ALGORITMO PER IL CALCOLO DEI NUMERI PRIMI NELLA FORMA 6n 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ALGORITMO PER IL CALCOLO DEI NUMERI PRIMI NELLA FORMA 6n 1"

Transcript

1 ALGORITMO PER IL CALCOLO DEI NUMERI PRIMI NELLA FORMA 6 1 A cura del Gruo Eratostee - htt://www.gruoeratostee.com/) Co la collaborazioe di Eugeio Amitrao ( htt://www.atuttoortale.it/) Coteuti dell articolo: Titolo Itroduzioe Descrizioe dell algoritmo Cosiderazioi imortati Ricoducibilità ella forma Riferimeti Pag.

2 Itroduzioe L algoritmo roosto i questo articolo è basato sul seguete, già oto, test di rimalità:! k se.. k N umero.. cocetrato sulle forme aritmetiche dei rimi di forma 6, ella quale si distribuiscoo tutti i umeri rimi, ad eccezioe del e del 3. Descrizioe dell algoritmo Sostituedo al umero da testare (cioè da stabilire se è umero oure o) el test di rimalità di cui sora, la forma 6, oure q 6, si ottegoo le forme lieari ( cresce i modo lieare da 1 ad ifiito): (1) () k k 6! 6 6 6! 6 6! 6! 6 Il risultato del test diede dalla atura di k. Se risulta k itero ella (1) o ella (), allora 6, oure q 6, è. Viceversa, se k è decimale, 6, oure q 6, è comosto, quidi scartati dall algoritmo al crescere di. I tale algoritmo il valore di k risulterà itero er tutti i umeri rimi, ad eccezioe del e del 3, che o soo di forma 6, metre il valore di k risulterà itero er tutti i umeri comosti. Cosicché, alicado i due algoritmi a tutti i umeri successivi, a artire dalla coia di umeri 5 e (i rimi umeri di forma 6 ), e scartado tutti i umeri che dao u k decimale, otteiamo la lista di tutti i umeri rimi trae il e il 3. Per verificare la rimalità di questi ultimi ( e 3), alichiamo la versioe geerale dell algoritmo, cioè il test classico di Wilso. Ache er essi vale k 1 itero.! 1! k 1 3!! 3 3 k Ifatti, ache e 3 soo umeri rimi.

3 Alicado il test di Wilso er gli altri valori di forma 6 che risultao rimi dai test (1) e (), il valore di k risulterà itero. Ifatti, l algoritmo è stato otteuto modificado oortuamete rorio il test di Wilso. Ad esemio, er 6 e quidi co 1, avremo: Test modificato: 6! 6! 0 1 k 103 Poiché k 103 è itero, è. 6 Test di Wilso:! 6! 0 1 k 103 Ache co Wilso k 103 Co il test modificato, i rimi umeri comosti ad essere scartati soo , oiché i loro k soo decimali. Cosiderazioi imortati e Programmado oortuamete i due test (1) e () co aosito software i liguaggio MAPLE o simili, er esemio er fio a 100, si otterrao tutti i umeri rimi fio a Gli ultimi due della lista sarao 599 e 601. Ovviamete solo quei umeri co k itero, altrimeti sarebbero comosti e quidi scartati dalla lista fiale. I questo caso, 599 e 601 soo etrambi rimi e quidi rimi gemelli. (Due umeri rimi e q, co q, si dicoo gemelli se q ). Isomma, quest algoritmo otrebbe essere defiibile u modero Crivello di Eratostee automatizzato, e cioè ua secie di macchia matematica, adibita alla roduzioe dei umeri rimi, tato sogata dai matematici. Ioltre, si cocetra sui soli umeri di forma 6, tra i quali si aidao tutti i umeri rimi maggiori di 3. Il Crivello di Eratostee, quello classico, si alica a tutti i umeri iteri, ovviamete co maggiore letezza el oto rocedimeto. Algoritmi iformatizzati e quidi automatizzati che, elimiado rogressivamete tutti i umeri co k decimale e quidi comosti, elecao tutti i umeri rimi. Il roblema, già oto è che essi soo semre iù leti al crescere di, oiché i umeri 6! crescoo molto raidamete. I calcoli divetao semre iù lughi e quidi iù leti. Per questo motivo, bisogerebbe attedere comuter semre iù oteti e veloci, oure usare altri test di rimalità iù veloci er rogrammare algoritmi iù raidi di quello da oi roosto. 3

4 Ricoducibilità ella forma 6 1 Prediamo i cosiderazioe u ostro test recedete, simile ad u atico test ciese: Test ciese: k co resto di è ; Nostro test: k co k itero se è. Questo test si imbatteva ei famosi umeri di Carmicael, er i quali il test o fuzioava. Tali umeri, fio a , soo: 341, 561, 645, 1105, 138, 19, 1905, 04, 465, 01, 81, 3, 4033, 4369, 431, 4681, 5461, 6601, 95, 831, 8481, Questi umeri soo stati trovati dal Prof. Giusee Guario co u software i liguaggio MAPLE (i seguito comilò la lista di tali umeri fio a ). Ua cosegueza delle suddette forme 6 è la siegazioe er cui i umeri di forma! ossoo essere o o essere rimi. Ifatti, '. I questo secodo caso si chiamao umeri rimi euclidei, (Vedi Rif.1), erché soo ach essi ella forma 6, rorio come tutti i umeri rimi. E cosi ure er i rdiali #, seguiti da 1, e quidi #: , abbiamo la forma 6. Ache i umeri rimi di Fermat e di Mersee soo ricoducibili a tale forma geerale. I umeri di Mersee soo ricoducibili alla forma 6 solo se è disari, e sesso è ache. La forma co ari è semre multilo di 3 e quidi o uò mai essere ; ad esemio e cosi via er tutti i umeri ari, co la sola eccezioe di, oiché 1 3. Lo stesso simile ragioameto vale ache er i umeri di Fermat, ifatti, i umeri di forma: soo ricoducibili alla forma 6, ad esemio

5 Riferimeti 1) I umeri rimi di Euclide (o Euclidei) Prof. Aarita Tulumello. Lik: htt://www.gruoeratostee.com/articoli/numeri%0rimi%0euclidei.df 5

Teorema delle progressioni di numeri primi consecutivi con distanza sei costante

Teorema delle progressioni di numeri primi consecutivi con distanza sei costante Teorema delle progressioi di umeri primi cosecutivi co distaza sei costate A cura del Gruppo Eratostee - http://www.gruppoeratostee.com/) Co la collaborazioe di Eugeio Amitrao ( http://www.atuttoportale.it/)

Dettagli

CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica

CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica Da u mazzo di carte (3 carte er quattro semi di cui due eri e due rossi, co 3 figure er ogi seme si estragga ua carta. Calcolare la robabilità che a si estragga u re ero b si estragga ua figura rossa,

Dettagli

L Ultimo teorema di Fermat e le terne Pitagoriche

L Ultimo teorema di Fermat e le terne Pitagoriche L Ultimo teorema di Fermat e le tere Pitagoriche Aspetto aritmetico e geometrico A cura di Fracesco Di Noto Eugeio Amitrao ( http://www.atuttoportale.it/) Coteuti dell articolo: Titolo Pag. Abstract.........

Dettagli

LE EQUAZIONI IRRAZIONALI

LE EQUAZIONI IRRAZIONALI LE EQUAZIONI IRRAZIONALI Per ricordare H Data ua qualsiasi equazioe A B, saiamo che ad essa si ossoo alicare i ricii di equivaleza che cosetoo di aggiugere o togliere esressioi ai due membri oure moltilicare

Dettagli

PROPRIETÀ DELLE POTENZE IN BASE 10

PROPRIETÀ DELLE POTENZE IN BASE 10 PROPRIETÀ DELLE POTENZE IN BASE Poteze i base co espoete itero positivo Prediamo u umero qualsiasi che deotiamo co la lettera a e u umero itero positivo che deotiamo co la lettera Per defiizioe (cioè per

Dettagli

Dimostrazione dell Ultimo Teorema di Fermat

Dimostrazione dell Ultimo Teorema di Fermat Dimostraioe dell Ultimo Teorema di Fermat (M. BONO - /04/00 rev. 05/01/04) Pierre de Fermat, el 1637, artedo dalla seguete equaioe: x + y (1) dove x, y, ed devoo aarteere tutti all isieme dei umeri iteri,

Dettagli

1 Congruenze. Definizione 1.1. a, b, n Z n 2, allora definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. a, b, n Z n 2, allora definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. a, b, Z 2, allora defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. Siao a, b, Z co 2, defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

Successioni di variabili aleatorie

Successioni di variabili aleatorie 0 Caitolo 5 Successioi i variabili aleatorie 5. Covergeza i istribuzioe e teorema cetrale i covergeza Sia {X } = (X,..., X,... ua successioe ifiita i variabili aleatorie e X u ulteriore variabile aleatoria.

Dettagli

Esercizi proposti - Gruppo 7

Esercizi proposti - Gruppo 7 Argomenti di Matematica er l Ingegneria - Volume I - Esercizi roosti Esercizi roosti - Gruo 7 1) Verificare che ognuina delle seguenti coie di numeri razionali ( ) r + 1, r + 1, r Q {0} r ha la rorietà

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con Calcolo Combiatorio Adolfo Scimoe pag 1 Calcolo combiatorio Cosideriamo u isieme di oggetti di atura qualsiasi. Idicheremo questi oggetti co a1 a2... a. Co questi oggetti si voglioo formare dei gruppi

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride?

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride? Calcolo combiatorio sempi Qual è il umero delle badiere tricolori a righe verticali che si possoo formare co i 7 colori dell iride? Dobbiamo calcolare il umero delle disposizioi semplici di 7 oggetti di

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

Trasformazione di un albero in un albero Binario R/B.

Trasformazione di un albero in un albero Binario R/B. Trasormaioe di u 2-3-4-albero i u albero Biario R/B. Sia T u B-albero di grado 2 (detto ache 2-3-4-albero). La seguete oeraioe ricorsiva trasorma T i u BST co i odi colorati di rosso (Red) o ero (Black).

Dettagli

PROBLEMI DI INFERENZA SU PERCENTUALI

PROBLEMI DI INFERENZA SU PERCENTUALI ROBLEMI DI INFERENZA SU ERCENTUALI STIMA UNTUALE Il roblema della stima di ua ercetuale si oe allorchè si vuole cooscere, sulla base di osservazioi camioarie, la frazioe π di ua oolazioe N che ossiede

Dettagli

Segnalate imprecisioni o chiedete chiarimenti a:

Segnalate imprecisioni o chiedete chiarimenti a: Dimesioameto di circuiti FC-MO Esercitazioe di Circuiti Elettroici Digitali LA Dimesioameto di circuiti FCMO Esercizio 1 i assuma la caacità di igresso dell ivertitore C 100fF: 1) i realizzio le reti PU

Dettagli

229. La solitudine dei numeri primi (gemelli)

229. La solitudine dei numeri primi (gemelli) Numero 25 Ottobre 205 229. La solitudie dei umeri rimi (gemelli) Matteo Vegliati Sommario Il seguete articolo arla di famiglie di umeri aturali: doo aver defiito il grado di solitudie di ua famiglia di

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Itroduzioe Distribuzioi di robabilità Fio ad ora abbiamo studiato ua secifica fuzioe desità di robabilità, la fuzioe di Gauss, che descrive variabili date dalla somma di molti termii idiedeti es. ua misura

Dettagli

CENNI SULLE PROGRESSIONI, LE SERIE, LE RELAZIONI DI RICORRENZA E I NUMERI DECIMALI.

CENNI SULLE PROGRESSIONI, LE SERIE, LE RELAZIONI DI RICORRENZA E I NUMERI DECIMALI. CENNI SULLE PROGRESSIONI, LE SERIE, LE RELAZIONI DI RICORRENZA E I NUMERI DECIMALI. Ua progressioe (o successioe) è u isieme iþito di umeri reali P = {a co =,,...} = {a,a,...}. La somma dei primi termii

Dettagli

Il postulato di Bertrand e la congettura di Legendre

Il postulato di Bertrand e la congettura di Legendre ig. Rosario Turco, rof. Maria Coloese Il ostulato di Bertrad e la cogettura di Legedre Itroduzioe I questo laoro discutiamo dei legami tra la cogettura di Legedre ed il ostulato di Bertrad, quest ultimo

Dettagli

Esercitazione del 25/11/2011 Calcolo delle probabilità

Esercitazione del 25/11/2011 Calcolo delle probabilità Esercitazioe el 25//20 Calcolo elle robabilità Covergeza i istribuzioe. Sia {X } N ua successioe i variabili aleatorie reali. Sia X u ulteriore variabile aleatoria reale. Defiizioe. Diremo che la successioe

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla

Dettagli

poco significativo. RAPPORTI INDICI / NUMERI INDICI RAPPORTI DI COMPOSIZIONE RAPPORTI DI DENSITÀ RAPPORTI DI DURATA RAPPORTI DI RIPETIZIONE AD ESEMPIO

poco significativo. RAPPORTI INDICI / NUMERI INDICI RAPPORTI DI COMPOSIZIONE RAPPORTI DI DENSITÀ RAPPORTI DI DURATA RAPPORTI DI RIPETIZIONE AD ESEMPIO Spesso bisoga cofrotare far di loro 2 o più dati statistici che si riferiscoo a feomei rilevati o i spazi/luoghi diversi o i tempi diversi o comuque i ambiti diversi e che quidi risetoo dell UNITÀ DI MISURA

Dettagli

Dimostrazione. σ σ. Quesito: esistono giaciture che hanno solo tensione normale?

Dimostrazione. σ σ. Quesito: esistono giaciture che hanno solo tensione normale? Caitolo5 DREZON E TENON PRNCPAL 5. DREZON E TENON PRNCPAL Nel uto P, su ua geerica giacitura di ormale agisce ua tesioe che, i geerale, ha ua comoete ormale e ua comoete tageiale. P Quesito: esistoo giaciture

Dettagli

2.5 Convergenza assoluta e non

2.5 Convergenza assoluta e non .5 Covergeza assoluta e o Per le serie a termii complessi, o a termii reali di sego o costate, i criteri di covergeza si qui visti o soo applicabili. L uico criterio geerale, rozzo ma efficace, è quello

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

1. Tra angoli e rettangoli

1. Tra angoli e rettangoli . Tra agoli e rettagoli Attività : il foglio A4 e le piegature Predi u foglio di carta A4 e piegalo a metà. Cota di volta i volta quati rettagoli si ottegoo piegado a metà più volte il foglio. Immagia

Dettagli

LEGGE DEI GRANDI NUMERI

LEGGE DEI GRANDI NUMERI LEGGE DEI GRANDI NUMERI E. DI NARDO 1. Legge empirica del caso e il teorema di Beroulli I diverse occasioi, abbiamo mezioato che la ozioe ituitiva di probabilità si basa sulla seguete assuzioe: se i sperimetazioi

Dettagli

Lezione 4. Gruppi di permutazioni

Lezione 4. Gruppi di permutazioni Lezioe 4 Prerequisiti: Applicazioi tra isiemi Lezioi e Gruppi di permutazioi I questa lezioe itroduciamo ua classe ifiita di gruppi o abeliai Defiizioe 41 ia X u isieme o vuoto i dice permutazioe su X

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1.

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1. Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 0: Riferimeti: R.Adams, Calcolo Differeziale - Si cosiglia vivamete di fare gli esercizi del testo. Successioi umeriche:

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Prodotto di ua matrice per uo scalare Data ua matrice A di tipo m, e dato uo scalare r R, moltiplicado r per ciascu elemeto di A si ottiee ua uova matrice di tipo m, detta matrice

Dettagli

Teoremi di immersione di Sobolev

Teoremi di immersione di Sobolev Teoremi di immersioe di Sobolev February 2, 2007 Teorema (Immersioi di Sobolev, caso base). (Sobolev, Gagliardo, Nireberg). Se < ; W ; (R ) L (R ) ; dove = ; e kukl c (; ) krukl : (Notare che è > ) 2.

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura Uità Didattica N 3 Uità Didattica N 3 01) Classi di gradezze omogeee 0) Multipli e sottomultipli di ua gradezza geometrica 03) Gradezze commesurabili ed icommesurabili 04) Rapporto di due gradezze 05)

Dettagli

1. LEGGE DI SNELL. β<α FIBRE OTTICHE. se n 2 >n 1. sin. quindi 1 se n 1 >n 2 β>α. Pag. - 1 -

1. LEGGE DI SNELL. β<α FIBRE OTTICHE. se n 2 >n 1. sin. quindi 1 se n 1 >n 2 β>α. Pag. - 1 - ISTITUTO TECNICO INDUSTRIALE STATALE G. Marcoi PONTEDERA Prof. Pierluigi D Amico - Apputi su FIBRE OTTICHE - Classi QUARTE LICEO TECNICO A.S. 005/006 - Pagia. 1 di 5 1. LEGGE DI SNELL FIBRE OTTICHE si

Dettagli

L ultimo Teorema di Fermat

L ultimo Teorema di Fermat L ultimo Teorema di Fermat L ultimo teorema di Fermat afferma che l equazioe x + y = z o può avere soluzioi itere di x + y = z co x, y, z > 2 e > 2 itero. La dimostrazioe di questa cogettura è stata sviluppata

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) =

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) = Esercitazioe 3 Successioi di fuzioi Esercizio : Studiare la covergeza i (0, ) della successioe {f } dove f (x) = metre Sol.: Si verifica facilmete che lim f (x) = 0 x (0, ) lim sup f (x) = lim = + (0,)

Dettagli

Le successioni di Fibonacci traslate

Le successioni di Fibonacci traslate Le successioi di iboacci traslate Di Cristiao Arellii, cristiao.arellii@alice.it U successioe di iboacci è ua successioe uerica descritta dalla forula di ricorreza: 0 0, ; +,,3,4,... ovvero ogi terie è

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R 2 π 2, _ -,8 2,89 Q Z N -2 2 28-87 -87 _, 7,76267 7 - e 2,7-7 -,6 _ -,627 7 6 R Numeri Reali Q Numeri Razioali Z Numeri Iteri Relativi N Numeri Naturali Dal diagramma di Eulero-Ve

Dettagli

( ) 3 ( ) 2 estraendo la radice quadrata di entrambi i membri si ottiene la seguente equazione di 2 grado

( ) 3 ( ) 2 estraendo la radice quadrata di entrambi i membri si ottiene la seguente equazione di 2 grado 1. EQUILIBRI CHIMICI IN FASE GASSOSA roblemi risolti A) I u coteitore del volume di L a 7 C vegoo itrodotti 85 g di NH. Si stabilisce il seguete equilibrio NH N + H Sapedo che la Kc vale,9. 10, calcolare

Dettagli

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10 Materiale didattico relativo al corso di Matematica geerale Prof. G. Rotudo a.a.2009/10 ATTENZIONE: questo materiale cotiee i lucidi utilizzati per le lezioi. NON sostituisce il libro, che deve essere

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

Appendice A. Elementi di Algebra Matriciale

Appendice A. Elementi di Algebra Matriciale ppedice. Elemeti di lgebra Matriciale... 2. Defiizioi... 2.. Matrice quadrata... 2..2 Matrice diagoale... 2..3 Matrice triagolare... 3..4 Matrice riga e matrice coloa... 3..5 Matrice simmetrica e emisimmetrica...

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

Progetto Matematica in Rete - Numeri naturali - I numeri naturali

Progetto Matematica in Rete - Numeri naturali - I numeri naturali I umeri aturali Quali soo i umeri aturali? I umeri aturali soo : 0,1,,3,4,5,6,7,8,9,,11 I umeri aturali hao u ordie cioè dati due umeri aturali distiti a e b si può sempre stabilire qual è il loro ordie

Dettagli

Appunti sui modelli lineari

Appunti sui modelli lineari Uiversità degli Studi di Bologa Facoltà di Scieze Statistiche Auti sui modelli lieari Agela Motaari ANNO ACCADEMICO 2004-2005 . INRODUZI ONE AI DAI MUL IVARI AI Esemio (Fote: Quattroruote, Marzo 996 =

Dettagli

Soluzioni degli esercizi del corso di Analisi Matematica I

Soluzioni degli esercizi del corso di Analisi Matematica I Soluzioi degli esercizi del corso di Aalisi Matematica I Prof. Pierpaolo Natalii Roberta Biachii & Marco Pezzulla ovembre 015 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x

Dettagli

Lezione 24. Campi finiti.

Lezione 24. Campi finiti. Lezoe 4 Prerequst: Lezo 0,,, 3 Rfermet a test: [FdG] Sezoe 86; [H] Sezoe 79; [PC] Sezoe 63; Cam ft Nelle lezo recedet abbamo vsto dvers esem d cam ft: ess erao tutt del to oure [ x ]/( f ( x )), dove f

Dettagli

Definizione di Sistema di Riferimento Inerziale

Definizione di Sistema di Riferimento Inerziale Defiizioe di Sistema di Riferimeto Ierziale Defiiamo sistema di riferimeto ierziale u sistema i cui valga rigorosamete la legge di ierzia, i cui cioè u puto materiale o soggetto a forze laciato co velocità

Dettagli

1 Esponenziale e logaritmo.

1 Esponenziale e logaritmo. Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a

Dettagli

L INFORMAZIONE E LE CODIFICHE

L INFORMAZIONE E LE CODIFICHE L INFORMAZIONE E LE CODIFICE UN PO DI STORIA - La Teoria dell iformazioe è ata ella secoda metà del 900, sebbee il termie iformazioe sia atico (dal latio mettere i forma) - I omi più importati soo Nyquist,

Dettagli

13/10/16. Codice 1: Italiana 00. Macchina 00 Razzo 01 Aereo 10

13/10/16. Codice 1: Italiana 00. Macchina 00 Razzo 01 Aereo 10 Rappresetazioe dell'iformazioe I calcolatori elettroici soo macchie i grado di elaborare iformazioi trasformadole i altre iformazioi. Nel modo dell'iformatica, itediamo i modo più restrittivo per iformazioe

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. Esercitazioi del corso: STATISTICA Sommario Esercitazioe : Matrice di dati Distribuzioi uivariate Rappresetazioi grafiche Idici di Posizioe Statistica a. a. - RICHIAMI MATEMATICI ) Approssimazioe

Dettagli

Per questi argomenti ti consiglio anche di effettuare questo collegamento:

Per questi argomenti ti consiglio anche di effettuare questo collegamento: Prof. Roberto Milizia, presso Liceo Scietifico E. Ferdiado Mesage BR) UNITA 8. IL CALCOLO COMBINATORIO.. Itroduzioe al calcolo combiatorio.. I raggruppameti. 3. Esercizi vari co i raggruppameti. 4. Il

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto.

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto. E.5. Cogrueze Nella sezioe D. (esempio (d)) abbiamo itrodotto la relazioe di cogrueza modulo : dati due umeri iteri x, y e u umero itero positivo diciamo che x è cogruo a y modulo (i formula x y se è u

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R π, _ -,8,89 Q Z N - 8-8 -8 _,,66 - e, - -,6 _ -,6 6 R Numeri Reli Q Numeri Rzioli Z Numeri Iteri Reltivi N Numeri Nturli Dl digrmm di Eulero-Ve ovvio è che : N è u sottoisieme rorio

Dettagli

Appunti complementari per il Corso di Statistica

Appunti complementari per il Corso di Statistica Apputi complemetari per il Corso di Statistica Corsi di Laurea i Igegeria Edile e Tessile Ilia Negri 24 settembre 2002 1 Schemi di campioameto Co il termie campioameto si itede l operazioe di estrazioe

Dettagli

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA CHU WENCHANG A Iduzioe matematica: Itroduzioe La gra parte delle proposizioi della teoria dei umeri dà euciati che coivolgoo i umeri aturali; per esempio

Dettagli

NUOVI CRITERI DI DIVISIBILITÀ

NUOVI CRITERI DI DIVISIBILITÀ NUOVI CRITERI DI DIVISIBILITÀ BRUNO BIZZARRI, FRANCO EUGENI, DANIELA TONDINI 1 1. Su tutti i testi scolastici di Scuola Media, oostate siao riportati i criteri di divisibilità per i umeri, 3, 4, 5, 6,

Dettagli

,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5

,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5 Il 16 dicembre 015 ero a Napoli. Ad u agolo di Piazza Date mi soo imbattuto el "matematico di strada", come egli si defiisce, Giuseppe Poloe immerso el suo armametario di tabelle di umeri. Il geiale persoaggio

Dettagli

SULLE PARTIZIONI DI UN INSIEME

SULLE PARTIZIONI DI UN INSIEME Claudia Motemurro Ricordiamo la SULLE PRTIZIONI DI UN INSIEME Defiizioe: Ua partizioe di u isieme è ua famiglia { sottoisiemi o vuoti di X tali che: - X è l uioe degli isiemi X i (i I ), cioè X = U i X

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO Che cosa sigifica cotare Tutti coosciamo la successioe dei umeri iteri Naturali N = {0, 1,,, } si tratta di ua struttura metale fodametale, chiaramete presete alla ostra ituizioe che

Dettagli

Congruenze in ; l insieme quoziente / n

Congruenze in ; l insieme quoziente / n Cogrueze i ; l isieme quoziete / Per ogi, si cosideri i la relazioe, che per il mometo deoteremo co ( ), così defiita: a ( ) b divide a-b Esempio: 5 (7 ) 19, perché 7 5-19=-14, metre 4 o è ella relazioe

Dettagli

Esercizi di econometria: serie 2

Esercizi di econometria: serie 2 Esercizi di ecoometria: serie Esercizio Per quali delle segueti uzioi di desità cogiuta le variabili casuali ed soo idipedeti?......3.4.5..5 (a) (b) 3 4....3.6.9..4...5..5 3.. 3.8..4.6 (c) (d) Nel caso

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Sperimentazioni di Fisica I mod. A Lezione 2

Sperimentazioni di Fisica I mod. A Lezione 2 La Rappresetazioe dei Numeri Sperimetazioi di Fisica I mod. A Lezioe 2 Alberto Garfagii Marco Mazzocco Cizia Sada Dipartimeto di Fisica e Astroomia G. Galilei, Uiversità degli Studi di Padova Lezioe II:

Dettagli

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ;

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ; . Serie umeriche Esercizio. Studiare il carattere delle segueti serie: ;! ;! ;!. Soluzioe.. Serie a termii positivi; cofrotiamola co la serie +, che è covergete: + + + 0. Pertato, per il criterio del cofroto

Dettagli

Elementi di calcolo combinatorio

Elementi di calcolo combinatorio Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare

Dettagli

169. Segmenti paralleli

169. Segmenti paralleli 169. Segmeti paralleli Matematicamete.it UMERO 17 APRILE 01 Bruo Sachii bruosachii@yahoo.it Suto y ta x k b a ta ak x R cos ak Si utilizza il sistema: di ua grade famiglia di superfici. Lo scopo di questo

Dettagli

MATEMATICA DEL DISCRETO elementi di calcolo combinatorio. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di calcolo combinatorio. anno acc. 2009/2010 elemeti di calcolo combiatorio ao acc. 2009/2010 Cosideriamo u isieme fiito X. Chiamiamo permutazioe su X u applicazioe biuivoca di X i sè. Ad esempio, se X = {a, b, c}, le permutazioi distite soo 6 e

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

CALCOLO DELLE PROBABILITÀ. 1. La probabilità che una candela accesa si spenga è p = 1, perché è assolutamente certo che si esaurirà.

CALCOLO DELLE PROBABILITÀ. 1. La probabilità che una candela accesa si spenga è p = 1, perché è assolutamente certo che si esaurirà. CALCOLO DELLE PROBABILITÀ -Definizione di robabilità -Legge additiva (eventi disgiunti) -Probabilità totale -Eventi comosti -Eventi indiendenti -Legge moltilicativa -Probabilità comoste - -Definizione

Dettagli

Lezione 3: Segnali periodici

Lezione 3: Segnali periodici eoria dei segali Segali a poteza media fiita e coversioe A/D Lezioe 3: Aalisi i frequeza Esempio di calcolo 005 Politecico di orio eoria dei segali aalisi i frequeza Poteza media Sia dato u segale (t)

Dettagli

1 Divisioni e numeri primi.

1 Divisioni e numeri primi. Divisioi e umeri rimi. Idicheremo co Z l isieme dei umeri iteri, co N quello dei umeri aturali (cioè iteri o egativi), e co N l isieme dei umeri aturali diversi da 0 (Q, R, C soo risettivamete gli isiemi

Dettagli

RAPPRESENTAZIONE ANALITICA DEI PUNTALI OGIVALI PER PROIETTILI

RAPPRESENTAZIONE ANALITICA DEI PUNTALI OGIVALI PER PROIETTILI M. G. BUSATO RAPPRESENTAZIONE ANALITIA DEI PUNTALI OGIVALI PER PROIETTILI mgbstudio.et SOMMARIO I umerose applicazioi balistiche, ed i particolare per calcolare la resisteza aerodiamica di u proiettile,

Dettagli

Studio matematico dei sistemi di controllo

Studio matematico dei sistemi di controllo Studio matematico dei sistemi di cotrollo Studio di u sistema fisico x(t segale di igresso (eccitazioe SISTEMA FISIO y(t segale di uscita (risosta y(t è legata a x(t da u equazioe differeziale che diede

Dettagli

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI ALGEBRA I MODULO PROF. VERARDI - ESERCIZI Sezioe 1 NUMERI NATURALI E INTERI 2 1.1. Si dimostri per iduzioe la formula: N, k 2 "1( * " 3 ) " 3k +1(. 3 1.2. A) Si dimostri che per ogi a,b N +, N +, se a

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

Problema di Natale 1 Corso di Geometria per la Laurea in Fisica Andrea Sambusetti 19 Dicembre 2008

Problema di Natale 1 Corso di Geometria per la Laurea in Fisica Andrea Sambusetti 19 Dicembre 2008 Problema di Natale 1 Corso di Geometria per la Laurea i Fisica Adrea Sambusetti 19 Dicembre 28 La particella Mxyzptlk. 2 La particella Mxyzptlk vive i u uiverso euclideo -dimesioale. È costituita da u

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verifica delle iotesi Iotesi ulla Il rocesso di verifica di iotesi è u rocesso di falsificaioe dell iotesi ulla (coteete lo stato dell arte) cotro l iotesi alterativa (coteete il uovo) Essa rareseta

Dettagli

Movimento nominale e perturbato

Movimento nominale e perturbato Fodameti di Automatica. Stabilità itera o alla Lyauov Fodameti di Automatica AYSb FTPb AYSct Igegeria delle Telecomuicazioi e Igegeria Fisica. Stabilità itera o alla Lyauov Stefao Mala Fodameti di Automatica

Dettagli

Caso studio 9. Distribuzioni doppie. Esempi

Caso studio 9. Distribuzioni doppie. Esempi 7/3/16 Caso studio 9 Si cosideri la seguete tabella che riporta i dati dei Laureati el 4 dei tre pricipali gruppi di corsi di laurea, per codizioe occupazioale a tre ai dalla laurea (Fote: ISTAT, Idagie

Dettagli

Parte sesta: matematica con Java

Parte sesta: matematica con Java Parte sesta: matematica co Java I questa parte prederemo i esame la classe Math del package java.lag. Vedremo come utilizzare i vari metodi ed attributi. I questa parte cotiueremo a sviluppare il progetto

Dettagli

ESERCITAZIONE 2. Esercitazioni del corso FONDAMENTI DI PROCESSI CHIMICI Prof. Gianpiero Groppi

ESERCITAZIONE 2. Esercitazioni del corso FONDAMENTI DI PROCESSI CHIMICI Prof. Gianpiero Groppi Dipartimeto di Eergia Politecico di Milao Piazza Leoardo da Vici 3-033 MILA Esercitazioi del corso FDAMETI DI PRESSI HIMII Prof. Giapiero Groppi ESERITAZIE Aalisi di ua caldaia a polverio di carboe I ua

Dettagli

LA RADICE QUADRATA NELLA SCUOLA MEDIA E.BARONE

LA RADICE QUADRATA NELLA SCUOLA MEDIA E.BARONE LA RADICE QUADRATA NELLA SCUOLA MEDIA E.BARONE 1. Itroduzioe. La radice quadrata di solito e' itrodotta gia'ella.scuola media iferiore, quado i! cocetto di umero reale o e' stato acora dato e solitamete

Dettagli

15 - Successioni Numeriche e di Funzioni

15 - Successioni Numeriche e di Funzioni Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 15 - Successioi Numeriche e di Fuzioi Ao Accademico 2013/2014 M Tummiello, V Lacagia,

Dettagli

Richiami sulle potenze

Richiami sulle potenze Richiami sulle poteze Dopo le rette, le fuzioi più semplici soo le poteze: Distiguiamo tra: - poteze co espoete itero - poteze co espoete frazioario (razioale) - poteze co espoete reale = Domiio delle

Dettagli

In questo capitolo approfondiremo le nostre conoscenze su sequenze e collezioni,

In questo capitolo approfondiremo le nostre conoscenze su sequenze e collezioni, Cotare sequeze e collezioi Coteuto Sequeze e collezioi di elemeti distiti Sequeze e collezioi arbitrarie 3 Esercizi I questo capitolo approfodiremo le ostre coosceze su sequeze e collezioi, acquisedo gli

Dettagli

Titolo della lezione. Campionamento e Distribuzioni Campionarie

Titolo della lezione. Campionamento e Distribuzioni Campionarie Titolo della lezioe Campioameto e Distribuzioi Campioarie Itroduzioe Itrodurre le idagii campioarie Aalizzare il le teciche di costruzioe dei campioi e di rilevazioe Sviluppare il cocetto di distribuzioe

Dettagli