Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)"

Transcript

1 Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

2 Studio di una funzione

3 Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se f (x 1 ) f (x 2 ) quando x 1 < x 2 per ogni x 1, x 2 di (a, b) Una funzione f é decrescente nell intervallo (a, b) se f (x 1 ) f (x 2 ) se x 1 < x 2 per ogni x 1, x 2 di (a, b) Crescente Decrescente Crescente

4 Funzioni crescenti e decrescenti Una funzione f é crescente nel punto x 0 se esiste un intorno I(x 0 ) di x 0 tale che f x f(x 0 ) x x 0 > 0 per ogni x I x 0 D(f). Una funzione f é decrescente nel punto x 0 se esiste un intorno I(x 0 ) di x 0 tale che f x f(x 0 ) x x 0 < 0 per ogni x I x 0 D(f).

5 Teorema sulla crescenza e decrescenza di una funzione Sia f una funzione continua su un intervallo chiuso [a, d] e differenziabile sull intervallo aperto (a, d). 1. Se f (x)>0 per ogni x in (b, c), allora f é crescente in [b, c]. 2. Se f (x)<0 per ogni x in (a, b), allora f é decrescente in [a, b]. 3. Se f (x)=0 per ogni x in (c, d), allora f é costante in [c, d]. a b c d

6 Estremi di una funzione: massimi e minimi Una funzione f definita in un insieme A R ha un massimo in x=c, appartenente ad A, chiamato max f, se f ( x) f ( c) per ogni x in A. Una funzione f definita in un insieme A R ha un minimo in x=d, appartenente ad A, chiamato min f, se f ( x) f ( d) per ogni x in A. a b c d

7 Estremi di una funzione: massimi e minimi relativi Una funzione f definita in un insieme A R ha un massimo relativo in x=c appartenente ad A, se esiste un intorno di c, I(c): f ( x) f ( c) per ogni x in I(c) A. Una funzione f definita in un insieme A R ha un minimo in x=d appartenente ad A, se esiste un intorno di d, I (d) f ( x) f ( d) per ogni x in I (d) A. a b c d

8 Esempio max rel min rel né max né min

9 Grafico qualitativo max max min max rel min rel rel

10 Teorema (Test della derivata prima) Sia c un punto critico della funzione f continua su un intervallo aperto I che contiene c, cioé f (c)=0. Se f é differenziabile sull intervallo I, allora f(c) può essere classificato come segue: Se f (x) cambia segno da negativo a positivo in c, allora f(c) é un punto di minimo relativo di f. Se f (x) cambia segno da positivo a negativo in c, allora f(c) é un punto di massimo relativo di f. Se f (x) non cambia di segno in c, allora f(c) non é né un punto di minimo né un punto di massimo.

11 Estremi di una funzione max f a f (x)>0 f (x)<0 f (x)>0 b min f c d rel min f f (x)=0 f (x)>0 f (x)>0

12 Passi per trovare intervalli su cui la funzione é crescente e decrescente: primo metodo Test dei segni Sia f(x) una funzione continua e derivabile su un intervallo (a, b) 1. Localizzare i punti critici di f in (a, b), e usare questi numeri per determinare gli intervalli test. 2. Determinare il segno di f (x) in un punto test per ciascun intervallo test. 3. Usare il Teorema precedente per determinare se f è crescente o decrescente su ogni intervallo.

13 Osservazione Se la funzione è continua su un unione di intevalli il test dei segni va applicato a ciascuno di essi. Se la funzione o la sua derivata presentano dei punti singolari essi vanno inclusi nel test dei segni.

14 Passi per trovare intervalli su cui la funzione é crescente e decrescente: secondo metodo Studio del segno della derivata Sia f(x) una funzione continua e derivabile su un intervallo (a, b) 1. Localizzare i punti critici di f in (a, b). 2. Studiare il segno di f (x)>0. 3. Usare il Teorema precedente per determinare gli intervalli dove f è crescente o decrescente e localizzare gli eventuali punti di massimo e di minimo.

15 Esempio: primo metodo Esempio 1 Trovare i punti di massimo e di minimo della funzione 5 x 5x f ( x) Soluzione 5 Notiamo che f(x) é differenziabile su tutto l asse reale. Ponendo f (x) = 0 si trovano i punti critici. f '( x) 4 5( x 1) 5 x 4 1 ( x 1)( x 1)( x 2 1) Quindi gli zeri di f (x) sono x = 1 e x = 1 dal test dei segni si ha che il punto x = 1 é un punto di massimo relativo, il punto x = 1 é un punto di minimo rel. Intervalli < x < 1 1< x < 1 1 < x < + Valori test x = 2 x = 0 x = 2 0 Segno di f (x) f ( 2)=15> 0 f (0)= 1 < 0 f (2)=15> 0 Conclusione Crescente decrescente crescente

16 Esempio: secondo metodo Invece di fare il test dei segni si studia il segno della derivata: f '( x) x 4 1 ( x 1)( x 1)( x 2 1) 0 x + 1 > 0 x > 1 x 1 > 0 x > 1 x > 0 sempre Discussione dei segni:

17 --1 1 x x Prodotto Max min

18 Esempio Studiare i punti di massimo e di minimo della seguente funzione: f x = xe x Svolgimento: la funzione data è derivabile su R (dominio): f x = e x (1 + x) Per trovare i punti critici si pone f x = 0: e x 1 + x = 0 x = 1 Segno della derivata prima: e x 1 + x > 0 x > 1 Il punto x = 1 è un punto di minimo relativo

19 Grafico

20 Derivata seconda e concavità di una funzione Definizione: Data una funzione f: a, b R, derivabile in a, b, si dice convessa in a, b se per ogni x 0 (a, b) il grafico della funzione sta al di sopra della retta tangente nel punto (x 0, f(x 0 )).

21 Derivata seconda e concavità di una funzione Definizione: Data una funzione f: a, b R, derivabile in a, b, si dice concava in a, b se per ogni x 0 (a, b) il grafico della funzione sta al di sotto della retta tangente nel punto (x 0, f(x 0 )).

22 Punto di flesso Definizione: Data una funzione f: a, b R, derivabile in a, b, il punto x 0 (a, b) si dice punto di flesso se esiste δ > 0: la funzione f é concava in (x 0 δ, x 0 ) e convessa in (x 0, x 0 + δ)) (o viceversa).

23 Teorema Data una funzione f: a, b R, tale che esista la derivata seconda f in a, b. Se f x > 0 per ogni x a, b, allora la funzione é convessa in a, b. Se f x < 0 per ogni x a, b, allora la funzione é concava in a, b. + +

24 Procedimento per trovare i punti di massimo e di minimo: terzo metodo Segno della derivata seconda. Sia f(x) una funzione continua e derivabile n (n > 1) volte su un intervallo (a, b). Localizzare i punti critici della funzione f in (a, b), cioé le soluzioni dell equazione f (x)=0. Determinare il segno di f (x) (derivata seconda) nei punti critici: a) se f (x)<0 il punto critico e un massimo relativo b) se f (x)>0 il punto critico é un minimo relativo, c) se f (x)=0 si dovrebbe calcolare la derivata terza f o quelle successive finché la derivata nel punto é diversa da zero. Se la prima derivata diversa da zero ha ordine pari si ha un punto di massimo relativo se é negativa e di minimo relativo se é positiva, se ha ordine dispari allora si ha un punto di flesso.

25 Esempio Trovare i punti di massimo e di minimo della seguente funzione: f ( x) ( x 8x 1) Punti critici: f 4 x = x 3 4x = 0 x(x 2 4) = 0 x = 0, x = ±2 Derivata seconda: f x = 3x 2 4

26 Esempio f 0 = 4 < 0 punto di massimo relativo f ±2 = 12 4 = 8 > 0 punti di minimo.

27 Studio di una funzione Trovare il dominio Trovare le intersezioni con gli assi, se è possibile. Trovare gli asintoti verticali (punti singolari) e orizzontali. Trovare i punti di massimo e di minimo relativi attraverso la derivata. Disegnare il grafico.

28 Esempio 1 Studiare la funzione di equazione y = 2x 3 6x 2 Svolgimento: Il dominio è R perché è un polinomio. Intersezioni con gli assi: Asse delle y: x = 0 y = 0 O = (0,0) x = 0 y = 2x 3 6x 2 :

29 Esempio 1 y = 0 Asse delle x: y = 2x 3 6x 2 : y = 0 2x 3 6x 2 = 0 y = 0 2x 2 (x 3) = 0 y = 0 O = 0,0 e A = (3,0) x = 0 e x = 3 Asintoti Asintoti verticali: non ci sono perché il dominio è R; Asintoti orizzontali: non ci sono. Infatti: lim x 2x3 6x 2 = +

30 Esempio 1 lim x 2x3 6x 2 = Massimi e minimi relativi: Punti critici: f x = 6x 2 12x f x = 0 < = > 6x x 2 = 0 I punti critici sono x = 0 e x = 2 Per stabilire se sono punti di massimo o minimo relativi si calcola la derivata seconda: f x = 12x 12 f 0 = 12 < 0 x = 0 0,0 è un punto di massimo relativo f 2 = 12 > 0 x = 2 f 2 = = 8 (2, -8) è un punto di minimo relativo

31 Grafico

32 Esempio 2 Studiare la funzione di equazione Svolgimento: y = x2 +x 2 x 2 4x+4 Essendo una frazione algebrica il dominio è l insieme degli x: x 2 4x x x 2.

33 Esempio 2 Intersezioni con gli assi: Asse delle y: x = 0 y = 2 4 x = 0 y = x2 +x 2 x 2 4x+4 A = (0, 1 2 ) : y = 0 Asse delle x: y = x2 +x 2 : x 2 4x+4 y = 0 x 2 +x 2 = 0 x2 + x 2 = 0 x = x 2 4x+4 1± = 1±3 2 B = 2,0 C = (1,0)

34 Asintoti Esempio 2 Asintoti verticali: x = 2. Infatti: x 2 + x 2 lim x ±2 x 2 2 = + perché il denominatore è sempre positivo o nullo. Asintoti orizzontali:y = 1. Infatti: x 2 + x 2 lim x ± x 2 4x + 4 = F. I. Il limite è 1 perché i polinomi a numeratore ed a denominatore hanno gli stessi gradi.

35 Esempio 2 Massimi e minimi relativi: f x = x2 +x 2 (x 2) 2 f x = 2x+1 x 2 2 2(x 2)(x 2 +x 2) (x 2) 4 f x = x 2 [ 2x+1 x 2 2 x2 +x 2 ] (x 2) 4 f x = 2x2 4x+x 2 2x 2 2x+4 (x 2) 3 f x = 5x+2 (x 2) 3 > 0 Si studia il segno della derivata prima. Il numeratore è positivo per 5x + 2 > 0 x < 2 5. Il denominatore è positivo per x > 2.

36 Complessivamente: Esempio 2 2/5 2 Num Den Frazione non esiste - min rel asintoto Per x = 2 5 y = = = 9 16

37 Grafico Esempio 2

38 Esempio (non svolto) Studiare la seguente funzione f(x) nell intervallo [0, 2 ] e disegnare il grafico: x f ( x) cos x Svolgimento: 2 1) Il dominio é [0, 2 ]. 2) Intersezioni con gli assi: per x = 0, y = f 0 = 1, per y = 0 l equazione x f ( x) cos x 0 2 Non si risolve direttamente. 3) Non sono asintoti verticali perché non ci sono punti singolari. Non ha senso ricercare asintoti orizzontali perché il dominio è finito.

39 Esempio 3) Massimi e minimi: la funzione f(x) é differenziabile in [0, 2 ]. Si pone f (x) = 0 per trovare i punti critici. f '( x) 1 2 sin x Allora gli zeri di f (x) sono x = /6 e x = 5 /6 Il punto x = /6 é un punto di massimo, mentre il punto x = 5 /6 un punto di minimo. Infatti dalla derivata seconda si ricava che: f x = cos x f /6 = 3 2 < 0 /6 è un punto di Max relativo. f 5 /6 = 3 2 > 0 5 /6 è un punto di min relativo. f /6 = π f 5 /6 = 5π sin x 1 2

40 Esempio (non svolto) Studiare la seguente funzione f(x) e tracciare il grafico: 2 2/3 Soluzione f ( x) ( x 4) ((x^2-4)^2)^(1/3) 1) Dominio: R. Osservazione: E una funzione pari perché f x = f( x) per ogni x del dominio, quindi si può studiare per x>0. Il grafico per x<0 si ottiene simmetricamente rispetto all asse delle y. 1) Intersezioni con gli assi: per x = 0 si ha che y = Per y = 0 si ha che x 2 4 = 0 x = ±2. 3) Non ci sono asintoti verticali perché non ci sono punti singolari. Non ci sono asintoti orizzontali: lim x x =

41 Esempio Studiare la seguente funzione f(x) e tracciare il grafico: 2 2/3 Soluzione f ( x) ( x 4) Dominio: R. Si pone f (x) = 0 per trovare i punti critici. f '( x) 2 3 ( x Quindi f x = 0 per x = 0. Test dei segni: 2 4) 1/3 (2x) 3( x 2 4x 4) 1/3 ((x^2-4)^2)^(1/3) Intervallo - < x <- 2-2 < x < 0 0 < x < 2 2 < x < + Valori test x =- -3 x = -1 x = 1 x = 3 Segno di f (x) f (-3) < 0 f (-1) > 0 f (1) < 0 f (3) > 0 Conclusione Decrescente Crescente Decrescente Crescente

42 Dal test dei segni si ha che in x = 0 si ha un punto di max relativo. Inoltre la derivata non esiste in x = ±2. Infatti lim x ±2 4x 3 x = I punti x = ±2 sono di minimo.

43 Esempio 4 Studiare la funzione f(x) e tracciare il grafico: x 1 f ( x) 2 1) Il dominio é R-{0}. x Osservazione: E una funzione pari perché f x = f( x) per ogni x del dominio, quindi si può studiare per x>0. Il grafico per x<0 si ottiene simmetricamente rispetto all asse delle y. 2) Intersezioni con gli assi: per x = 0, la funzione non é definita, per y = 0 l equazione 4 x 1 0 non ha soluzione: 3)Asintoti verticali: x lim x 0 + x 2 = = + Non ci sono asintoti orizzontali perché

44 4. Massimi e minimi. Si pone f (x) = 0 per trovare i punti critici d x 1 4x 2x( x 1) 2x 2x f '( x) 2 4 dx x x x 4 4 x 1 x 2 3 lim x 0 Quindi f (x)=0 per x = 1 e f (x) non esiste per x = 0. Il punto x = 1 é di minimo. Intervallo 0 < x < 1 1 < x < + Valori Test x = 1/2 x = 2 x x 2 = + Segno f (x) f (1/2) < 0 f (2) > 0 Conclusione Decrescente Crescente

45 Esempio Studiare la funzione f(x) e tracciare il grafico: f x = ln x2 1 x Soluzione: 1. Dominio: x 2 1 x 2 +1 > 0 Il numeratore è positivo x 2 1 > 0 per x < 1 o x > 1. Infatti l equazione associata x 2 1 = 0 ha soluzioni x = ±1.

46 Esempio Il denominatore è sempre positivo x > 0. Infatti l equazione associata x = 0 non ha soluzioni reali. Quindi i dominio è: D = {x x < 1 o x > 1} Osservazione: E una funzione pari perché f x = f( x) per ogni x del dominio, quindi si può studiare per x >0. Il grafico per x <0 si ottiene simmetricamente rispetto all asse delle y.

47 2. Intersezioni con gli assi: Il punto x = 0 non appartiene al dominio quindi non ci sono intesezioni con l asse delle y. Ponendo y = 0 si ottiene ln x2 1 = 0 x2 1 = 1 x 2 +1 x 2 +1 x 2 1 = x non ci sono soluzioni e quindi non si hanno intersezioni con l asse delle x.

48 3. Asintoti verticali. Per cercare eventuali asintoti verticali viene calcolato il limite nei punti di frontiera del dominio: lim ln x2 1 x 1 + x = ln 0+ = quindi la retta di equazione x = 1 é un asintoto verticale. Asintoti orizzontali: lim ln x2 1 x + x = ln 1 = 0 quindi la retta di equazione y = 0 é un asintoto orizzontale.

49 4. Massimi e minimi. Per la ricerca dei punti di massimo e di minimo si calcola la derivata della funzione: f x = x2 + 1 x 2 1 = 2x x x(x 2 1) x = 4x (x 2 1)(x 2 + 1) Punti critici: 4x (x 2 1)(x 2 + 1) = 0 x = 0

50 Siccome il punto x = 0 non appartiene al dominio non ci sono punti critici e quindi punti di massimo e di minimo. La derivata 4x prima è positiva per > 0 (x 2 1)(x 2 +1) Il numeratore è sempre positivo per x > 0; Il denominatore è positivo per x > 1. Quindi per x > 1 la funzione è sempre crescente.

51

52 Esercizi 1. Studiare le seguenti funzioni e disegnare il corrispondente grafico: f x = 2x 3 6x 2 f x = 2x 4 2x f x = x x f x = x 1 x+2 f x = x 2 ln(x 2 )

53 Esercizi 2. Studiare le seguenti funzioni e disegnare il corrispondente grafico: f x = x 3 2x 2 f x = x3 1 x 2 f x = x2 +x 2 x 2 4x+4 f x = x2 +4x x 2 +6x+5

54 Esercizi 3. Studiare le seguenti funzioni e disegnare il corrispondente grafico: f x = 1+3x4 x 3 f x = 3 x2 (x 2) 2 f x = e 1+x 1+x 2 f x = x 1 x+1

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

ESERCIZI SULLO STUDIO DI FUNZIONI

ESERCIZI SULLO STUDIO DI FUNZIONI ESERCIZI SULLO STUDIO DI FUNZIONI 0 novembre 206 Esercizi Esercizio n. Si consideri la funzione f(x) = 7 x 2 + 3 Dominio: R Intersezioni con gli assi: Intersezioni con l asse x: { y = 0 y = 7 x 2 + 3.

Dettagli

MATEMATICA. a.a. 2014/15

MATEMATICA. a.a. 2014/15 MATEMATICA a.a. 2014/15 3. DERIVATE E STUDIO DI FUNZIONE (II parte): Massimi, minimi e derivata prima. Flessi e derivata seconda. Schema per lo studio qualitativo completo di una funzione y=f(x) Crescenza

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

10 - Applicazioni del calcolo differenziale

10 - Applicazioni del calcolo differenziale Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 10 - Applicazioni del calcolo differenziale Anno Accademico 2015/2016

Dettagli

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..

Dettagli

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR.

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DERIVATA DI UNA FUNZIONE REALE 1. Definizioni. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DEFINIZIONE 1. Sia x 0 un elemento di I. Per ogni x (I \ {x 0 }) consideriamo

Dettagli

Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 +

Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 + Esercizi del 2//09. Data la funzione f(x) = ln(x 2 2x) (a) trovare il dominio, gli eventuali asintoti e gli intervalli in cui la funzione cresce o decresce. Disegnare il grafico della funzione. (b) Scrivere

Dettagli

Esercizi di Matematica per le Scienze Studio di funzione

Esercizi di Matematica per le Scienze Studio di funzione Esercizi di Matematica per le Scienze Studio di funzione A.M. Bigatti e G. Tamone Esercizi Studio di funzione Esercizio 1. Disegnare il grafico di una funzione continua f che soddisfi tutte le seguenti

Dettagli

Argomento 7. Studio di funzione

Argomento 7. Studio di funzione Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I

Dettagli

G5. Studio di funzione - Esercizi

G5. Studio di funzione - Esercizi G5 Studio di funzione - Esercizi Tracciare il grafico delle seguenti funzioni I grafici delle seguenti funzioni sono al termine degli esercizi Per gli esercizi con l asterisco non è richiesta, date le

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012 Università degli Studi della Calabria Facoltà di Ingegneria Correzione della Seconda Prova Scritta di nalisi Matematica 7 luglio cura dei Prof. B. Sciunzi e L. Montoro. Seconda Prova Scritta di nalisi

Dettagli

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1 STUDIO di FUNZIONE c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1 Punti di estremo: punto di massimo assoluto Def. Sia 0 dom(f) = D. Si dice che 0 è un punto di massimo

Dettagli

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria Analisi e Geometria 1 Docente: Politecnico di Milano Prima prova in itinere. Ingegneria Industriale 16 novembre 2009 Compito A Cognome: Nome: Matricola: Punteggi degli

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

Progettazione modulare Percorso di istruzione di 3 livello, Servizi Socio Sanitari Modulo n.1: Insiemi numerici e funzioni MATEMATICA

Progettazione modulare Percorso di istruzione di 3 livello, Servizi Socio Sanitari Modulo n.1: Insiemi numerici e funzioni MATEMATICA Progettazione modulare Modulo n.1: Insiemi numerici e funzioni DURATA PREVISTA Ore in presenza 12 Ore a distanza 5 Totale ore 17 individuare le caratteristiche di un insieme numerico; classificare le funzioni,

Dettagli

Richiami sullo studio di funzione

Richiami sullo studio di funzione Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o

Dettagli

Esame di MATEMATICA CORSO BASE del

Esame di MATEMATICA CORSO BASE del Esame di MATEMATICA CORSO BASE del Cognome Matricola Nome Esercizio. Si consideri il seguente sistema x 3y + z =5 x ky +z = k kx y z = Si trovino il numero delle soluzioni al variare del parametro k e

Dettagli

Esercizio 1. f (x) = e 8x x2 14 ***

Esercizio 1. f (x) = e 8x x2 14 *** Esercizio Studiare la funzione f () = e 8 () *** Soluzione Insieme di definizione La funzione è definita in X = (, + ) Intersezioni con gli assi essendo γ il grafico della funzione. Inoltre: X, f () >

Dettagli

Esercitazioni di Analisi Matematica FUNZIONI CUBICHE. Effettuare lo studio completo delle seguenti funzioni di terzo grado intere:

Esercitazioni di Analisi Matematica FUNZIONI CUBICHE. Effettuare lo studio completo delle seguenti funzioni di terzo grado intere: FUNZIONI CUBICHE Effettuare lo studio completo delle seguenti funzioni di terzo grado intere: 1) y = fx) = x 3 + 2x 2 + x 2) y = fx) = x 3 + x 2 + x + 2 3) y = fx) = x 3 + 2x 2 + x 4 4) y = fx) = x 3 +

Dettagli

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 www.matefilia.it ORDINAMENTO 2003 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Tra i rettangoli aventi la stessa area di 6 m 2 trovare quello di perimetro minimo. Indicate con x ed y le misure della base

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Istituzioni di Matematica I

Istituzioni di Matematica I Istituzioni di Matematica I Le soluzioni proposte costituiscono solo una traccia di possibili soluzioni (lo studente deve giustificare i vari risultati), possono esserci altri modi, altrettanto corretti,

Dettagli

Temid esamesvolti-1. Analisi delle funzioni

Temid esamesvolti-1. Analisi delle funzioni Temi d esame svolti - 1 1 Temid esamesvolti-1 Analisi delle funzioni (91003) 1 Si consideri la funzione definita a tratti su tutto R: ½ + sin 1 f() =, 6= 0 k, =0 (a) Per quale valore di k la funzione è

Dettagli

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,

Dettagli

Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3)

Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3) Matematica 2 Derivate Esercizi y=sen( 4 3) y' =cos( 4 3)(4 3 3) y=logsen( 4 1 3) y' = sen( 4 +3) cos(4 +3)(4 3 +3) y=sen 2 ( 4 3) y' =2sen( 4 3 )cos( 4 3)(4 3 3) Funzioni ad una sola variabile y=f() è

Dettagli

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008 9 giugno 2008 1. Data la funzione f(x) = x e 1/(x2 4), (c) stabilire se f ammette punti singolari e in caso affermativo classificarli; calcolare la derivata prima di f e utilizzarla per studiare la monotonia

Dettagli

Studi di funzione. D. Barbieri. Studiare comportamento asintotico e monotonia di. f(x) = 1 x x4 + 4x e x

Studi di funzione. D. Barbieri. Studiare comportamento asintotico e monotonia di. f(x) = 1 x x4 + 4x e x Studi di funzione D. Barbieri Esercizi Esercizio Esercizio Studiare comportamento asintotico e monotonia di f(x) = x + x4 + 4x Studiare il comportamento asintotico di f(x) = + x x + + e x Esercizio 3 Determinare

Dettagli

Ricerca di massimi e minimi col metodo della derivata prima

Ricerca di massimi e minimi col metodo della derivata prima Massimi e minimi con la derivata prima pag. 1 di 6 Ricerca di massimi e minimi col metodo della derivata prima Ricordiamo che il significato geometrico della derivata prima è quello di coefficiente angolare

Dettagli

Tipologia delle funzioni studiate: 1. y= ax n + bx n y= e x 3. y= (ax + b)/ (cx + d) 4. y= (ax 2 + b) (cx + d)

Tipologia delle funzioni studiate: 1. y= ax n + bx n y= e x 3. y= (ax + b)/ (cx + d) 4. y= (ax 2 + b) (cx + d) - ricerca dei punti di flesso - ricerca dell asintoto orizzontale - ricerca dell asintoto verticale - ricerca dell asintoto obliquo - ricerca dei punti di intersezione con gli assi Tipologia delle funzioni

Dettagli

Università degli Studi di Ancona Corso di Laurea in SS.FF.NN. Corso di MATEMATICA (A.A. 2002/2003) Docente: Prof. Piero MONTECCHIARI

Università degli Studi di Ancona Corso di Laurea in SS.FF.NN. Corso di MATEMATICA (A.A. 2002/2003) Docente: Prof. Piero MONTECCHIARI Università degli Studi di Ancona Corso di Laurea in SS.FF.NN. Corso di MATEMATICA (A.A. /3) Docente: Prof. Piero MONTECCHIARI STUDIO DI FUNZIONI Scritti dal tutore Dario GENOVESE 1 Dominio La prima cosa

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE PROF.SSA ROSSELLA PISCOPO 2 di 35 Indice 1 SCHEMA PER LO STUDIO DEL GRAFICO DI FUNZIONE... 4 2 ESEMPI... 11 2.1 2.2 2.3 2.4 2.5 2.6 FUNZIONE ESPONENZIALE... 11 FUNZIONE

Dettagli

Studio di una funzione razionale fratta

Studio di una funzione razionale fratta Studio di una funzione razionale fratta Nella figura è rappresentata la funzione 1. Quale tra gli insiemi proposti è il suo CDE? 2. La funzione presenta un asintoto verticale di equazione... x = 0 x =

Dettagli

Esame di MATEMATICA CORSO BASE del

Esame di MATEMATICA CORSO BASE del Esame di MATEMATICA CORSO BASE del Cognome Matricola Nome Esercizio 1. Si consideri il seguente sistema 2x 3y + z =5 x ky +2z = k kx y z = 1 Si trovino il numero delle soluzioni al variare del parametro

Dettagli

b x 2 + c se x > 1 determinare a, b e c in modo che f sia continua in R, determinare a, b e c in modo che f sia anche derivabile in R

b x 2 + c se x > 1 determinare a, b e c in modo che f sia continua in R, determinare a, b e c in modo che f sia anche derivabile in R 9.. Esercizio. Data la funzione x tg( π x) se x < 4 f(x) = a se x = b x 2 + c se x > ANALISI Soluzione esercizi 9 dicembre 20 determinare a, b e c in modo che f sia continua in R, determinare a, b e c

Dettagli

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE

FUNZIONI REALI DI UNA VARIABILE REALE FUNZIONI REALI DI UNA VARIABILE REALE INTERVALLI Per definire il campo di esistenza (o dominio) di una funzione reale di variabile reale y=f()si devono indicare talvolta insiemi di numeri reali che su

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Funzioni: studio di funzione e grafico

Funzioni: studio di funzione e grafico Capitolo Funzioni: studio di funzione e grafico Esercizi Esercizio.. Disegnare il grafico di una funzione continua f che soddisfi tutte le seguenti condizioni: Il dominio di f è l i n s i e m e A =(, )

Dettagli

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) =

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) = STUDIO DI UNA FUNZIONE INTEGRALE Studiamo la funzione f di una variabile reale, a valori in R, definitada. Il dominio di f. f() = Z Denotiamo con g la funzione integranda. Allora g(t) = numeri reali tali

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Massimi e minimi di una funzione razionale fratta Francesco Daddi - 18 maggio 2010

Massimi e minimi di una funzione razionale fratta Francesco Daddi - 18 maggio 2010 Francesco Daddi - 18 maggio 2010 Esempio 1. Studiare la funzione f x 4 x 8 x 2 3 x 3. R (si osservi che il denominatore non si annulla mai); la funzione ha uno zero in x 2. La funzione è positiva per x

Dettagli

Ingegneria civile - ambientale - edile

Ingegneria civile - ambientale - edile Ingegneria civile - ambientale - edile Analisi - Prove scritte dal 7 Prova scritta del 9 giugno 7 Esercizio Determinare i numeri complessi z che risolvono l equazione Esercizio (i) Posto a n = n i z z

Dettagli

Tempo massimo 2 ore. Consegnare solamente la bella copia. 1. Disegnare il graco della funzione: [10 punti]

Tempo massimo 2 ore. Consegnare solamente la bella copia. 1. Disegnare il graco della funzione: [10 punti] Tempo massimo 2 ore. Consegnare solamente la bella copia. Metodi Matematici per l'economia A-K Corso di Laurea in Economia - anno acc. 202/203 7 gennaio 203. Disegnare il graco della funzione: [0 punti]

Dettagli

Analisi Matematica 1+2

Analisi Matematica 1+2 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 264555 - Fax +39 09 264558 Ingegneria Gestionale Analisi Matematica +2 A.A 998/99 - Prove parziali

Dettagli

Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento

Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento Traccia n. Studiare il comportamento della funzione: Svolgimento f(x) = 3x + ex 3x e x Determinazione del campo di esistenza, E[f]. La funzione si presenta come rapporto di due funzioni; il campo di esistenza

Dettagli

Secondo parziale di Matematica per l Economia (esempio)

Secondo parziale di Matematica per l Economia (esempio) Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

UNIVERSITÀ DEGLI STUDI DI BOLOGNA FACOLTÀ DI ECONOMIA DI RIMINI. MATEMATICA PER L ECONOMIA Prof.ssa Maria Letizia Guerra

UNIVERSITÀ DEGLI STUDI DI BOLOGNA FACOLTÀ DI ECONOMIA DI RIMINI. MATEMATICA PER L ECONOMIA Prof.ssa Maria Letizia Guerra UNIVERSITÀ DEGLI STUDI DI BOLOGNA FACOLTÀ DI ECONOMIA DI RIMINI MATEMATICA PER L ECONOMIA Prof.ssa Maria Letizia Guerra (CLEM) ESERCIZI RISOLTI COMPITO DEL -6-8 Esercizio Si stima che domanda di un certo

Dettagli

Sia y = f(x) definita in un intervallo I. x 0 è punto di massimo assoluto. x 0 è punto di minimo assoluto. x 0 è punto di massimo relativo o locale se

Sia y = f(x) definita in un intervallo I. x 0 è punto di massimo assoluto. x 0 è punto di minimo assoluto. x 0 è punto di massimo relativo o locale se PUNTI ESTREMANTI E PUNTI STAZIONARI. MASSIMI E MINIMI ASSOLUTI E RELATIVI. TEOREMI DI FERMAT, ROLLE E LAGRANGE. CONDIZIONI NECESSARIE E SUFFICIENTI PER MASSIMI E MINIMI RELATIVI. PROBLEMI DI MASSIMO E

Dettagli

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero . Data la funzione approssimarne il grafico. f() = 2 Per determinare il dominio di f() dobbiamo imporre che il determinante sia diverso da zero 2 0 = 2 = ± perciò il dominio ` D = R \ {, } =], [ ], [ ],

Dettagli

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 41 1 Derivata

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esercizi sullo studio di funzione Seconda parte Come visto nella prima parte, per poter descrivere una curva, data la sua equazione cartesiana esplicita y f () occorre procedere secondo l ordine seguente:

Dettagli

Matematica e Statistica per Scienze Ambientali

Matematica e Statistica per Scienze Ambientali per Scienze Ambientali Applicazioni delle derivate - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Dicembre 2013 Esercizio Un area rettangolare deve essere recintata usando

Dettagli

Quale delle funzioni elencate ha il grafico in figura? 1) f(x)= e x /x +1 2) f(x)= logx/x 3) f(x)= e x /x 4) f(x)= e x /(x-2)

Quale delle funzioni elencate ha il grafico in figura? 1) f(x)= e x /x +1 2) f(x)= logx/x 3) f(x)= e x /x 4) f(x)= e x /(x-2) Quale delle funzioni elencate ha il grafico in figura? 1) f(x)= e x /x +1 2) f(x)= logx/x 3) f(x)= e x /x 4) f(x)= e x /(x-2) SOLUZIONE: Si esclude la 4) perché non è definita per x=2 e la 2) perché definita

Dettagli

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere ) DMINIO + 3 Determinare il dominio della funzione f ) + 3 Deve essere Ovviamente, inoltre: se > + 3 ) 3) quindi < o 3 se < + 3, + 3 quindi 7 Determinare il dominio della funzione f ) + 5 Deve essere +

Dettagli

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzione dei problemi Il dominio della generica funzione è:! a a) Scriviamo l espressione della funzione in forma di equazione raccogliendo separatamente i termini contenenti il parametro a e quelli

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

Università di Foggia - Facoltà di Economia. Prova scritta di Matematica Generale - Vecchio Ordinamento - 04 giugno 2002

Università di Foggia - Facoltà di Economia. Prova scritta di Matematica Generale - Vecchio Ordinamento - 04 giugno 2002 Università di Foggia - Facoltà di Economia Prova scritta di Matematica Generale - Vecchio Ordinamento - 04 giugno 00 Cognome e nome............................................ Numero di matricola...........

Dettagli

Matematica classe 5 C a.s. 2012/2013

Matematica classe 5 C a.s. 2012/2013 Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.

Dettagli

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni A cura di Sebastiano Cappuccio SCHEDA N 20 ARGOMENTO: Grafici di funzioni numeriche reali Asintoti orizzontali, verticali,

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2009/2010 Calcolo 1, Esame scritto del 19.01.2010

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2009/2010 Calcolo 1, Esame scritto del 19.01.2010 NOME:... MATRICOLA:.... Corso di Laurea in Fisica, A.A. 009/00 Calcolo, Esame scritto del 9.0.00 Data la funzione fx = e /x x x +, a determinare il dominio massimale di f ; b trovare tutti gli asintoti

Dettagli

CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN

CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN0 011-01 FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione y= f(x), l'insieme di tutti i valori reali

Dettagli

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13 Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in

Dettagli

Matematica per le Applicazioni Economiche I (M-P)

Matematica per le Applicazioni Economiche I (M-P) Matematica per le Applicazioni Economiche I (M-P) Corsi di Laurea in Economia Aziendale, Economia e Commercio, a.a. 06-7 Esercizi su Calcolo Differenziale. Per la seguente funzione, dato 0, si utilizzi

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione.. Funzioni iniettive, suriettive e biiettive.. Le funzioni

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

Esercizi 6: limiti di funzioni e applicazioni. Calcolare i seguenti limiti. Esercizio 1. lim x x. 2 x. Soluzione. 0. Esercizio 2.

Esercizi 6: limiti di funzioni e applicazioni. Calcolare i seguenti limiti. Esercizio 1. lim x x. 2 x. Soluzione. 0. Esercizio 2. Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Calcolare i seguenti limiti. Esercizio

Dettagli

Soluzione di Adriana Lanza

Soluzione di Adriana Lanza Soluzione Dimostriamo che f(x) è una funzione dispari Osserviamo che in quanto in quanto x è una funzione dispari è una funzione dispari in quanto prodotto di una funzione dispari per una pari Pertanto

Dettagli

= y h. m x0 (h) = y Q y P x Q x P. f(x 0 + h) f(x 0 )

= y h. m x0 (h) = y Q y P x Q x P. f(x 0 + h) f(x 0 ) ESERCIZI DI MATEMATICA: SCHEDA n.1 su derivate: la definzione Classe 5B Sc.Soc. Data:...... Teoria in sintesi. Data una funzione y = f(x) denita intorno ad x 0 (ovverosia il dominio contiene un intervallo

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del gennaio 207 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 6) Determinare

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi Matematica 1 e Geometria

Politecnico di Milano Ingegneria Industriale Analisi Matematica 1 e Geometria Politecnico di Milano Ingegneria Industriale Analisi Matematica e Geometria Preparazione al primo compito in itinere Cognome: Nome: Matricola: Prima Parte. Determinare, se esistono, il minimo, il massimo,

Dettagli

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26 ANALISI 1 1 UNDICESIMA LEZIONE DODICESIMA LEZIONE TREDICESIMA LEZIONE Derivata - definizione e teoremi di calcolo delle derivate Massimi e minimi relativi e teorema di Fermat Teorema di Lagrange Monotonia

Dettagli

Disequazioni razionali (in una variabile)

Disequazioni razionali (in una variabile) 5 settembre 8 Disequazioni razionali (in una variabile) Forma normale: f f f < f > Disequazioni razionali intere Nelle disequazioni razionali intere la funzione f è un polinomio. Disequazioni di grado

Dettagli

ESERCIZI DA SVOLGERE PER MAGGIO (la parte in verde, il resto lo dovreste avere già svolto).

ESERCIZI DA SVOLGERE PER MAGGIO (la parte in verde, il resto lo dovreste avere già svolto). ESERCIZI DA SVOLGERE PER MAGGIO (la parte in verde, il resto lo dovreste avere già svolto). 1. Data la funzione : x 2 e x minimo e di massimo. Determinare inoltre gli eventuali flessi e gli intervalli

Dettagli

In un piano, riferito ad uni sistema cartesiano ortogonale Oxy, si considerino le parabole di equazione:

In un piano, riferito ad uni sistema cartesiano ortogonale Oxy, si considerino le parabole di equazione: Maturità scientifica 966/967 Sessione estiva In un piano, riferito ad uni sistema cartesiano ortogonale Oy, si considerino le parabole di equazione: y m m essendo m un parametro diverso da zero. (a) Si

Dettagli

FUNZIONI ALGEBRICHE PARTICOLARI

FUNZIONI ALGEBRICHE PARTICOLARI FUNZIONI ALGEBRICHE PARTICOLARI (al massimo di secondo grado in x) Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4 B) September 9, 003 1. FUNZIONI

Dettagli

Matematica e Statistica (A-E, F-O, P-Z)

Matematica e Statistica (A-E, F-O, P-Z) Matematica e Statistica (A-E, F-O, P-Z) Prova d esame (24/06/20) Università di Verona - Laurea in Biotecnologie - A.A. 200/ Tema A Matematica e Statistica (A-E, F-O, P-Z) Prova di MATEMATICA (A-E, F-O,

Dettagli

Studio di una funzione. Schema esemplificativo

Studio di una funzione. Schema esemplificativo Studio di una funzione Schema esemplificativo Generalità Studiare una funzione significa determinarne le proprietà ovvero Il dominio. Il segno. Gli intervalli in cui cresce o decresce. Minimi e massimi

Dettagli

dato da { x i }; le rette verticali passanti per

dato da { x i }; le rette verticali passanti per Schema riepilogativo per lo studio di una funzione reale di una var. reale. Studio grafico-analitico delle funzioni reali di variabile reale y = f ( Sequenza dei passi utili allo studio di una funzione

Dettagli

COMUNICAZIONE OPZIONE SPORTIVA QUESTIONARIO QUESITO 1

COMUNICAZIONE OPZIONE SPORTIVA QUESTIONARIO QUESITO 1 www.matefilia.it COMUNICAZIONE OPZIONE SPORTIVA 7 - QUESTIONARIO QUESITO Definito il numero E come: E = xe x dx, dimostrare che risulta: x e x dx = e E esprimere x e x dx in termini di e ed E. Cerchiamo

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi Matematica

Dettagli

Continuità e derivabilità. Calcola la derivata delle seguenti funzioni

Continuità e derivabilità. Calcola la derivata delle seguenti funzioni ESERCIZI SUL CALCOLO DIFFERENZIALE Continuità e derivabilità Si studi la continuità e la derivabilità delle seguenti funzioni nel punto indicato a fianco { Si trovi, se possibile, a e b in modo che le

Dettagli

Linee guida da seguire per lo svolgimento dello studio di funzione Studiare la seguente funzione: Insieme di definizione: f(x) < 0

Linee guida da seguire per lo svolgimento dello studio di funzione Studiare la seguente funzione: Insieme di definizione: f(x) < 0 Linee guida da seguire per lo svolgimento dello studio di funzione Studiare la seguente funzione: Insieme di definizione: f(x) > 0 f(x) = 0 f(x) < 0 Limiti significativi per f: Equazione degli asintoti

Dettagli

Derivata di una funzione

Derivata di una funzione Derivata di una funzione Prof. E. Modica http://www.galois.it erasmo@galois.it Il problema delle tangenti Quando si effettua lo studio delle coniche viene risolta una serie di esercizi che richiedono la

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione. 3. Le funzioni reali di variabile reale. 4. L espressione

Dettagli

SOLUZIONE COMMENTATA TEST DI AUTOVALUTAZIONE

SOLUZIONE COMMENTATA TEST DI AUTOVALUTAZIONE SLUZINE CMMENTATA TEST DI AUTVALUTAZINE CRS DI MATEMATICA PER L ECNMIA III MDUL ) Individuare il campo di esistenza della seguente funzione polinomiale: = + 5+ 6 6, 6 Poiché la funzione data è polinomiale,

Dettagli

DERIVATE. 1.Definizione di derivata.

DERIVATE. 1.Definizione di derivata. DERIVATE Definizione di derivata Sia y = f( una funzione continua Fissato un punto o appartenente all insieme di definizione della funzione y = f(,sia Po = (; f(o il punto di ascissa o appartenente al

Dettagli

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1).

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1). G4 Derivate G4 Significato geometrico di derivata La derivata di una funzione in un suo punto è il coefficiente angolare della sua retta tangente Esempio G4: La funzione = e la sua retta tangente per il

Dettagli

DERIVATA di una funzione

DERIVATA di una funzione DERIVATA di una unzione Sia e * A punto di accumulazione di A : A R * è il RAPPORTO INCREMENTALE * Il rapporto incrementale di calcolato in * rappresenta il coeiciente angolare della secante passante per

Dettagli