli alternatori

Dettagli

Origine del campo magnetico

Origine del campo magnetico MAGNETISMO Origine del campo magnetico Nell'anno 1820 il fisico danese Hans Christian Oersted si accorse, forse in modo del tutto casuale, che una corrente che scorre in un filo può produrre effetti magnetici,

Dettagli

Applicazioni tecnologiche del campo magnetico

Applicazioni tecnologiche del campo magnetico A.S. 2014/2015 Definizione Motore elettrico Definizione Definizione Un motore elettrico è uno strumento che ha l obiettivo di trasformare il lavoro di tipo elettrico in lavoro di tipo meccanico. Definizione

Dettagli

CAPITOLO 10: ELETTROMAGNETISMO. 10.1 Introduzione.

CAPITOLO 10: ELETTROMAGNETISMO. 10.1 Introduzione. CAPITOLO 10: ELETTROMAGNETISMO 10.1 Introduzione. Nella meccanica classica abbiamo parlato di forze, di sistemi di riferimento inerziali e così via. Non abbiamo esplicitamente affermato che nella meccanica

Dettagli

La corrente elettrica

La corrente elettrica La corrente elettrica La corrente elettrica è un movimento di cariche elettriche che hanno tutte lo stesso segno e si muovono nello stesso verso. Si ha corrente quando: 1. Ci sono cariche elettriche; 2.

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

LICEO STATALE TERESA CICERI COMO 11 settembre 2012 PROGRAMMAZIONE DISCIPLINARE DI FISICA A. S. 2012/2013

LICEO STATALE TERESA CICERI COMO 11 settembre 2012 PROGRAMMAZIONE DISCIPLINARE DI FISICA A. S. 2012/2013 PROGRAMMAZIONE DISCIPLINARE DI FISICA A. S. 2012/2013 TRIENNIO BROCCA LICEO SOCIO PSICO - PEDAGOGICO TRIENNIO BROCCA LICEO LINGUISTICO FINALITA GENERALI Il Progetto Brocca individua le seguenti finalità

Dettagli

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTRODINAMICA + Correnti + Campi Magnetici + Induzione e Induttanza + Equazioni di Maxwell

Dettagli

LICEO STATALE A.VOLTA COLLE DI VAL D ELSA PROGRAMMA DI FISICA SVOLTO NELLA CLASSE VA ANNO SCOLASTICO 2014/2015

LICEO STATALE A.VOLTA COLLE DI VAL D ELSA PROGRAMMA DI FISICA SVOLTO NELLA CLASSE VA ANNO SCOLASTICO 2014/2015 LICEO STATALE A.VOLTA COLLE DI VAL D ELSA PROGRAMMA DI FISICA SVOLTO NELLA CLASSE VA ANNO SCOLASTICO 2014/2015 Insegnante: LUCIA CERVELLI Testo in uso: Claudio Romeni FISICA E REALTA Zanichelli Su alcuni

Dettagli

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Forza CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Cos è una forza? la forza è una grandezza che agisce su un corpo cambiando la sua velocità e provocando una deformazione sul corpo 2 Esempi

Dettagli

Elettrostatica dei mezzi materiali

Elettrostatica dei mezzi materiali Elettrostatica dei mezzi materiali Nel caso dei conduttori si è visto che: Il campo elettrico farà muovere le cariche all interno del conduttore in modo tale che: Tutte le cariche sono sulla superficie

Dettagli

APPUNTI DI CAMPI ELETTROMAGNETICI Mod.I Per il corso di Ingegneria dell Informazione. Realizzato da Davide Spinola Ing.

APPUNTI DI CAMPI ELETTROMAGNETICI Mod.I Per il corso di Ingegneria dell Informazione. Realizzato da Davide Spinola Ing. APPUNTI DI CAMPI ELETTROMAGNETICI Mod.I Per il corso di Ingegneria dell Informazione Realizzato da Davide Spinola Ing. Dell Informazione 1 INDICE - PARTE 1: ANALISI VETTORIALE 1.1: Leggi fondamentali dell

Dettagli

I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2014/2015. CLASSE III SEZ. Ae INDIRIZZO LICEO ECONOMICO PROGRAMMA DI FISICA

I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2014/2015. CLASSE III SEZ. Ae INDIRIZZO LICEO ECONOMICO PROGRAMMA DI FISICA I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2014/2015 CLASSE III SEZ. Ae INDIRIZZO LICEO ECONOMICO PROGRAMMA DI FISICA PROFESSORESSA: REGALBUTO PAOLA LE GRANDEZZE: LE GRANDEZZE FONDAMENTALI E DERIVATE,

Dettagli

LABORATORIO DI FISICA. Elettromagnetismo

LABORATORIO DI FISICA. Elettromagnetismo MINISTERO DELL ISTRUZIONE,UNIVERSITA E RICERCA ISTITUTO TECNICO INDUSTRIALE STATALE L. DA Vinci Via G. Rosato, 5-66034 L a n c i a n o (Ch) Tel. 087242556 Fax 0872702934 E-mail: chtf0200l@istruzione.it

Dettagli

FISICA E LABORATORIO

FISICA E LABORATORIO Programma di FISICA E LABORATORIO Anno Scolastico 2014-2015 Classe V P indirizzo OTTICO Docente Giuseppe CORSINO Programma di FISICA E LABORATORIO Anno Scolastico 2013-2014 Classe V P indirizzo OTTICO

Dettagli

Legge di Faraday. x x x x x x x x x x E B. x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1

Legge di Faraday. x x x x x x x x x x E B. x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 B ds Legge di Faraday E x x x x x x x x x x E B x x x x x x x x x x R x x x x x x x x x x B 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di una carica q in un campo

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15 Esercizio 1 (9 punti): Una distribuzione di carica è costituita da un guscio sferico

Dettagli

Corrente elettrica stazionaria

Corrente elettrica stazionaria Corrente elettrica stazionaria Negli atomi di un metallo gli elettroni periferici non si legano ai singoli atomi, ma sono liberi di muoversi nel reticolo formato dagli ioni positivi e sono detti elettroni

Dettagli

Magnetismo. Prof. Mario Angelo Giordano

Magnetismo. Prof. Mario Angelo Giordano Magnetismo Prof. Mario Angelo Giordano Fenomeni magnetici Il magnete ha sempre due estremità magnetizzate, il polo nord e il polo sud. Avvicinando i poli, si possono respingere oppure attrarre. Il magnete

Dettagli

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un CLASSE Seconda DISCIPLINA Fisica ORE SETTIMANALI 3 TIPO DI PROVA PER GIUDIZIO SOSPESO Test a risposta multipla MODULO U.D Conoscenze Abilità Competenze Enunciato del primo principio della Calcolare l accelerazione

Dettagli

INDICE CARICA ELETTRICA E LEGGE DI COULOMB 591 ENERGIA POTENZIALE E POTENZIALI ELETTRICI 663 CAMPO ELETTRICO 613 PROPRIETÀ ELETTRICHE DELLA MATERIA 93

INDICE CARICA ELETTRICA E LEGGE DI COULOMB 591 ENERGIA POTENZIALE E POTENZIALI ELETTRICI 663 CAMPO ELETTRICO 613 PROPRIETÀ ELETTRICHE DELLA MATERIA 93 INDICE CAPITOLO 25 CARICA ELETTRICA E LEGGE DI COULOMB 591 25.1 Elettromagnetismo: presentazione 591 25.2 Carica elettrica 592 25.3 Conduttori e isolanti 595 25.4 Legge di Coulomb 597 25.5 Distribuzioni

Dettagli

Magnetismo. pag. 1. P. Maestro Magnetismo

Magnetismo. pag. 1. P. Maestro Magnetismo Magnetismo Fatti sperimentali Forza di Lorentz Applicazioni: ciclotrone,spettrometro di massa, tubo catodico Campo magnetico di un filo percorso da corrente Campo magnetico di spira e solenoide Forza magnetica

Dettagli

I.I.S. N. BOBBIO DI CARIGNANO - PROGRAMMAZIONE PER L A. S. 2014-15

I.I.S. N. BOBBIO DI CARIGNANO - PROGRAMMAZIONE PER L A. S. 2014-15 I.I.S. N. BOBBIO DI CARIGNANO - PROGRAMMAZIONE PER L A. S. 2014-15 DISCIPLINA: FISICA (Indirizzi scientifico e scientifico sportivo) CLASSE: QUARTA (tutte le sezioni) COMPETENZE DISCIPLINARI ABILITA CONTENUTI

Dettagli

Campo elettrico per una carica puntiforme

Campo elettrico per una carica puntiforme Campo elettrico per una carica puntiforme 1 Linee di Campo elettrico A. Pastore Fisica con Elementi di Matematica (O-Z) 2 Esercizio Siano date tre cariche puntiformi positive uguali, fisse nei vertici

Dettagli

CORRENTE ELETTRICA Corso di Fisica per la Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2007

CORRENTE ELETTRICA Corso di Fisica per la Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2007 CORRENTE ELETTRICA INTRODUZIONE Dopo lo studio dell elettrostatica, nella quale abbiamo descritto distribuzioni e sistemi di cariche elettriche in quiete, passiamo allo studio di fenomeni nei quali le

Dettagli

Capitolo 7 Le particelle dell atomo

Capitolo 7 Le particelle dell atomo Capitolo 7 Le particelle dell atomo 1. La natura elettrica della materia 2. La scoperta delle proprietà elettriche 3. Le particelle fondamentali dell atomo 4. La scoperta dell elettrone 5. L esperimento

Dettagli

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente Unità G16 - La corrente elettrica continua La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente 1 Lezione 1 - La corrente elettrica

Dettagli

LE AREE TEMATICHE : L INQUINAMENTO ELETTROMAGNETICO

LE AREE TEMATICHE : L INQUINAMENTO ELETTROMAGNETICO LE AREE TEMATICHE : L INQUINAMENTO ELETTROMAGNETICO Quando si parla di inquinamento elettromagnetico o più comunemente elettrosmog ci si riferisce alle alterazioni del campo magnetico naturale generate

Dettagli

La corrente elettrica

La corrente elettrica PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio La corrente elettrica Sommario 1) Corrente elettrica

Dettagli

Michele D'Amico (premiere) 6 May 2012

Michele D'Amico (premiere) 6 May 2012 Michele D'Amico (premiere) CORRENTE ELETTRICA 6 May 2012 Introduzione La corrente elettrica può essere definita come il movimento ordinato di cariche elettriche, dove per convenzione si stabilisce la direzione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2008 Corso Sperimentale Progetto Brocca Tema di Fisica

ESAME DI STATO DI LICEO SCIENTIFICO 2008 Corso Sperimentale Progetto Brocca Tema di Fisica ESAME DI STATO DI LICEO SCIENTIFICO 2008 Corso Sperimentale Progetto Brocca Tema di Fisica La prova Il candidato svolga una relazione su uno solo dei seguenti due temi, a sua scelta, prestando particolare

Dettagli

Magnetismo. Roberto Cirio. Corso di Laurea in Chimica e Tecnologia Farmaceutiche Anno accademico 2007 2008 Corso di Fisica

Magnetismo. Roberto Cirio. Corso di Laurea in Chimica e Tecnologia Farmaceutiche Anno accademico 2007 2008 Corso di Fisica Roberto Cirio Corso di Laurea in Chimica e Tecnologia Farmaceutiche Anno accademico 2007 2008 Corso di Fisica La lezione di oggi I magneti Il campo magnetico Il ciclotrone Fisica a.a. 2007/8 2 I magneti

Dettagli

ITCG C. Cattaneo con Liceo Dall Aglio via Matilde di Canossa 1 Castelnovo ne Monti (RE) DALL AMBRA. o o

ITCG C. Cattaneo con Liceo Dall Aglio via Matilde di Canossa 1 Castelnovo ne Monti (RE) DALL AMBRA. o o DALL AMBRA ALLE CORRENTI ELETTRICHE - La carica elettrica ed i fenomeni elettrostatici - La legge di Coulomb - Il Campo Elettrico o Analogie tra C.Elettrico C. gravitazionale o Forza Elettrica e Forza

Dettagli

Campo Magnetico Definizione Forze dovute al campo magnetico Legge di Biot e Savart Teorema di Ampère

Campo Magnetico Definizione Forze dovute al campo magnetico Legge di Biot e Savart Teorema di Ampère Campo Magnetico Definizione Forze dovute al campo magnetico Legge di Biot e Savart Teorema di Ampère Campi Magnetici (I) Esperimenti di W. Gilbert (XVI Secolo) Ad un magnete sospeso nel centro tramite

Dettagli

Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra:

Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra: 1. Esercizio Calcolare il potenziale elettrico nel punto A sull asse di simmetria della distribuzione di cariche in figura. Quanto lavoro bisogna spendere per portare una carica da 2 µc dall infinito al

Dettagli

La corrente elettrica

La corrente elettrica Unità didattica 8 La corrente elettrica Competenze Costruire semplici circuiti elettrici e spiegare il modello di spostamento delle cariche elettriche. Definire l intensità di corrente, la resistenza e

Dettagli

LAVORO. L= F x S L= F. S L= F. S cos ϑ. L= F. S Se F ed S hanno stessa direzione e verso. L= -F. S Se F ed S hanno stessa direzione e verso opposto

LAVORO. L= F x S L= F. S L= F. S cos ϑ. L= F. S Se F ed S hanno stessa direzione e verso. L= -F. S Se F ed S hanno stessa direzione e verso opposto LAVORO L= F x S L= F. S L= F. S cos ϑ CASI PARTICOLARI L= F. S Se F ed S hanno stessa direzione e verso L= -F. S Se F ed S hanno stessa direzione e verso opposto L= 0 Se F ed S sono perpendicolari L >0

Dettagli

Appunti dalla lezione di Fisica del Prof. Mussino

Appunti dalla lezione di Fisica del Prof. Mussino Appunti dalla lezione di Fisica del Prof. Mussino (Vercelli 11-11-05) Autore: M. Lanino Grandezza Fisica è qualsiasi ente in grado di descrivere la realtà tangibile e sperimentabile Esempi: La temperatura,

Dettagli

LA FORZA. Il movimento: dal come al perché

LA FORZA. Il movimento: dal come al perché LA FORZA Concetto di forza Principi della Dinamica: 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale e forza peso Accelerazione di gravità Massa, peso, densità pag.1

Dettagli

Flusso del Vettore. Induzione magnetica

Flusso del Vettore. Induzione magnetica GIOVANNI & SALVATORE DI CECCA Flusso del Vettore Induzione magnetica http://www.dicecca.net 2 Giovanni & Salvatore Di Cecca 1996 Giovanni & Salvatore Di Cecca Flusso del vettore induzione magnetica 3 FLUSSO

Dettagli

Generatore di Forza Elettromotrice

Generatore di Forza Elettromotrice CIRCUITI ELETTRICI Corrente Elettrica 1. La corrente elettrica è un flusso ordinato di carica elettrica. 2. L intensità di corrente elettrica (i) è definita come la quantità di carica che attraversa una

Dettagli

λ = neπa 2 (1) 1- la carica elettrica λ presente per unità di lunghezza,

λ = neπa 2 (1) 1- la carica elettrica λ presente per unità di lunghezza, 1 Esercizio 1 - Protoni con carica elettrica e viaggiano con velocità v ( non relativistica) nel verso dell'asse costituendo un lungo fascio a sezione circolare di raggio a. Il numero di protoni presenti

Dettagli