Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)"

Transcript

1 Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

2 Studio di una funzione

3 Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se f (x 1 ) f (x 2 ) quando x 1 < x 2 per ogni x 1, x 2 di (a, b) Una funzione f é decrescente nell intervallo (a, b) se f (x 1 ) f (x 2 ) se x 1 < x 2 per ogni x 1, x 2 di (a, b) Crescente Decrescente Crescente

4 Funzioni crescenti e decrescenti Una funzione f é crescente nel punto x 0 se esiste un intorno I(x 0 ) di x 0 tale che f x f(x 0 ) x x 0 > 0 per ogni x I x 0 D(f). Una funzione f é decrescente nel punto x 0 se esiste un intorno I(x 0 ) di x 0 tale che f x f(x 0 ) x x 0 < 0 per ogni x I x 0 D(f).

5 Teorema sulla crescenza e decrescenza di una funzione Sia f una funzione continua su un intervallo chiuso [a, d] e differenziabile sull intervallo aperto (a, d). 1. Se f (x)>0 per ogni x in (b, c), allora f é crescente in [b, c]. 2. Se f (x)<0 per ogni x in (a, b), allora f é decrescente in [a, b]. 3. Se f (x)=0 per ogni x in (c, d), allora f é costante in [c, d]. a b c d

6 Estremi di una funzione: massimi e minimi Una funzione f definita in un insieme A R ha un massimo in x=c, appartenente ad A, chiamato max f, se f ( x) f ( c) per ogni x in A. Una funzione f definita in un insieme A R ha un minimo in x=d, appartenente ad A, chiamato min f, se f ( x) f ( d) per ogni x in A. a b c d

7 Estremi di una funzione: massimi e minimi relativi Una funzione f definita in un insieme A R ha un massimo relativo in x=c appartenente ad A, se esiste un intorno di c, I(c): f ( x) f ( c) per ogni x in I(c) A. Una funzione f definita in un insieme A R ha un minimo in x=d appartenente ad A, se esiste un intorno di d, I (d) f ( x) f ( d) per ogni x in I (d) A. a b c d

8 Esempio max rel min rel né max né min

9 Grafico qualitativo max max min max rel min rel rel

10 Teorema (Test della derivata prima) Sia c un punto critico della funzione f continua su un intervallo aperto I che contiene c, cioé f (c)=0. Se f é differenziabile sull intervallo I, allora f(c) può essere classificato come segue: Se f (x) cambia segno da negativo a positivo in c, allora f(c) é un punto di minimo relativo di f. Se f (x) cambia segno da positivo a negativo in c, allora f(c) é un punto di massimo relativo di f. Se f (x) non cambia di segno in c, allora f(c) non é né un punto di minimo né un punto di massimo.

11 Estremi di una funzione max f a f (x)>0 f (x)<0 f (x)>0 b min f c d rel min f f (x)=0 f (x)>0 f (x)>0

12 Passi per trovare intervalli su cui la funzione é crescente e decrescente: primo metodo Test dei segni Sia f(x) una funzione continua e derivabile su un intervallo (a, b) 1. Localizzare i punti critici di f in (a, b), e usare questi numeri per determinare gli intervalli test. 2. Determinare il segno di f (x) in un punto test per ciascun intervallo test. 3. Usare il Teorema precedente per determinare se f è crescente o decrescente su ogni intervallo.

13 Osservazione Se la funzione è continua su un unione di intevalli il test dei segni va applicato a ciascuno di essi. Se la funzione o la sua derivata presentano dei punti singolari essi vanno inclusi nel test dei segni.

14 Passi per trovare intervalli su cui la funzione é crescente e decrescente: secondo metodo Studio del segno della derivata Sia f(x) una funzione continua e derivabile su un intervallo (a, b) 1. Localizzare i punti critici di f in (a, b). 2. Studiare il segno di f (x)>0. 3. Usare il Teorema precedente per determinare gli intervalli dove f è crescente o decrescente e localizzare gli eventuali punti di massimo e di minimo.

15 Esempio: primo metodo Esempio 1 Trovare i punti di massimo e di minimo della funzione 5 x 5x f ( x) Soluzione 5 Notiamo che f(x) é differenziabile su tutto l asse reale. Ponendo f (x) = 0 si trovano i punti critici. f '( x) 4 5( x 1) 5 x 4 1 ( x 1)( x 1)( x 2 1) Quindi gli zeri di f (x) sono x = 1 e x = 1 dal test dei segni si ha che il punto x = 1 é un punto di massimo relativo, il punto x = 1 é un punto di minimo rel. Intervalli < x < 1 1< x < 1 1 < x < + Valori test x = 2 x = 0 x = 2 0 Segno di f (x) f ( 2)=15> 0 f (0)= 1 < 0 f (2)=15> 0 Conclusione Crescente decrescente crescente

16 Esempio: secondo metodo Invece di fare il test dei segni si studia il segno della derivata: f '( x) x 4 1 ( x 1)( x 1)( x 2 1) 0 x + 1 > 0 x > 1 x 1 > 0 x > 1 x > 0 sempre Discussione dei segni:

17 --1 1 x x Prodotto Max min

18 Esempio Studiare i punti di massimo e di minimo della seguente funzione: f x = xe x Svolgimento: la funzione data è derivabile su R (dominio): f x = e x (1 + x) Per trovare i punti critici si pone f x = 0: e x 1 + x = 0 x = 1 Segno della derivata prima: e x 1 + x > 0 x > 1 Il punto x = 1 è un punto di minimo relativo

19 Grafico

20 Derivata seconda e concavità di una funzione Definizione: Data una funzione f: a, b R, derivabile in a, b, si dice convessa in a, b se per ogni x 0 (a, b) il grafico della funzione sta al di sopra della retta tangente nel punto (x 0, f(x 0 )).

21 Derivata seconda e concavità di una funzione Definizione: Data una funzione f: a, b R, derivabile in a, b, si dice concava in a, b se per ogni x 0 (a, b) il grafico della funzione sta al di sotto della retta tangente nel punto (x 0, f(x 0 )).

22 Punto di flesso Definizione: Data una funzione f: a, b R, derivabile in a, b, il punto x 0 (a, b) si dice punto di flesso se esiste δ > 0: la funzione f é concava in (x 0 δ, x 0 ) e convessa in (x 0, x 0 + δ)) (o viceversa).

23 Teorema Data una funzione f: a, b R, tale che esista la derivata seconda f in a, b. Se f x > 0 per ogni x a, b, allora la funzione é convessa in a, b. Se f x < 0 per ogni x a, b, allora la funzione é concava in a, b. + +

24 Procedimento per trovare i punti di massimo e di minimo: terzo metodo Segno della derivata seconda. Sia f(x) una funzione continua e derivabile n (n > 1) volte su un intervallo (a, b). Localizzare i punti critici della funzione f in (a, b), cioé le soluzioni dell equazione f (x)=0. Determinare il segno di f (x) (derivata seconda) nei punti critici: a) se f (x)<0 il punto critico e un massimo relativo b) se f (x)>0 il punto critico é un minimo relativo, c) se f (x)=0 si dovrebbe calcolare la derivata terza f o quelle successive finché la derivata nel punto é diversa da zero. Se la prima derivata diversa da zero ha ordine pari si ha un punto di massimo relativo se é negativa e di minimo relativo se é positiva, se ha ordine dispari allora si ha un punto di flesso.

25 Esempio Trovare i punti di massimo e di minimo della seguente funzione: f ( x) ( x 8x 1) Punti critici: f 4 x = x 3 4x = 0 x(x 2 4) = 0 x = 0, x = ±2 Derivata seconda: f x = 3x 2 4

26 Esempio f 0 = 4 < 0 punto di massimo relativo f ±2 = 12 4 = 8 > 0 punti di minimo.

27 Studio di una funzione Trovare il dominio Trovare le intersezioni con gli assi, se è possibile. Trovare gli asintoti verticali (punti singolari) e orizzontali. Trovare i punti di massimo e di minimo relativi attraverso la derivata. Disegnare il grafico.

28 Esempio 1 Studiare la funzione di equazione y = 2x 3 6x 2 Svolgimento: Il dominio è R perché è un polinomio. Intersezioni con gli assi: Asse delle y: x = 0 y = 0 O = (0,0) x = 0 y = 2x 3 6x 2 :

29 Esempio 1 y = 0 Asse delle x: y = 2x 3 6x 2 : y = 0 2x 3 6x 2 = 0 y = 0 2x 2 (x 3) = 0 y = 0 O = 0,0 e A = (3,0) x = 0 e x = 3 Asintoti Asintoti verticali: non ci sono perché il dominio è R; Asintoti orizzontali: non ci sono. Infatti: lim x 2x3 6x 2 = +

30 Esempio 1 lim x 2x3 6x 2 = Massimi e minimi relativi: Punti critici: f x = 6x 2 12x f x = 0 < = > 6x x 2 = 0 I punti critici sono x = 0 e x = 2 Per stabilire se sono punti di massimo o minimo relativi si calcola la derivata seconda: f x = 12x 12 f 0 = 12 < 0 x = 0 0,0 è un punto di massimo relativo f 2 = 12 > 0 x = 2 f 2 = = 8 (2, -8) è un punto di minimo relativo

31 Grafico

32 Esempio 2 Studiare la funzione di equazione Svolgimento: y = x2 +x 2 x 2 4x+4 Essendo una frazione algebrica il dominio è l insieme degli x: x 2 4x x x 2.

33 Esempio 2 Intersezioni con gli assi: Asse delle y: x = 0 y = 2 4 x = 0 y = x2 +x 2 x 2 4x+4 A = (0, 1 2 ) : y = 0 Asse delle x: y = x2 +x 2 : x 2 4x+4 y = 0 x 2 +x 2 = 0 x2 + x 2 = 0 x = x 2 4x+4 1± = 1±3 2 B = 2,0 C = (1,0)

34 Asintoti Esempio 2 Asintoti verticali: x = 2. Infatti: x 2 + x 2 lim x ±2 x 2 2 = + perché il denominatore è sempre positivo o nullo. Asintoti orizzontali:y = 1. Infatti: x 2 + x 2 lim x ± x 2 4x + 4 = F. I. Il limite è 1 perché i polinomi a numeratore ed a denominatore hanno gli stessi gradi.

35 Esempio 2 Massimi e minimi relativi: f x = x2 +x 2 (x 2) 2 f x = 2x+1 x 2 2 2(x 2)(x 2 +x 2) (x 2) 4 f x = x 2 [ 2x+1 x 2 2 x2 +x 2 ] (x 2) 4 f x = 2x2 4x+x 2 2x 2 2x+4 (x 2) 3 f x = 5x+2 (x 2) 3 > 0 Si studia il segno della derivata prima. Il numeratore è positivo per 5x + 2 > 0 x < 2 5. Il denominatore è positivo per x > 2.

36 Complessivamente: Esempio 2 2/5 2 Num Den Frazione non esiste - min rel asintoto Per x = 2 5 y = = = 9 16

37 Grafico Esempio 2

38 Esempio (non svolto) Studiare la seguente funzione f(x) nell intervallo [0, 2 ] e disegnare il grafico: x f ( x) cos x Svolgimento: 2 1) Il dominio é [0, 2 ]. 2) Intersezioni con gli assi: per x = 0, y = f 0 = 1, per y = 0 l equazione x f ( x) cos x 0 2 Non si risolve direttamente. 3) Non sono asintoti verticali perché non ci sono punti singolari. Non ha senso ricercare asintoti orizzontali perché il dominio è finito.

39 Esempio 3) Massimi e minimi: la funzione f(x) é differenziabile in [0, 2 ]. Si pone f (x) = 0 per trovare i punti critici. f '( x) 1 2 sin x Allora gli zeri di f (x) sono x = /6 e x = 5 /6 Il punto x = /6 é un punto di massimo, mentre il punto x = 5 /6 un punto di minimo. Infatti dalla derivata seconda si ricava che: f x = cos x f /6 = 3 2 < 0 /6 è un punto di Max relativo. f 5 /6 = 3 2 > 0 5 /6 è un punto di min relativo. f /6 = π f 5 /6 = 5π sin x 1 2

40 Esempio (non svolto) Studiare la seguente funzione f(x) e tracciare il grafico: 2 2/3 Soluzione f ( x) ( x 4) ((x^2-4)^2)^(1/3) 1) Dominio: R. Osservazione: E una funzione pari perché f x = f( x) per ogni x del dominio, quindi si può studiare per x>0. Il grafico per x<0 si ottiene simmetricamente rispetto all asse delle y. 1) Intersezioni con gli assi: per x = 0 si ha che y = Per y = 0 si ha che x 2 4 = 0 x = ±2. 3) Non ci sono asintoti verticali perché non ci sono punti singolari. Non ci sono asintoti orizzontali: lim x x =

41 Esempio Studiare la seguente funzione f(x) e tracciare il grafico: 2 2/3 Soluzione f ( x) ( x 4) Dominio: R. Si pone f (x) = 0 per trovare i punti critici. f '( x) 2 3 ( x Quindi f x = 0 per x = 0. Test dei segni: 2 4) 1/3 (2x) 3( x 2 4x 4) 1/3 ((x^2-4)^2)^(1/3) Intervallo - < x <- 2-2 < x < 0 0 < x < 2 2 < x < + Valori test x =- -3 x = -1 x = 1 x = 3 Segno di f (x) f (-3) < 0 f (-1) > 0 f (1) < 0 f (3) > 0 Conclusione Decrescente Crescente Decrescente Crescente

42 Dal test dei segni si ha che in x = 0 si ha un punto di max relativo. Inoltre la derivata non esiste in x = ±2. Infatti lim x ±2 4x 3 x = I punti x = ±2 sono di minimo.

43 Esempio 4 Studiare la funzione f(x) e tracciare il grafico: x 1 f ( x) 2 1) Il dominio é R-{0}. x Osservazione: E una funzione pari perché f x = f( x) per ogni x del dominio, quindi si può studiare per x>0. Il grafico per x<0 si ottiene simmetricamente rispetto all asse delle y. 2) Intersezioni con gli assi: per x = 0, la funzione non é definita, per y = 0 l equazione 4 x 1 0 non ha soluzione: 3)Asintoti verticali: x lim x 0 + x 2 = = + Non ci sono asintoti orizzontali perché

44 4. Massimi e minimi. Si pone f (x) = 0 per trovare i punti critici d x 1 4x 2x( x 1) 2x 2x f '( x) 2 4 dx x x x 4 4 x 1 x 2 3 lim x 0 Quindi f (x)=0 per x = 1 e f (x) non esiste per x = 0. Il punto x = 1 é di minimo. Intervallo 0 < x < 1 1 < x < + Valori Test x = 1/2 x = 2 x x 2 = + Segno f (x) f (1/2) < 0 f (2) > 0 Conclusione Decrescente Crescente

45 Esempio Studiare la funzione f(x) e tracciare il grafico: f x = ln x2 1 x Soluzione: 1. Dominio: x 2 1 x 2 +1 > 0 Il numeratore è positivo x 2 1 > 0 per x < 1 o x > 1. Infatti l equazione associata x 2 1 = 0 ha soluzioni x = ±1.

46 Esempio Il denominatore è sempre positivo x > 0. Infatti l equazione associata x = 0 non ha soluzioni reali. Quindi i dominio è: D = {x x < 1 o x > 1} Osservazione: E una funzione pari perché f x = f( x) per ogni x del dominio, quindi si può studiare per x >0. Il grafico per x <0 si ottiene simmetricamente rispetto all asse delle y.

47 2. Intersezioni con gli assi: Il punto x = 0 non appartiene al dominio quindi non ci sono intesezioni con l asse delle y. Ponendo y = 0 si ottiene ln x2 1 = 0 x2 1 = 1 x 2 +1 x 2 +1 x 2 1 = x non ci sono soluzioni e quindi non si hanno intersezioni con l asse delle x.

48 3. Asintoti verticali. Per cercare eventuali asintoti verticali viene calcolato il limite nei punti di frontiera del dominio: lim ln x2 1 x 1 + x = ln 0+ = quindi la retta di equazione x = 1 é un asintoto verticale. Asintoti orizzontali: lim ln x2 1 x + x = ln 1 = 0 quindi la retta di equazione y = 0 é un asintoto orizzontale.

49 4. Massimi e minimi. Per la ricerca dei punti di massimo e di minimo si calcola la derivata della funzione: f x = x2 + 1 x 2 1 = 2x x x(x 2 1) x = 4x (x 2 1)(x 2 + 1) Punti critici: 4x (x 2 1)(x 2 + 1) = 0 x = 0

50 Siccome il punto x = 0 non appartiene al dominio non ci sono punti critici e quindi punti di massimo e di minimo. La derivata 4x prima è positiva per > 0 (x 2 1)(x 2 +1) Il numeratore è sempre positivo per x > 0; Il denominatore è positivo per x > 1. Quindi per x > 1 la funzione è sempre crescente.

51

52 Esercizi 1. Studiare le seguenti funzioni e disegnare il corrispondente grafico: f x = 2x 3 6x 2 f x = 2x 4 2x f x = x x f x = x 1 x+2 f x = x 2 ln(x 2 )

53 Esercizi 2. Studiare le seguenti funzioni e disegnare il corrispondente grafico: f x = x 3 2x 2 f x = x3 1 x 2 f x = x2 +x 2 x 2 4x+4 f x = x2 +4x x 2 +6x+5

54 Esercizi 3. Studiare le seguenti funzioni e disegnare il corrispondente grafico: f x = 1+3x4 x 3 f x = 3 x2 (x 2) 2 f x = e 1+x 1+x 2 f x = x 1 x+1

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni

Dettagli

Studio del segno delle derivate. Lezione 11 del 6/12/2018

Studio del segno delle derivate. Lezione 11 del 6/12/2018 Studio del segno delle derivate Lezione 11 del 6/12/2018 Segno della derivata prima Data una funzione f(x) derivabile in un intervallo I, allora se f x > 0 x I allora la funzione f(x) è strettamente crescente

Dettagli

Esercitazione 6 - Soluzioni

Esercitazione 6 - Soluzioni Esercitazione 6 - Soluzioni Francesco Davì 9 novembre 01 Soluzioni esercizio 1 (a) Dominio: Il dominio della funzione è D f = R, in quanto la funzione è definita R o, equivalentemente, (, + ). Intersezioni

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE 1 Richiami Teorema 1 (Test di monotonia). Sia f : (a, b) R una funzione derivabile. Allora f è monotona crescente (risp. decrescente) in (a, b) se e solo se f () 0 (risp.

Dettagli

ESERCIZI SULLO STUDIO DI FUNZIONI

ESERCIZI SULLO STUDIO DI FUNZIONI ESERCIZI SULLO STUDIO DI FUNZIONI 0 novembre 206 Esercizi Esercizio n. Si consideri la funzione f(x) = 7 x 2 + 3 Dominio: R Intersezioni con gli assi: Intersezioni con l asse x: { y = 0 y = 7 x 2 + 3.

Dettagli

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x Studi di funzione 1) Studiare la funzione definita da f(x) = x + e (x+). Per cominciare, osserviamo che f si ottiene traslando di, nella direzione negativa dell asse x, la funzione g(x) = x e x cioè abbiamo

Dettagli

MATEMATICA. a.a. 2014/15

MATEMATICA. a.a. 2014/15 MATEMATICA a.a. 2014/15 3. DERIVATE E STUDIO DI FUNZIONE (II parte): Massimi, minimi e derivata prima. Flessi e derivata seconda. Schema per lo studio qualitativo completo di una funzione y=f(x) Crescenza

Dettagli

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A Matematica A Corso di Laurea in Chimica Prova scritta del 7..6 Tema A P) Data la funzione f(x) = ex+ x determinarne (a) campo di esistenza; (b) zeri e segno; (c) iti agli estremi del campo di esistenza

Dettagli

10 - Applicazioni del calcolo differenziale

10 - Applicazioni del calcolo differenziale Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 10 - Applicazioni del calcolo differenziale Anno Accademico 2015/2016

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Ottobre 2017 1 Indice 1 Qual è il grafico della

Dettagli

Analisi Matematica 1 - a.a. 2017/ Quarto appello

Analisi Matematica 1 - a.a. 2017/ Quarto appello Analisi Matematica - a.a. 07/08 - Quarto appello Soluzione del test Test A E C B B C A D C C D Test B C B C E B A E E D B Test C A A D B E C A C D D Test D D B A A B E A E B D Soluzione della parte di

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio 2017 Studio di Funzione 1. Si consideri la funzione reale di variabile reale così definita f() = 2 + 4. (a) Determinare

Dettagli

Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 +

Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 + Esercizi del 2//09. Data la funzione f(x) = ln(x 2 2x) (a) trovare il dominio, gli eventuali asintoti e gli intervalli in cui la funzione cresce o decresce. Disegnare il grafico della funzione. (b) Scrivere

Dettagli

Analisi e Geometria 1 Politecnico di Milano Ingegneria

Analisi e Geometria 1 Politecnico di Milano Ingegneria Analisi e Geometria Politecnico di Milano Ingegneria Esercizi Funzioni. Calcolare la derivata delle funzioni: (a f( = ln tg cos sin (b f( = + ln( + +. Dimostrare che la funzione è costante a tratti. 3.

Dettagli

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR.

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DERIVATA DI UNA FUNZIONE REALE 1. Definizioni. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DEFINIZIONE 1. Sia x 0 un elemento di I. Per ogni x (I \ {x 0 }) consideriamo

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione

Dettagli

2) Data la retta r : 3x 2y + 1 = 0 trovarne il punto P di intersezione con l asse y e determinare la retta che passa per P ortogonale a r.

2) Data la retta r : 3x 2y + 1 = 0 trovarne il punto P di intersezione con l asse y e determinare la retta che passa per P ortogonale a r. Testo 1 ESONERO I 1) Calcolare le seguenti espressioni log 3 135 log 3 5 = log 5 1 125 + log 4 256 = 2) Data la retta r : 3x 2y + 1 = 0 trovarne il punto P di intersezione con l asse y e determinare la

Dettagli

ISTITUZIONI DI MATEMATICHE ( M.M. Porzio ) Foglio di esercizi n. 1: Limiti di funzioni e continuitá

ISTITUZIONI DI MATEMATICHE ( M.M. Porzio ) Foglio di esercizi n. 1: Limiti di funzioni e continuitá ISTITUZIONI DI MATEMATICHE ( M.M. Porzio ) Foglio di esercizi n. : Limiti di funzioni e continuitá a) Calcolare, se esistono, i seguenti limiti di funzioni: ( ) 5x. lim 3 x 8 +4x+ x +. lim x 5 4+x +x 3

Dettagli

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.

Dettagli

Calcolo I - Corso di Laurea in Fisica - 18 Giugno 2019 Soluzioni Scritto. a) Calcolare il dominio, asintoti ed eventuali punti di non derivabilità;

Calcolo I - Corso di Laurea in Fisica - 18 Giugno 2019 Soluzioni Scritto. a) Calcolare il dominio, asintoti ed eventuali punti di non derivabilità; Calcolo I - Corso di Laurea in Fisica - 8 Giugno 209 Soluzioni Scritto Data la funzione fx = x 2 x 6 x /3 a Calcolare il dominio, asintoti ed eventuali punti di non derivabilità; b Calcolare, se esistono,

Dettagli

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..

Dettagli

Soluzione Traccia A. 14 febbraio 2013

Soluzione Traccia A. 14 febbraio 2013 Soluzione Traccia A 1 febbraio 21 ESERCIZIO 1. Dopo aver disegnato il grafico della circonferenza di equazione x 2 + y 2 2x = trovare le eventuali intersezioni con la retta di equazione 2x y + 2 =. Per

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria Analisi e Geometria 1 Docente: Politecnico di Milano Prima prova in itinere. Ingegneria Industriale 16 novembre 2009 Compito A Cognome: Nome: Matricola: Punteggi degli

Dettagli

Argomento 7. Studio di funzione

Argomento 7. Studio di funzione Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo Appello 9 Luglio 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo Appello 9 Luglio 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo Appello 9 Luglio Cognome: Nome: Matricola: Compito A Es: punti Es: 6 punti Es: 8 punti Es: 8 punti Totale Data la funzione f : D

Dettagli

Esercizi di Matematica per le Scienze Studio di funzione

Esercizi di Matematica per le Scienze Studio di funzione Esercizi di Matematica per le Scienze Studio di funzione A.M. Bigatti e G. Tamone Esercizi Studio di funzione Esercizio 1. Disegnare il grafico di una funzione continua f che soddisfi tutte le seguenti

Dettagli

G5. Studio di funzione - Esercizi

G5. Studio di funzione - Esercizi G5 Studio di funzione - Esercizi Tracciare il grafico delle seguenti funzioni I grafici delle seguenti funzioni sono al termine degli esercizi Per gli esercizi con l asterisco non è richiesta, date le

Dettagli

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1 STUDIO di FUNZIONE c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1 Punti di estremo: punto di massimo assoluto Def. Sia 0 dom(f) = D. Si dice che 0 è un punto di massimo

Dettagli

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x Studi di funzione 1) Studiare la funzione definita da f(x) = x + 2 e (x+2). Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione g(x) = x e x cioè

Dettagli

Argomento 7 - Studi di funzioni Soluzioni Esercizi

Argomento 7 - Studi di funzioni Soluzioni Esercizi Argomento 7 - Studi di funzioni Soluzioni Esercizi Sol. E. 7. f() = log + 4 Insieme di definizione : Limiti : 4 log + = + 0 + (confronto tra infiniti in cui prevale la potenza) 4 log + = log = + + + Notiamo

Dettagli

Derivate e studio di funzioni di una variabile

Derivate e studio di funzioni di una variabile Derivate e studio di funzioni di una variabile Paolo Montanari Appunti di Matematica Derivate e studio di funzioni 1 Rapporto incrementale e derivata Sia f(x) una funzione definita in un intervallo X R

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 205/206 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 4/09/206 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli

Progettazione modulare Percorso di istruzione di 3 livello, Servizi Socio Sanitari Modulo n.1: Insiemi numerici e funzioni MATEMATICA (V anno)

Progettazione modulare Percorso di istruzione di 3 livello, Servizi Socio Sanitari Modulo n.1: Insiemi numerici e funzioni MATEMATICA (V anno) Modulo n.1: Insiemi numerici e funzioni DURATA PREVISTA Ore in presenza 12 Ore a distanza 5 Totale ore 17 Risultato atteso individuare le caratteristiche di un insieme numerico; classificare le funzioni,

Dettagli

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) =

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) = Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica 1 La retta tangente al grafico di f nel punto ( 0, f( 0 ha equazione y = f( 0 + f ( 0 ( 0. a y = 2; b y = log 2 (e( 1; c y = 1 2 + 1 4

Dettagli

Analisi matematica 1 - Ingegneria civile, ambientale, edile. Secondo compitino (16 aprile 2019) x 4 y 2 x 2 + y 4 se (x, y) (0, 0)

Analisi matematica 1 - Ingegneria civile, ambientale, edile. Secondo compitino (16 aprile 2019) x 4 y 2 x 2 + y 4 se (x, y) (0, 0) Analisi matematica 1 - Ingegneria civile, ambientale, edile Secondo compitino (16 aprile 2019) Esercizio 1 Calcolare, se esiste, il ite seguente: tan 2 2x sin 2 2x ln(1 + x 2 ) e 3x2 + 1 + 4x 2. Esercizio

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Matematica classe quinta - Lo studio di funzione Questa opera è distribuita con: Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia Ing. Alessandro Pochì

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 05/06 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 0/0/06 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

Studio di funzione. numeri.altervista.org

Studio di funzione. numeri.altervista.org Studio di funzione 1. Determinazione del campo di esistenza CONDIZIONE DI ESISTENZA intera: FUNZIONE RAZIONALE se è del tipo f(x)=p(x) dove P(x) e' un polinomio nella variabile x --------------------------------------------------------------------

Dettagli

Punteggi degli esercizi: Es.1: 6 punti; Es.2: 12 punti; Es.3: 6 punti; Es.4: 6 punti. + 1 ln(1 + tan 3 x) 1. Sia f(x) = arctan( 3 x) e 3 x

Punteggi degli esercizi: Es.1: 6 punti; Es.2: 12 punti; Es.3: 6 punti; Es.4: 6 punti. + 1 ln(1 + tan 3 x) 1. Sia f(x) = arctan( 3 x) e 3 x Analisi e Geometria 1 Docente: Politecnico di Milano Prima prova in itinere. Ingegneria Industriale 16 novembre 2009 Compito A Gianluca Mola Punteggi degli esercizi: Es.1: 6 punti; Es.2: 12 punti; Es.3:

Dettagli

f x = cos(5x 2 + 3) f t = sin(6x + 4)

f x = cos(5x 2 + 3) f t = sin(6x + 4) f x = 3x 5 + 3 x f t = 3t 4 e t f x = x2 +3x 5ex f t = 2t + 7 cos t 4 f x = cos(5x 2 + 3) f t = sin(6x + 4) g x = ln(x 2 + 3) h x = 3x 2 + 5 sin (7x + 9) g t = e x2 +cos(2x) h x = 3e3x x 6 f t = tan(3t)

Dettagli

CORREZIONE DEL COMPITO IN CLASSE DI MATEMATICA

CORREZIONE DEL COMPITO IN CLASSE DI MATEMATICA CORREZIONE DEL COMPITO IN CLASSE DI MATEMATICA n. (8 dicembre 009) PROBLEMA Punto a b = ( f '( ) = 0 a( b( (*) = a( b( da cui: a b a 9b = = 5 5 5 5 a 9 5 passaggio per, a 5 = 5 5 5 6 f ' uguale a zero

Dettagli

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine nno ccademico 5/6 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 4/7/6 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato. Tempo

Dettagli

4.3 Teoremi sulle funzioni derivabili

4.3 Teoremi sulle funzioni derivabili 4.3 Teoremi sulle funzioni derivabili Teorema (di Fermat) Sia : [, ] ℝ una funzione derivabile in (, ) e si un punto di massimo o minimo (relativo o assoluto) per. Allora 0 si dice anche che è un punto

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012 Università degli Studi della Calabria Facoltà di Ingegneria Correzione della Seconda Prova Scritta di nalisi Matematica 7 luglio cura dei Prof. B. Sciunzi e L. Montoro. Seconda Prova Scritta di nalisi

Dettagli

Esercitazione del 14 gennaio f(x) = e x x2 x 2. { e x2 +2x+2 e x2 2. se x [ 1, 2] ; {

Esercitazione del 14 gennaio f(x) = e x x2 x 2. { e x2 +2x+2 e x2 2. se x [ 1, 2] ; { Esercitazione del gennaio 0 Esercizio. Tracciare il diagramma della funzione f(x) = e x x x. Svolgimento.. La funzione risulta definita, positiva e continua x R.. Si ha f(x) = e x +x+ se x < x >, e x se

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

SCRITTO 02/07/18 - ANALISI MATEMATICA I

SCRITTO 02/07/18 - ANALISI MATEMATICA I SCRITTO 02/07/18 - ANALISI MATEMATICA I Esercizio 1. Determinare tutte le coppie z, w) C C tali che { zw = z 3 w 2 zw = 1 Soluzione: Dalla seconda equazione otteniamo che sia z che w non sono zero. Quindi

Dettagli

9 k. k. k=2. Soluzione: Ricordiamo la formula di Newton per le potenze del binomio: (a + b) n = a n k b k. k. k=0. (1 + 9) 100 = k 9 k, k

9 k. k. k=2. Soluzione: Ricordiamo la formula di Newton per le potenze del binomio: (a + b) n = a n k b k. k. k=0. (1 + 9) 100 = k 9 k, k Ingegneria Elettronica e Informatica Analisi Matematica 1a Foschi Compito del 18.1.018 1. Utilizzando la formula di Newton per le potenze del binomio calcola il valore della somma 9. = Soluzione: Ricordiamo

Dettagli

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A Modulo di Matematica, Corsi di Laurea in VIT e STL - Raccolta degli Esami.. - Facoltà di graria Corsi di Laurea in VIT e STL Modulo di Matematica Esame del //.. / Scritto Teoria Esercizi Voto Istruzioni:

Dettagli

Modulo di Matematica per il Corso di Laurea in Farmacia, cognomi M-Z Soluzioni del TEMA 1 del 6 febbraio 2012

Modulo di Matematica per il Corso di Laurea in Farmacia, cognomi M-Z Soluzioni del TEMA 1 del 6 febbraio 2012 Modulo di Matematica per il Corso di Laurea in Farmacia, cognomi M-Z Soluzioni del TEMA del 6 febbraio Esercizio. Indichiamo con Ω: lo spazio degli eventi, in questo caso la popolazione; V : l evento che

Dettagli

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica, a.a. 2007/08 Esercizi: Parte 1 Insiemi numerici: sup A, inf A 1. Verificare se A, nel caso sia non vuoto, è limitato superiormente,

Dettagli

Università degli Studi di Verona

Università degli Studi di Verona Tipologia A 1.1 Si enunci il teorema di derivazione della funzione inversa e lo si applichi al calcolo della derivata della funzione log x. 1.2 Il ite vale 0; x + sin x 1 + xe x non esiste; vale + ; vale

Dettagli

Corso di Analisi Matematica

Corso di Analisi Matematica Corso di Laurea in Ingegneria Edile Corso di CONVESSITÀ Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Derivata seconda Se la derivata (prima) di una funzione è definita

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico /3 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 9//3 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato. Tempo

Dettagli

CLEAI, matematica generale, primo semestre Soluzioni degli esercizi della prova scritta dell 8 settembre 2004

CLEAI, matematica generale, primo semestre Soluzioni degli esercizi della prova scritta dell 8 settembre 2004 CLEAI, matematica generale, primo semestre 2003-2004 Soluzioni degli esercizi della prova scritta dell 8 settembre 2004 Studio di funzione Disegnare il grafico della seguente funzione (la derivata seconda

Dettagli

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008 9 giugno 2008 1. Data la funzione f(x) = x e 1/(x2 4), (c) stabilire se f ammette punti singolari e in caso affermativo classificarli; calcolare la derivata prima di f e utilizzarla per studiare la monotonia

Dettagli

Progettazione modulare Percorso di istruzione di 3 livello, Servizi Socio Sanitari Modulo n.1: Insiemi numerici e funzioni MATEMATICA

Progettazione modulare Percorso di istruzione di 3 livello, Servizi Socio Sanitari Modulo n.1: Insiemi numerici e funzioni MATEMATICA Progettazione modulare Modulo n.1: Insiemi numerici e funzioni DURATA PREVISTA Ore in presenza 12 Ore a distanza 5 Totale ore 17 individuare le caratteristiche di un insieme numerico; classificare le funzioni,

Dettagli

Se una funzione è continua allora è sicuramente derivabile in ogni suo punto? NO. = lim

Se una funzione è continua allora è sicuramente derivabile in ogni suo punto? NO. = lim Se una funzione è continua allora è sicuramente derivabile in ogni suo punto? NO Esempio 1: f x = x in x 0 = 0 f 0 0+h 0 = lim h 0 h h = lim h 0 h non esiste perché i limiti destro e sinistro sono diversi.

Dettagli

Lo studio di funzione. 18 febbraio 2013

Lo studio di funzione. 18 febbraio 2013 Lo studio di funzione 18 febbraio 2013 1 Indice 1 Lo studio di funzione 3 1.1 Dominio di funzioni......................... 3 1.1.1 Domini di funzioni elementari............... 3 1.1.2 Funzioni composte,

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 Dicembre Studio di Funzione.

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 Dicembre Studio di Funzione. Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 icembre 2016 Studio di Funzione 1. Si consideri la funzione f : R R così definita f(x) 1 2 log x x 2. (a) eterminare il

Dettagli

8.1. Esercizio. Determinare massimo e minimo delle seguenti funzioni nei corrispondenti intervalli: 2 x 4 x in [0, 1]; e x2 in [ 2, 2]

8.1. Esercizio. Determinare massimo e minimo delle seguenti funzioni nei corrispondenti intervalli: 2 x 4 x in [0, 1]; e x2 in [ 2, 2] ANALISI Soluzione esercizi 25 novembre 2011 8.1. Esercizio. Determinare massimo e minimo delle seguenti funzioni nei corrispondenti intervalli: 2 x 4 x in [0, 1]; e x2 in [ 2, 2] cos x cos x in [ 2π, 2π];

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria Analisi e Geometria 1 Docente: Politecnico di Milano Prima prova in itinere. Ingegneria Industriale 16 novembre 2009 Compito A Cognome: Nome: Matricola: Punteggi degli

Dettagli

Tema 1: esercizi. 1. Studiare la funzione seguente e tracciarne un grafico qualitativo. + = Soluzione 1) Dominio x ( ) { }

Tema 1: esercizi. 1. Studiare la funzione seguente e tracciarne un grafico qualitativo. + = Soluzione 1) Dominio x ( ) { } Tema : esercizi. Studiare la funzione seguente e tracciarne un grafico qualitativo. ) Dominio ( ) { } R \ f Dom ) Intersezione con gli assi impossibile per il dominio ± e si ottiene ancora ( ) ; e ( )

Dettagli

Esame di MATEMATICA CORSO BASE del

Esame di MATEMATICA CORSO BASE del Esame di MATEMATICA CORSO BASE del Cognome Matricola Nome Esercizio. Si consideri il seguente sistema x 3y + z =5 x ky +z = k kx y z = Si trovino il numero delle soluzioni al variare del parametro k e

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

ESERCITAZIONE 16 : STUDIO DI FUNZIONI

ESERCITAZIONE 16 : STUDIO DI FUNZIONI ESERCITAZIONE 16 : STUDIO DI FUNZIONI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114 19 Marzo 2013 Esercizio 1

Dettagli

Matematica con elementi di statistica ESERCIZI sui limiti Corso di Laurea in Biotecnologie - anno acc. 2014/2015

Matematica con elementi di statistica ESERCIZI sui limiti Corso di Laurea in Biotecnologie - anno acc. 2014/2015 Calcolare i seguenti iti. Esercizio 1. Esercizio 2. Esercizio 3. Esercizio 4. Matematica con elementi di statistica ESERCIZI sui iti Corso di Laurea in Biotecnologie - anno acc. 2014/2015 Esercizi 6: iti

Dettagli

Derivabilità, invertibilità e studi di funzione

Derivabilità, invertibilità e studi di funzione Derivabilità, invertibilità e studi di funzione. Studiare la continuità e la derivabilità delle funzioni elencate in tutto il loro dominio di definizione e calcolare la derivata nei punti in cui la funzione

Dettagli

Scuole italiane all estero - Bilingue italo-albanesi 2005

Scuole italiane all estero - Bilingue italo-albanesi 2005 www.matefilia.it Scuole italiane all estero - Bilingue italo-albanesi 25 1) Studiare e rappresentare graficamente in un piano cartesiano ortogonale XOY la funzione F(x) = x2 +1 4 x2. Verificare che le

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione, Canali 1 e 4 Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione, Canali 1 e 4 Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione, Canali e 4 Appello del 7.. NB: in fondo allo svolgimento del tema 4 si trovano alcuni brevi commenti agli errori più comuni trovati nella correzione.

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 T. Totale

Es. 1 Es. 2 Es. 3 Es. 4 T. Totale Es. 1 Es. 2 Es. 3 Es. 4 T. Totale Analisi e Geometria 1 COMPITO A Docenti: F. Colombo, G. Mola, E. Munarini 11/11/2008 Ing. Industriale Cognome: Nome: Matricola: Punteggi: Es.1 = 6 punti, Es.2 = 12 punti,

Dettagli

1 è l estremo inferiore della funzione (inf f = 1 R) e quindi la funzione è limitata inferiormente

1 è l estremo inferiore della funzione (inf f = 1 R) e quindi la funzione è limitata inferiormente f x = x 2 1 allora Im f = [ 1, + ) 1 è l estremo inferiore della funzione (inf f = 1 R) e quindi la funzione è limitata inferiormente + è l estremo superiore della funzione (sup f = + R) e quindi la funzione

Dettagli

Esame di Analisi Matematica Prova scritta del 9 giugno 2009

Esame di Analisi Matematica Prova scritta del 9 giugno 2009 Prova scritta del 9 giugno 2009 A1 Data la funzione f(x) = x2 3 e x, (f) determinare in base al grafico di f il numero delle soluzioni dell equazione f(x) = λ al variare di Calcolare un valore approssimato

Dettagli

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i

Dettagli

Esercizio 1. f (x) = e 8x x2 14 ***

Esercizio 1. f (x) = e 8x x2 14 *** Esercizio Studiare la funzione f () = e 8 () *** Soluzione Insieme di definizione La funzione è definita in X = (, + ) Intersezioni con gli assi essendo γ il grafico della funzione. Inoltre: X, f () >

Dettagli

Tipologia delle funzioni studiate: 1. y= ax n + bx n y= e x 3. y= (ax + b)/ (cx + d) 4. y= (ax 2 + b) (cx + d)

Tipologia delle funzioni studiate: 1. y= ax n + bx n y= e x 3. y= (ax + b)/ (cx + d) 4. y= (ax 2 + b) (cx + d) - ricerca dei punti di flesso - ricerca dell asintoto orizzontale - ricerca dell asintoto verticale - ricerca dell asintoto obliquo - ricerca dei punti di intersezione con gli assi Tipologia delle funzioni

Dettagli

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz MATEMATICA MATURITA LINGUISTICA Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz 1 MATEMATICA MATURITA LINGUISTICA 1. CLASSIFICAZIONE FUNZIONI FUNZIONI ALGEBRICHE (in cui compaiono le quattro operazioni):

Dettagli

6 - Grafici di funzioni

6 - Grafici di funzioni 6 - Grafici di funzioni Dato una funzione reale di variabile reale f, si richiede di dare una rappresentazione (approssimata) del grafico di f, vale a dire delle coppie di punti di R 2 della forma (x,

Dettagli

Correzione dell appello del giorno 8 febbraio 2011

Correzione dell appello del giorno 8 febbraio 2011 Correzione dell appello del giorno 8 febbraio 2 Davide Boscaini Questa è la risol della versione del compito scritto di Analisi Matematica assegnata al gruppo B dell appello del giorno 8 febbraio 2. Invito

Dettagli

MATEMATICA 1 Ingegneria Edile e Civile Prof. P. Ciatti, Prof. C. Sartori. TEMA A Padova 13/12/2006

MATEMATICA 1 Ingegneria Edile e Civile Prof. P. Ciatti, Prof. C. Sartori. TEMA A Padova 13/12/2006 MATEMATICA Ingegneria Edile e Civile Prof. P. Ciatti, Prof. C. Sartori TEMA A Padova //00 ) Studiare la funzione fx) =e arctg x ). Dominio, iti notevoli di f e f, crescenza e decrescenza, massimi e minimi,

Dettagli

14. Studio grafico completo di funzioni

14. Studio grafico completo di funzioni 14. Studio grafico completo di funzioni Davide Catania davide.catania@unibs.it Esercitazioni di Analisi Matematica 1 Studio elementare di funzioni (1) Trova il dominio. data f (x) (2) Studia la simmetria

Dettagli

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI Notiamo che lo studio delle funzioni assegnate f,..., f 4 si riduce a considerare

Dettagli

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 www.matefilia.it ORDINAMENTO 2003 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Tra i rettangoli aventi la stessa area di 6 m 2 trovare quello di perimetro minimo. Indicate con x ed y le misure della base

Dettagli

Analisi Matematica per Informatici Esercitazione 10 a.a

Analisi Matematica per Informatici Esercitazione 10 a.a Analisi Matematica per Informatici Esercitazione a.a. 6-7 Dott. Simone Zuccher 7 Febbraio 7 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore (zuccher@sci.univr.it).

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo Appello 8 Settembre 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo Appello 8 Settembre 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Terzo Appello 8 Settembre 24 Cognome: Nome: Matricola: Compito A Es.: 9 punti Es.2: 8 punti Es.3: 8 punti Es.4: 8 punti Totale. Sia F la

Dettagli

Programmazione disciplinare: Matematica 5 anno

Programmazione disciplinare: Matematica 5 anno Programmazione disciplinare: Matematica 5 anno Modulo 1/Ripasso: Funzione reale di variabile reale CONTENUTI Funzione fra due insiemi. Funzione reale di variabile reale: definizione e classificazione.

Dettagli

Richiami sullo studio di funzione

Richiami sullo studio di funzione Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o

Dettagli

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5)

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5) ) DMINIO FUNZIONE Determinare il dominio della funzione f (x) = x x + x x + 8 x x + (x ) (x ) Deve essere = quindi x (, ] (, ] (, + ). x x + 8 (x ) (x ) Determinare il dominio della funzione f (x) = x

Dettagli

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Studio di funzione cap6b.pdf 1

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Studio di funzione cap6b.pdf 1 STUDIO di FUNZIONE c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Studio di funzione cap6b.pdf 1 Punti di estremo: punto di massimo assoluto Def. Sia 0 dom(f) = D. Si dice che 0 è un punto di massimo

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA III Parziale - Compito C 6/5/5 A. A. 4 5 ) Studiare la seguente funzione polinomiale:

Dettagli

Docente: Analisi e Geometria 1 Prima Prova 22 Novembre 2016 Compito F Cognome: Nome: Matricola:

Docente: Analisi e Geometria 1 Prima Prova 22 Novembre 2016 Compito F Cognome: Nome: Matricola: Es. 1 Es. 2 Es. Teoria: Totale Numero di iscrizione alla prova scritta: Docente: Analisi e Geometria 1 Prima Prova 22 Novembre 2016 Compito F Cognome: Nome: Matricola: Punteggi: Es.1: 7; Es.2: 7; Es.:

Dettagli