MATEMATICA FINANZIARIA Appello del 20 gennaio Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MATEMATICA FINANZIARIA Appello del 20 gennaio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR)."

Transcript

1 MATEMATICA FINANZIARIA Appello del 20 gennaio 2014 Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Un investitore che ha a disposizione un capitale da investire di S = euro per la durata T = 4 anni e 6 mesi, deve scegliere tra due modalità di investimento: 1) interessi composti al tasso i C = 3%; 2) interessi semplici al tasto i S = i C + 1%. Quale delle due modalità sceglierà, e per quale motivo? Risposta: Si calcoli il tasso interno di rendimento della modalità prescelta, esprimendolo in forma percentuale e su base annua. i = % Esercizio 2. Si consideri un investimento in un portafoglio dal valore, in t = 0, di 120 milioni di euro. Il portafoglio è costituito interamente da BTP con t.n.a. del 7% e scadenza T = 4 anni, e ha un rendimento annuo (espresso in termini di t.i.r.) del 2.5%. Si calcoli il flusso di cassa garantito dall investimento, nei tempi t 1 = 1 anno e T = 4 anni. x t1 = mln di euro x T = mln di euro Nel caso di acquisto del portafoglio al tempo t = 0, se ne calcoli il valore montante M e il valore residuo V in t = 9 mesi, utilizzando per il calcolo una legge esponenziale con un t.i.r. identico al rendimento annuo del portafoglio stesso. M = mln di euro V = mln di euro

2 Esercizio 3. Si consideri un individuo che vuole accendere un mutuo per una somma di S euro, da restituirsi secondo un ammortamento in 4 rate trimestrali posticipate, tutte con la stessa quota capitale. Il tasso annuo applicato è i = 4% e ogni rata non può superare i euro. Dopo aver indicato il capitale massimo finanziabile: S max = euro si compili il piano di ammortamento con S = S max, giustificando adeguatamente i valori inseriti. rata n. rata quota capitale quota interesse debito residuo

3 Esercizio 4. Si consideri alla data odierna (tempo zero) un mercato in cui sono quotati: un titolo a cedola nulla con scadenza un anno, nominale 100 euro e prezzo a pronti 97.1 euro; un titolo a cedola nulla con scadenza un anno, nominale 100 euro e prezzo a termine 98.5 euro, pagabile tra sei mesi; un titolo a cedola fissa semestrale, con scadenza un anno e mezzo, quotato alla pari e con tasso nominale annuo 3.10%. Si determini la struttura per scadenza dei tassi di interesse a pronti e a termine in vigore in questo mercato i(0, 0.5) = % i(0, 0, 0.5) = % i(0, 1) = % i(0, 0.5, 1) = % i(0, 1.5) = % i(0, 1, 1.5) = % Si determini quindi in questo mercato il prezzo a termine P, pagabile fra sei mesi, di un contratto che paga euro fra un anno e euro fra un anno e mezzo. P = euro Esercizio 5. Si consideri un mercato in cui sono quotati tre titoli, con duration rispettivamente D 1 = 6 mesi, D 2 = 2 anni, D 3 = 4 anni. Un investitore ha a disposizione euro e vuole investirne nel primo titolo e il resto nei rimanenti due, con l obiettivo di ottenere una duration di 3 anni. Si calcoli l importo V 2 che investirà nel secondo titolo e l importo V 3 che investirà nel terzo. V 2 = euro V 3 = euro Subito dopo vince euro al lotto e decide di aggiungerli al portafoglio, investendoli in una rendita perpetua con rata semestrale costante. Assumendo che la struttura per scadenza sia piatta, con tasso annuo i = 4.04%, si calcoli il valore V e la duration D (in anni) del portafoglio dopo quest aggiunta V = euro D = anni

4 Esercizio 6. Si consideri un mercato in cui, al tempo zero, è in vigore la seguente struttura per scadenza dei tassi di interesse a pronti in base annua: i(0, 1) = 2.0%, i(0, 2) = 2.5%, i(0, 3) = 3.0%. Si calcoli la struttura per scadenza delle intensità di rendimento a scadenza (in base annua) e dei tassi di interest rate swap in vigore in questo mercato. h(0, 1) = anni 1 i sw (0; 1) = % h(0, 2) = anni 1 i sw (0; 2) = % h(0, 3) = anni 1 i sw (0; 3) = %

5 MATEMATICA FINANZIARIA Appello del 20 gennaio 2014 Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Un investitore che ha a disposizione un capitale da investire di S = euro per la durata T = 4 anni e 6 mesi, deve scegliere tra due modalità di investimento: 1) interessi composti al tasso i C = 4%; 2) interessi semplici al tasto i S = i C + 1%. Quale delle due modalità sceglierà, e per quale motivo? Risposta: Si calcoli il tasso interno di rendimento della modalità prescelta, esprimendolo in forma percentuale e su base annua. i = % Esercizio 2. Si consideri un investimento in un portafoglio dal valore, in t = 0, di 120 milioni di euro. Il portafoglio è costituito interamente da BTP con t.n.a. del 7% e scadenza T = 4 anni, e ha un rendimento annuo (espresso in termini di t.i.r.) del 3.5%. Si calcoli il flusso di cassa garantito dall investimento, nei tempi t 1 = 1 anno e T = 4 anni. x t1 = mln di euro x T = mln di euro Nel caso di acquisto del portafoglio al tempo t = 0, se ne calcoli il valore montante M e il valore residuo V in t = 9 mesi, utilizzando per il calcolo una legge esponenziale con un t.i.r. identico al rendimento annuo del portafoglio stesso. M = mln di euro V = mln di euro

6 Esercizio 3. Si consideri un individuo che vuole accendere un mutuo per una somma di S euro, da restituirsi secondo un ammortamento in 4 rate trimestrali posticipate, tutte con la stessa quota capitale. Il tasso annuo applicato è i = 5% e ogni rata non può superare i euro. Dopo aver indicato il capitale massimo finanziabile: S max = euro si compili il piano di ammortamento con S = S max, giustificando adeguatamente i valori inseriti. rata n. rata quota capitale quota interesse debito residuo

7 Esercizio 4. Si consideri alla data odierna (tempo zero) un mercato in cui sono quotati: un titolo a cedola nulla con scadenza un anno, nominale 100 euro e prezzo a pronti 97.3 euro; un titolo a cedola nulla con scadenza un anno, nominale 100 euro e prezzo a termine 98.6 euro, pagabile tra sei mesi; un titolo a cedola fissa semestrale, con scadenza un anno e mezzo, quotato alla pari e con tasso nominale annuo 2.90%. Si determini la struttura per scadenza dei tassi di interesse a pronti e a termine in vigore in questo mercato i(0, 0.5) = % i(0, 0, 0.5) = % i(0, 1) = % i(0, 0.5, 1) = % i(0, 1.5) = % i(0, 1, 1.5) = % Si determini quindi in questo mercato il prezzo a termine P, pagabile fra sei mesi, di un contratto che paga euro fra un anno e euro fra un anno e mezzo. P = euro Esercizio 5. Si consideri un mercato in cui sono quotati tre titoli, con duration rispettivamente D 1 = 6 mesi, D 2 = 2 anni, D 3 = 5 anni. Un investitore ha a disposizione euro e vuole investirne nel primo titolo e il resto nei rimanenti due, con l obiettivo di ottenere una duration di 3 anni. Si calcoli l importo V 2 che investirà nel secondo titolo e l importo V 3 che investirà nel terzo. V 2 = euro V 3 = euro Subito dopo vince euro al lotto e decide di aggiungerli al portafoglio, investendoli in una rendita perpetua con rata semestrale costante. Assumendo che la struttura per scadenza sia piatta, con tasso annuo i = 4.04%, si calcoli il valore V e la duration D (in anni) del portafoglio dopo quest aggiunta V = euro D = anni

8 Esercizio 6. Si consideri un mercato in cui, al tempo zero, è in vigore la seguente struttura per scadenza dei tassi di interesse a pronti in base annua: i(0, 1) = 3.0%, i(0, 2) = 3.5%, i(0, 3) = 4.0%. Si calcoli la struttura per scadenza delle intensità di rendimento a scadenza (in base annua) e dei tassi di interest rate swap in vigore in questo mercato. h(0, 1) = anni 1 i sw (0; 1) = % h(0, 2) = anni 1 i sw (0; 2) = % h(0, 3) = anni 1 i sw (0; 3) = %

9 MATEMATICA FINANZIARIA Appello del 20 gennaio 2014 Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Un investitore che ha a disposizione un capitale da investire di S = euro per la durata T = 4 anni e 6 mesi, deve scegliere tra due modalità di investimento: 1) interessi composti al tasso i C = 5%; 2) interessi semplici al tasto i S = i C + 1%. Quale delle due modalità sceglierà, e per quale motivo? Risposta: Si calcoli il tasso interno di rendimento della modalità prescelta, esprimendolo in forma percentuale e su base annua. i = % Esercizio 2. Si consideri un investimento in un portafoglio dal valore, in t = 0, di 120 milioni di euro. Il portafoglio è costituito interamente da BTP con t.n.a. del 7% e scadenza T = 4 anni, e ha un rendimento annuo (espresso in termini di t.i.r.) del 4.5%. Si calcoli il flusso di cassa garantito dall investimento, nei tempi t 1 = 1 anno e T = 4 anni. x t1 = mln di euro x T = mln di euro Nel caso di acquisto del portafoglio al tempo t = 0, se ne calcoli il valore montante M e il valore residuo V in t = 9 mesi, utilizzando per il calcolo una legge esponenziale con un t.i.r. identico al rendimento annuo del portafoglio stesso. M = mln di euro V = mln di euro

10 Esercizio 3. Si consideri un individuo che vuole accendere un mutuo per una somma di S euro, da restituirsi secondo un ammortamento in 4 rate trimestrali posticipate, tutte con la stessa quota capitale. Il tasso annuo applicato è i = 6% e ogni rata non può superare i euro. Dopo aver indicato il capitale massimo finanziabile: S max = euro si compili il piano di ammortamento con S = S max, giustificando adeguatamente i valori inseriti. rata n. rata quota capitale quota interesse debito residuo

11 Esercizio 4. Si consideri alla data odierna (tempo zero) un mercato in cui sono quotati: un titolo a cedola nulla con scadenza un anno, nominale 100 euro e prezzo a pronti 97.5 euro; un titolo a cedola nulla con scadenza un anno, nominale 100 euro e prezzo a termine 98.7 euro, pagabile tra sei mesi; un titolo a cedola fissa semestrale, con scadenza un anno e mezzo, quotato alla pari e con tasso nominale annuo 2.70%. Si determini la struttura per scadenza dei tassi di interesse a pronti e a termine in vigore in questo mercato i(0, 0.5) = % i(0, 0, 0.5) = % i(0, 1) = % i(0, 0.5, 1) = % i(0, 1.5) = % i(0, 1, 1.5) = % Si determini quindi in questo mercato il prezzo a termine P, pagabile fra sei mesi, di un contratto che paga euro fra un anno e euro fra un anno e mezzo. P = euro Esercizio 5. Si consideri un mercato in cui sono quotati tre titoli, con duration rispettivamente D 1 = 6 mesi, D 2 = 2 anni, D 3 = 6 anni. Un investitore ha a disposizione euro e vuole investirne nel primo titolo e il resto nei rimanenti due, con l obiettivo di ottenere una duration di 3 anni. Si calcoli l importo V 2 che investirà nel secondo titolo e l importo V 3 che investirà nel terzo. V 2 = euro V 3 = euro Subito dopo vince euro al lotto e decide di aggiungerli al portafoglio, investendoli in una rendita perpetua con rata semestrale costante. Assumendo che la struttura per scadenza sia piatta, con tasso annuo i = 4.04%, si calcoli il valore V e la duration D (in anni) del portafoglio dopo quest aggiunta V = euro D = anni

12 Esercizio 6. Si consideri un mercato in cui, al tempo zero, è in vigore la seguente struttura per scadenza dei tassi di interesse a pronti in base annua: i(0, 1) = 4.0%, i(0, 2) = 4.5%, i(0, 3) = 5.0%. Si calcoli la struttura per scadenza delle intensità di rendimento a scadenza (in base annua) e dei tassi di interest rate swap in vigore in questo mercato. h(0, 1) = anni 1 i sw (0; 1) = % h(0, 2) = anni 1 i sw (0; 2) = % h(0, 3) = anni 1 i sw (0; 3) = %

13 MATEMATICA FINANZIARIA Appello del 20 gennaio 2014 Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Un investitore che ha a disposizione un capitale da investire di S = euro per la durata T = 4 anni e 6 mesi, deve scegliere tra due modalità di investimento: 1) interessi composti al tasso i C = 6%; 2) interessi semplici al tasto i S = i C + 1%. Quale delle due modalità sceglierà, e per quale motivo? Risposta: Si calcoli il tasso interno di rendimento della modalità prescelta, esprimendolo in forma percentuale e su base annua. i = % Esercizio 2. Si consideri un investimento in un portafoglio dal valore, in t = 0, di 120 milioni di euro. Il portafoglio è costituito interamente da BTP con t.n.a. del 7% e scadenza T = 4 anni, e ha un rendimento annuo (espresso in termini di t.i.r.) del 5.5%. Si calcoli il flusso di cassa garantito dall investimento, nei tempi t 1 = 1 anno e T = 4 anni. x t1 = mln di euro x T = mln di euro Nel caso di acquisto del portafoglio al tempo t = 0, se ne calcoli il valore montante M e il valore residuo V in t = 9 mesi, utilizzando per il calcolo una legge esponenziale con un t.i.r. identico al rendimento annuo del portafoglio stesso. M = mln di euro V = mln di euro

14 Esercizio 3. Si consideri un individuo che vuole accendere un mutuo per una somma di S euro, da restituirsi secondo un ammortamento in 4 rate trimestrali posticipate, tutte con la stessa quota capitale. Il tasso annuo applicato è i = 7% e ogni rata non può superare i euro. Dopo aver indicato il capitale massimo finanziabile: S max = euro si compili il piano di ammortamento con S = S max, giustificando adeguatamente i valori inseriti. rata n. rata quota capitale quota interesse debito residuo

15 Esercizio 4. Si consideri alla data odierna (tempo zero) un mercato in cui sono quotati: un titolo a cedola nulla con scadenza un anno, nominale 100 euro e prezzo a pronti 97.7 euro; un titolo a cedola nulla con scadenza un anno, nominale 100 euro e prezzo a termine 98.8 euro, pagabile tra sei mesi; un titolo a cedola fissa semestrale, con scadenza un anno e mezzo, quotato alla pari e con tasso nominale annuo 2.50%. Si determini la struttura per scadenza dei tassi di interesse a pronti e a termine in vigore in questo mercato i(0, 0.5) = % i(0, 0, 0.5) = % i(0, 1) = % i(0, 0.5, 1) = % i(0, 1.5) = % i(0, 1, 1.5) = % Si determini quindi in questo mercato il prezzo a termine P, pagabile fra sei mesi, di un contratto che paga euro fra un anno e euro fra un anno e mezzo. P = euro Esercizio 5. Si consideri un mercato in cui sono quotati tre titoli, con duration rispettivamente D 1 = 6 mesi, D 2 = 2 anni, D 3 = 7 anni. Un investitore ha a disposizione euro e vuole investirne nel primo titolo e il resto nei rimanenti due, con l obiettivo di ottenere una duration di 3 anni. Si calcoli l importo V 2 che investirà nel secondo titolo e l importo V 3 che investirà nel terzo. V 2 = euro V 3 = euro Subito dopo vince euro al lotto e decide di aggiungerli al portafoglio, investendoli in una rendita perpetua con rata semestrale costante. Assumendo che la struttura per scadenza sia piatta, con tasso annuo i = 4.04%, si calcoli il valore V e la duration D (in anni) del portafoglio dopo quest aggiunta V = euro D = anni

16 Esercizio 6. Si consideri un mercato in cui, al tempo zero, è in vigore la seguente struttura per scadenza dei tassi di interesse a pronti in base annua: i(0, 1) = 5.0%, i(0, 2) = 5.5%, i(0, 3) = 6.0%. Si calcoli la struttura per scadenza delle intensità di rendimento a scadenza (in base annua) e dei tassi di interest rate swap in vigore in questo mercato. h(0, 1) = anni 1 i sw (0; 1) = % h(0, 2) = anni 1 i sw (0; 2) = % h(0, 3) = anni 1 i sw (0; 3) = %

MATEMATICA FINANZIARIA Appello del 22 gennaio 2015

MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 4 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 4 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 4 settembre 2013 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 24 marzo 2015

MATEMATICA FINANZIARIA Appello del 24 marzo 2015 MATEMATICA FINANZIARIA Appello del 24 marzo 2015 Cognome.................................. Nome.................................. C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 12 febbraio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).

MATEMATICA FINANZIARIA Appello del 12 febbraio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). MATEMATICA FINANZIARIA Appello del 12 febbraio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 6 luglio 2011 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello dell 11 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello dell 11 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello dell 11 settembre 2013 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 16 giugno 2014

MATEMATICA FINANZIARIA Appello del 16 giugno 2014 MATEMATICA FINANZIARIA Appello del 16 giugno 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 26 gennaio 2009. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

MATEMATICA FINANZIARIA Appello del 26 gennaio 2009. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli MATEMATICA FINANZIARIA Appello del 26 gennaio 2009 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario

MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 10 luglio 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 23 settembre 2015

MATEMATICA FINANZIARIA Appello del 23 settembre 2015 MATEMATICA FINANZIARIA Appello del 23 settembre 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 26 febbraio 2009. Cognome e Nome... C.d.L... Matricola n... Firma...

MATEMATICA FINANZIARIA Appello del 26 febbraio 2009. Cognome e Nome... C.d.L... Matricola n... Firma... MATEMATICA FINANZIARIA Appello del 26 febbraio 2009 Cognome e Nome... C.d.L.... Matricola n.... Firma... Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli Fornire le risposte

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 18 marzo 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 18 marzo 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 18 marzo 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 14 luglio 2015

MATEMATICA FINANZIARIA Appello del 14 luglio 2015 MATEMATICA FINANZIARIA Appello del 14 luglio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli MATEMATICA FINANZIARIA Appello del 13 06 2008 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Per motivi di bilancio, la Banca può scegliere di finanziare una sola delle due imprese. Quale sceglierà, e per quale motivo?

Per motivi di bilancio, la Banca può scegliere di finanziare una sola delle due imprese. Quale sceglierà, e per quale motivo? MATEMATICA FINANZIARIA Prova intermedia dell 11/11/2014 Pacati Renò non iscritto Cognome e Nome..................................................................... Matricola...................... Fornire

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2000

MATEMATICA FINANZIARIA Appello del 10 luglio 2000 MATEMATICA FINANZIARIA Appello del 10 luglio 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu Prova del 22 Gennaio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale

MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

Esercizi svolti in aula

Esercizi svolti in aula Esercizi svolti in aula 23 maggio 2012 Esercizio 1 (Esercizio 1 del compito di matematica finanziaria 1 (CdL EA) del 16-02-10) Un individuo vuole accumulare su un conto corrente la somma di 10.000 Euro

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. Prova del 23 giugno 2009. Cognome Nome e matr... Anno di Corso... Firma...

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. Prova del 23 giugno 2009. Cognome Nome e matr... Anno di Corso... Firma... ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Prova del 23 giugno 2009 Cognome Nome e matr..................................................................................

Dettagli

Cognome Nome Matricola

Cognome Nome Matricola Sede di SULMONA Prova scritta di esame del 01 02-2011 Cognome Nome Matricola Esercizio 1 (punti 5) Nel regime dell interesse iperbolico e dell interesse composto, calcolare il tasso semestrale di interesse

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Università degli Studi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli I-IV del testo Claudio Pacati a.a. 1998 99 c Claudio Pacati tutti i diritti riservati. Il presente

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Calcolo Finanziario Esercizi proposti Gli esercizi contrassegnati con (*) è consigliato svolgerli con il foglio elettronico, quelli

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu quadrate, i punti che saranno assegnati se l esercizio è stato svolto in modo corretto. con le seguenti caratteristiche: prezzo di emissione: 99,467e, valore a scadenza 100e,

Dettagli

1a. [2] Determinare il tasso annuo d interesse della legge lineare cui avviene l operazione finanziaria.

1a. [2] Determinare il tasso annuo d interesse della legge lineare cui avviene l operazione finanziaria. MATEMATICA FINANZIARIA - 6 cfu Prova del 5 febbraio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

rata n. rata quota capitale quota interesse debito residuo 0 0 0 0 200 000

rata n. rata quota capitale quota interesse debito residuo 0 0 0 0 200 000 MATEMATICA FINANZIARIA Prova intermedia dell //05 Pacati Quaranta Esercizio. Anna è una giovane che ha appena ricevuto un eredità di 50 000 e decide di investirli in un conto di deposito fino a che non

Dettagli

MATEMATICA FINANZIARIA Appello del 14 gennaio 2016

MATEMATICA FINANZIARIA Appello del 14 gennaio 2016 MATEMATICA FINANZIARIA Appello del 14 gennaio 2016 Cognome e Nome............................................................. Matricola n....................... Cattedra: Pacati Quaranta Fornire le risposte

Dettagli

Nome e Cognome... Matricola...

Nome e Cognome... Matricola... Università degli Studi di Perugia Facoltà di Economia Corso di Laurea in Statistica e Informatica per la Gestione delle Imprese (SIGI) Anno accademico 2006-2007 Matematica Finanziaria (5 crediti) - Prova

Dettagli

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti 1 MODULO 1 1.1 Principali grandezze finanziarie 1. Si consideri una operazione finanziaria di provvista che prevede di ottenere

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIARIA E. Michetti Esercitazioni in aula MOD. 2 E. Michetti (Esercitazioni in aula MOD. 2) MATEMATICA FINANZIARIA 1 / 18 Rendite Esercizi 2.1 1. Un flusso di cassa prevede la riscossione

Dettagli

1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare.

1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare. MATEMATICA FINANZIARIA - 6 cfu Prova del 14 aprile 2015 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di

Dettagli

3b. [2] Dopo aver determinato la rata esatta, scrivere il piano di ammortamento.

3b. [2] Dopo aver determinato la rata esatta, scrivere il piano di ammortamento. MATEMATICA FINANZIARIA - 6 cfu Prova del 23 aprile 2014 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di

Dettagli

TRACCE DI MATEMATICA FINANZIARIA

TRACCE DI MATEMATICA FINANZIARIA TRACCE DI MATEMATICA FINANZIARIA 1. Determinare il capitale da investire tra tre mesi per ottenere, nel regime dello sconto commerciale, un montante di 2800 tra tre anni e tre mesi sapendo che il tasso

Dettagli

Matematica Finanziaria Soluzione della prova scritta del 15/05/09

Matematica Finanziaria Soluzione della prova scritta del 15/05/09 Matematica Finanziaria Soluzione della prova scritta del 15/05/09 ESERCIZIO 1 Il valore in t = 60 semestri dei versamenti effettuati dall individuo è W (m) = R(1 + i 2 ) m + R(1 + i 2 ) m 1 +... R(1 +

Dettagli

Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014

Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014 Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014 Avvertenze Durante lo svolgimento degli esercizi tenere

Dettagli

MATEMATICA FINANZIARIA Appello del 25 gennaio 2010 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 25 gennaio 2010 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 25 gennaio 2010 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

IV Esercitazione di Matematica Finanziaria

IV Esercitazione di Matematica Finanziaria IV Esercitazione di Matematica Finanziaria 28 Ottobre 2010 Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 85 giorni, prezzo di acquisto (lordo) P = 97.40 euro e

Dettagli

1. I Tassi di interesse. Stefano Di Colli

1. I Tassi di interesse. Stefano Di Colli 1. I Tassi di interesse Metodi Statistici per il Credito e la Finanza Stefano Di Colli Strumenti (in generale) Un titolo rappresenta un diritto sui redditi futuri dell emittente o sulle sue attività Un

Dettagli

MATEMATICA FINANZIARIA Appello del 27 settembre 2000

MATEMATICA FINANZIARIA Appello del 27 settembre 2000 MATEMATICA FINANZIARIA Appello del 27 settembre 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008 Nome Cognome Matricola Esercizio 1 (6 punti) Dato un debito di 20 000, lo si voglia rimborsare mediante il pagamento di 12 rate mensili posticipate

Dettagli

Formulario. Legge di capitalizzazione dell Interesse semplice (CS)

Formulario. Legge di capitalizzazione dell Interesse semplice (CS) Formulario Legge di capitalizzazione dell Interesse semplice (CS) Il montante M è una funzione lineare del capitale iniziale P. Di conseguenza M cresce proporzionalmente rispetto al tempo. M = P*(1+i*t)

Dettagli

M 1 + i = 1017.1 1.05 = 968.67 = 1000 968.67 0.05 12 3 12

M 1 + i = 1017.1 1.05 = 968.67 = 1000 968.67 0.05 12 3 12 Esercizi di matematica finanziaria 1 Titoli con cedola Esercizio 1.1. Un tesoriere d impresa considera la possibilità d impiego della somma C = 1000 nell acquisto d un titolo, rimborsato alla pari, con

Dettagli

LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL

LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL ESERCITAZIONE GUIDATA: LE RENDITE 1. Il montante di una rendita immediata posticipata Utilizzando Excel, calcoliamo il montante di una

Dettagli

AMMORTAMENTO. Generalità e Funzionamento dell applicativo

AMMORTAMENTO. Generalità e Funzionamento dell applicativo AMMORTAMENTO Generalità e Funzionamento dell applicativo Per ammortamento di un prestito (mutuo) indiviso si intende quel procedimento in base al quale un soggetto (unico) cede ad un tempo iniziale (es.

Dettagli

MATEMATICA FINANZIARIA Appello del 15 luglio 2009

MATEMATICA FINANZIARIA Appello del 15 luglio 2009 MATEMATICA FINANZIARIA Appello del 15 luglio 2009 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A prova d esame del 21 Aprile 2010 modalità A 1. Un tizio ha bisogno di 600 euro che può chiedere, in alternativa, a due banche: A e B. La banca A propone un rimborso a quote capitale costanti mediante tre

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 27 maggio 2010

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 27 maggio 2010 ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 27 maggio 2010 Cognome Nome e matr..................................................................................

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti 1. Un capitale d ammontare 100 viene investito, in regime di interesse semplice, al tasso annuo

Dettagli

II Esercitazione di Matematica Finanziaria

II Esercitazione di Matematica Finanziaria II Esercitazione di Matematica Finanziaria Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 90 giorni, prezzo di acquisto (lordo) P = 98.50 euro e valore facciale

Dettagli

Determinare l ammontare x da versare per centrare l obiettivo di costituzione.

Determinare l ammontare x da versare per centrare l obiettivo di costituzione. Esercizi di matematica finanziaria 1 VAN - DCF - TIR Esercizio 1.1. Un investitore desidera disporre tra 3 anni d un capitale M = 10000 euro. Investe subito la somma c 0 pari a 1/4 di M. Farà poi un ulteriore

Dettagli

PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO

PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO ESERCITAZIONE MATEMATICA FINANZIARIA 16/11/2013 1 PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO Nuda proprietà e usufrutto Esercizio 1 2 ESERCIZIO 1 Una società prende in prestito

Dettagli

Corso di Asset and liability management. Il rischio di interesse sul banking book ESERCIZI

Corso di Asset and liability management. Il rischio di interesse sul banking book ESERCIZI Università degli Studi di Parma Corso di Asset and liability management Il rischio di interesse sul banking book ESERCIZI Prof.ssa Paola Schwizer Anno accademico 2010-2011 Riclassificazione del bilancio

Dettagli

Esercizi Svolti di Matematica Finanziaria

Esercizi Svolti di Matematica Finanziaria Esercizi Svolti di Matematica Finanziaria Esercizio. Nel mercato obbligazionario italiano del 0 Novembre 009 si osservano i seguenti prezzi: - prezzo 96, per un titolo il cui valore a scadenza in T è 0,

Dettagli

Temi d esame di Matematica Finanziarie e Attuariale. Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005

Temi d esame di Matematica Finanziarie e Attuariale. Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005 Temi d esame di Matematica Finanziarie e Attuariale Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005 1. 7 pti Una somma di denaro raddoppia dopo 10 anni: qual è il tasso di rendimento?

Dettagli

Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S

Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S L AMMORTAMENTO Gli ammortamenti sono un altra apllicazione delle rendite. Il prestito è un operazione finanziaria caratterizzata da un flusso di cassa positivo (mi prendo i soldi in prestito) seguito da

Dettagli

Metodi Matematici 2 B 28 ottobre 2010

Metodi Matematici 2 B 28 ottobre 2010 Metodi Matematici 2 B 28 ottobre 2010 1 Prova Parziale - Matematica Finanziaria TEST Cognome Nome Matricola Rispondere alle dieci domande sbarrando, nel caso di risposta multipla, la casella che si ritiene

Dettagli

CONTRATTI E TASSI SWAP

CONTRATTI E TASSI SWAP CONTRATTI E TASSI SWAP FLAVIO ANGELINI Sommario. In queste note vengono definite, analizzate e valutate le tipologie più comuni di contratti interest rate swap e si discute l importanza che i tassi swap

Dettagli

1.a [3] Trovare quale importo può essere finanziato pagando una rata mensile posticipata di 1000e per 5 anni, al tasso semestrale del 5%.

1.a [3] Trovare quale importo può essere finanziato pagando una rata mensile posticipata di 1000e per 5 anni, al tasso semestrale del 5%. ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 16 maggio 2008 Cognome Nome e matr..................................................................................

Dettagli

i = ˆ i = 0,02007 i = 0,0201 ˆ "3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo

i = ˆ i = 0,02007 i = 0,0201 ˆ 3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo 1 Appello sessione estiva 2009/ 2010 (tassi equivalenti - ammortamento) 1 Parte Rispondere ai seguenti distinti quesiti in A) e in B). A) Il capitale C=10000 è stato impiegato in capitalizzazione composta

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

Soluzioni del Capitolo 5

Soluzioni del Capitolo 5 Soluzioni del Capitolo 5 5. Tizio contrae un prestito di 5.000 al cui rimborso provvede mediante il pagamento di cinque rate annue; le prime quattro rate sono ciascuna di importo.00. Determinare l importo

Dettagli

Capitalizzazione composta, rendite, ammortamento

Capitalizzazione composta, rendite, ammortamento Capitalizzazione composta, rendite, ammortamento Paolo Malinconico 2 dicembre 2014 Montante Composto dove: C(t) = C(1+i) t C(t) = montante (o valore del capitale) al tempo t C = capitale impiegato (corrispondente

Dettagli

Esercizi svolti di Matematica Finanziaria

Esercizi svolti di Matematica Finanziaria Esercizi svolti di Matematica Finanziaria Esercizio I. Si consideri un obbligazione al 6%, con cedole trimestrali, vita a scadenza di anno, rendimento del 3, 7%. Calcolare il prezzo di tale obbligazione,

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 22 maggio 2009

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 22 maggio 2009 ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 22 maggio 2009 Cognome Nome e matr..................................................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2001

MATEMATICA FINANZIARIA Appello del 10 luglio 2001 MATEMATICA FINANZIARIA Appello del 10 luglio 2001 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

1 MATEMATICA FINANZIARIA

1 MATEMATICA FINANZIARIA 1 MATEMATICA FINANZIARIA 1.1 26.6.2000 Data la seguente operazione finanziaria: k = 0 1 2 3 4 F k = -800 200 300 300 400 a. determinare il TIR b. detreminare il VAN corrispondente ad un interesse periodale

Dettagli

(Come noto, il risultato finale dell importo dei capitali, espresso in euro, deve essere arrotondato al centesimo più prossimo)

(Come noto, il risultato finale dell importo dei capitali, espresso in euro, deve essere arrotondato al centesimo più prossimo) MATEMATICA FINANZIARIA ISTITUZIONI L - Z) Pavia 11/ 11/004 COGNOME e NOME:... n.dimatricola:... CODICE ESAME:... Come noto, il risultato finale dell importo dei capitali, espresso in euro, deve essere

Dettagli

Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto)

Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto) Matematica finanziaria: svolgimento prova di esame del giugno 5 (con esercizio corretto). [6 punti cleai, 6 punti altri] Si possiede un capitale di e e lo si vuole impiegare per anni. Supponendo che eventuali

Dettagli

SOMMARIO. Art. 1 Variazioni alle previsioni di entrata e di spesa del bilancio di previsione 2008

SOMMARIO. Art. 1 Variazioni alle previsioni di entrata e di spesa del bilancio di previsione 2008 SOMMARIO Art. 1 Variazioni alle previsioni di entrata e di spesa del bilancio di previsione 2008 Art. 2 Autorizzazioni di spesa per l anno 2008 Art. 3 Variazioni alle previsioni del bilancio pluriennale

Dettagli

Matrice Excel Calcolo rata con IMPORTO DEL FINANZIAMENTO determinato dall'utente

Matrice Excel Calcolo rata con IMPORTO DEL FINANZIAMENTO determinato dall'utente Matrice Excel Calcolo rata con IMPORTO DEL FINANZIAMENTO determinato dall'utente L'acquisto di un immobile comporta un impegno finanziario notevole e non sempre è possibile disporre della somma di denaro

Dettagli

Nome e cognome/ragione sociale Sede (indirizzo) Telefono e e-mail

Nome e cognome/ragione sociale Sede (indirizzo) Telefono e e-mail INFORMAZIONI SULLA BANCA Cassa di Risparmio di Cento S.p.A. Sede Legale e Direzione generale: Via Matteotti 8/B - 44042 CENTO (FE) Tel. 051 6833111 - Fax 051 6833237 CODICE FISCALE, PARTITA IVA e Numero

Dettagli

unità didattica n. 7 LE OPZIONI SU TASSI DI INTERESSE: CAPS E FLOORS SDA Bocconi School of Management Danilo

unità didattica n. 7 LE OPZIONI SU TASSI DI INTERESSE: CAPS E FLOORS SDA Bocconi School of Management Danilo Danilo unità didattica n. 7 LE OPZIONI SU TASSI DI INTERESSE: CAPS E FLOORS Definizione Modalità di utilizzo Elementi di valutazione: valore minimo e valore temporale Relazione di parità Copyright SDA

Dettagli

Indice dei contenuti. La nuova Organizzazione della CDP. I Nuovi Strumenti e Servizi per gli Enti Locali. Appendice Lista Contatti

Indice dei contenuti. La nuova Organizzazione della CDP. I Nuovi Strumenti e Servizi per gli Enti Locali. Appendice Lista Contatti Indice dei contenuti La nuova Organizzazione della CDP La gestione separata e la gestione ordinaria Le innovazioni 2005 I Nuovi Strumenti e Servizi per gli Enti Locali Prestito Flessibile di Scopo Fondo

Dettagli

Leggi di capitalizzazione

Leggi di capitalizzazione Leggi di capitalizzazione Introduzione Nel capitolo precedente abbiamo introdotto la definizione di fattore montante M(t,s)=V(s)/V(t) Quando M(t,s) viene vista come funzione di t e di s, si chiama legge

Dettagli

LA CASSETTA DEGLI ATTREZZI

LA CASSETTA DEGLI ATTREZZI LA CASSETTA DEGLI ATTREZZI I TASSI DI INTERESSE TASSO DI RENDIMENTO EFFETTIVO ALLA SCADENZA (TRES) O YIELD-TO- MATURITY (YTM) Lezione 3 1 I PUNTI PRINCIPALI DELLA LEZIONE o o Misurazione dei tassi di interesse

Dettagli

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. Prodotti finanziari a breve termine BOT: Buoni Ordinari del tesoro

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. Prodotti finanziari a breve termine BOT: Buoni Ordinari del tesoro AREA FINANZA DISPENSE FINANZA Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto Prodotti finanziari a breve termine BOT: Buoni Ordinari del tesoro ORGANISMO BILATERALE PER LA FORMAZIONE

Dettagli

1 2 3 4 Prefazione Il presente volume raccoglie testi proposti dagli autori nell ambito dei vari appelli d esame per il corso di Matematica Finanziaria tenuto presso la Facoltà di Economia dell Università

Dettagli

Matrice Excel Calcolo rata con DURATA DEL FINANZIAMENTO determinata dall'utente

Matrice Excel Calcolo rata con DURATA DEL FINANZIAMENTO determinata dall'utente Matrice Excel Calcolo rata con DURATA DEL FINANZIAMENTO determinata dall'utente L'acquisto di un immobile comporta un impegno finanziario notevole e non sempre è possibile disporre della somma di denaro

Dettagli

GARA PER L AFFIDAMENTO DEL SERVIZIO DI TESORERIA DEL COMUNE DI CASCIANA TERME

GARA PER L AFFIDAMENTO DEL SERVIZIO DI TESORERIA DEL COMUNE DI CASCIANA TERME Bollo 14,62 MODULO C GARA PER L AFFIDAMENTO DEL SERVIZIO DI TESORERIA DEL COMUNE DI CASCIANA TERME OFFERTA ECONOMICA Al Comune di CASCIANA TERME Servizi Finanziari 56034 CASCIANA TERME (PI) ( DA COMPILARE

Dettagli

Metodi matematici II 15 luglio 2003

Metodi matematici II 15 luglio 2003 MM.II Prova Generale - Test Vecchio Ordinamento, 5 luglio Metodi matematici II 5 luglio TEST (Vecchio ordinamento) Cognome Nome Matricola Rispondere alle dodici domande sbarrando la casella che si ritiene

Dettagli

Nell esempio verrà mostrato come creare un semplice documento in Excel per calcolare in modo automatico la rata di un mutuo a tasso fisso conoscendo

Nell esempio verrà mostrato come creare un semplice documento in Excel per calcolare in modo automatico la rata di un mutuo a tasso fisso conoscendo Nell esempio verrà mostrato come creare un semplice documento in Excel per calcolare in modo automatico la rata di un mutuo a tasso fisso conoscendo - la durata del mutuo in anni - l importo del mutuo

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi 4 Piani di ammortamento Esercizio 1. Un debito di 1000e viene rimborsato a tasso annuo i = 10%

Dettagli

Le Scelte Finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08

Le Scelte Finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08 Le Scelte Finanziarie 1 Tasso Interno di Rendimento Consideriamo un operazione finanziaria (t 0 =0): 0 x 0 t 1 t 2 t m...... x 1 x 2 x m Posto: x = x0, x1,, xm { } si definisce tasso interno di rendimento

Dettagli

Esempi di Asset swap

Esempi di Asset swap Esempi di Asset swap La società A e la società B possiedono entrambe un portafoglio di attività finanziarie La società A possiede BTP 1/07/19 con cedola semestrale del 3, 375% per un valore nominale di

Dettagli

MATEMATICA FINANZIARIA Appello del 30 giugno 2016

MATEMATICA FINANZIARIA Appello del 30 giugno 2016 MATEMATICA FINANZIARIA Appello del 30 giugno 2016 Cognome e Nome............................................................. Matricola n....................... Cattedra: Pacati Quaranta Fornire le risposte

Dettagli

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. Prodotti Finanziari a medio - lungo termine CCT: Certificati di Credito del Tesoro

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. Prodotti Finanziari a medio - lungo termine CCT: Certificati di Credito del Tesoro AREA FINANZA DISPENSE FINANZA Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto Prodotti Finanziari a medio - lungo termine CCT: Certificati di Credito del Tesoro ORGANISMO BILATERALE

Dettagli

Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015

Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015 Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015 Esercizio 1 Si consideri la funzione f(t) := 2t/10 1 + 0, 04t, t 0. 1. Verificare che essa rappresenta il fattore

Dettagli

1) MUTUO GARANTITI DA IPOTECA PER L ACQUISTO DELL ABITAZIONE PRINCIPALE A TASSO FISSO

1) MUTUO GARANTITI DA IPOTECA PER L ACQUISTO DELL ABITAZIONE PRINCIPALE A TASSO FISSO Questo documento redatto secondo le disposizioni vigenti in materia di Trasparenza delle operazioni e dei servizi bancari e finanziari, correttezza delle relazioni tra intermediari e clienti - riepiloga

Dettagli

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. PRODOTTI FINANZIARI A MEDIO-LUNGO TERMINE BTP: Buoni del Tesoro Poliennali

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. PRODOTTI FINANZIARI A MEDIO-LUNGO TERMINE BTP: Buoni del Tesoro Poliennali AREA FINANZA DISPENSE FINANZA Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto PRODOTTI FINANZIARI A MEDIO-LUNGO TERMINE BTP: Buoni del Tesoro Poliennali ORGANISMO BILATERALE PER LA FORMAZIONE

Dettagli

ITG A. POZZO CORSO DI ESTIMO CLASSE 4^LB NOZIONI DI MATEMATICA FINANZIARIA

ITG A. POZZO CORSO DI ESTIMO CLASSE 4^LB NOZIONI DI MATEMATICA FINANZIARIA ITG A. POZZO CORSO DI ESTIMO CLASSE 4^LB NOZIONI DI MATEMATICA FINANZIARIA Anno scolastico 2008/09 Prof. Romano Oss Matematica finanziaria è uno strumento di calcolo basato sulla teoria dell interesse,

Dettagli

Matrice Excel Calcolo rata con TASSO DI INTERESSE determinato dall'utente

Matrice Excel Calcolo rata con TASSO DI INTERESSE determinato dall'utente Matrice Excel Calcolo rata con TASSO DI INTERESSE determinato dall'utente L'acquisto di un immobile comporta un impegno finanziario notevole e non sempre è possibile disporre della somma di denaro sufficiente

Dettagli