1 di 6. Usando un modello di probabilità

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1 di 6. Usando un modello di probabilità"

Transcript

1 Corso di Statistica, II parte ESERCIZIO 1 Gastone in occasione di una festa a PAPEROPOLI compra 3 biglietti per partecipare all'estrazione a sorte di 3 premi. Sapendo che sono stati venduti 30 biglietti in totale, costruire la distribuzione di probabilità della variabile casuale numero di premi vinti da Gastone nell'ipotesi che i tre biglietti vincenti vengano estratti in blocco : A partire dalla specificazione completa dello spazio campione (ovvero senza l'utilizzo di alcun modello di variabile casuale) Usando un modello di probabilità ESERCIZIO 2 Gastone, in occasione di una festa a PAPEROPOLI, compra 4 biglietti per partecipare all'estrazione a sorte di 3 premi. Sapendo che sono stati venduti 30 biglietti in totale, a1) Quale modello di variabile casuale può essere utilizzato per la variabile casuale numero di premi vinti da Gastone nell'ipotesi che i tre biglietti vincenti vengano estratti in blocco (motivare brevemente la risposta): 1 di 6

2 Corso di Statistica, II parte a2) Costruire la distribuzione di probabilità per la variabile casuale numero di premi vinti da Gastone nell'ipotesi che i tre biglietti vincenti vengano estratti in blocco : b1) Quale modello di variabile casuale può essere utilizzato per la variabile casuale numero di premi vinti da Gastone nell'ipotesi che i tre biglietti vincenti vengano estratti con reimmissione (motivare brevemente la risposta): b2) Costruire la distribuzione di probabilità per la variabile casuale numero di premi vinti da Gastone nell'ipotesi che i tre biglietti vincenti vengano estratti con reimmissione : 2 di 6

3 ESERCIZIO 3 Gastone ha sognato 5 numeri e ha deciso di giocarli sulla ruota di ROMA. Corso di Statistica, II parte a1) Si indichi con X la variabile casuale numero di numeri estratti sulla ruota di Roma nell'estrazione di sabato 31 gennaio 2009 tra i 5 su cui ha puntato Gastone. Quale modello di variabile casuale può essere utilizzato per la variabile casuale X? (motivare brevemente la risposta): a2) Si indichi con X la variabile casuale numero di numeri estratti sulla ruota di Roma nell'estrazione di sabato 22 gennaio 2010 tra i 5 su cui ha puntato Gastone. Costruire la distribuzione di probabilità della variabile casuale X: ESERCIZIO 4 Gastone ha sognato 5 numeri e ha deciso di giocarli sulla ruota di ROMA e sulla ruota di NAPOLI. Usando la variabile casuale ritenuta opportuna, a) calcolare la probabilità che Gastone faccia cinquina a Roma: b) calcolare la probabilità che Gastone faccia cinquina a Napoli: 3 di 6

4 c) calcolare la probabilità che Gastone faccia cinquina a Roma o a Napoli: Corso di Statistica, II parte ESERCIZIO 5 Gastone ha sognato di vincere al lotto per tre volte puntando su un numero. Decide di giocare quindi il numero sulla ruota di Paperopoli. Essendo sicuro della sua fortuna decide di giocare il numero su settimane successive. Usando la variabile casuale ritenuta opportuna, a) Calcolare la probabilità che occorrano sette settimane prima che il numero venga estratto. b) Calcolare la probabilità che occorrano sette settimane prima che il numero venga estratto per tre volte. ESERCIZIO 6 Nel bed and breakfast GoldDreams arrivano ogni giorno in media 5 clienti. Supponendo che il numero medio di clienti si distribuisca secondo la legge di Poisson, a) Determinare la probabilità che in un giorno ci siano più di 3 clienti. b) Determinare la probabilità che in un giorno meno di 3 clienti. c) Determinare la probabilità che in un giorno almeno 3 clienti. d) Determinare la probabilità che in un giorno al più 3 clienti. 4 di 6

5 Corso di Statistica, II parte ESERCIZIO 7 Il test di ammissione alla prestigiosa Università STUDY produce punteggi che seguono una distribuzione normale con media 500 e scarto quadratico medio 100. Il punteggio necessario per superare il test è stabilito pari a 534 a) Calcolare la probabilità di ottenere un punteggio superiore al punteggio medio: b) Calcolare la probabilità di ottenere un punteggio uguale al punteggio medio: c) Calcolare la frazione di studenti che riescono a superare il test di ammissione: d) Calcolare la frazione di studenti che non riescono a superare il test di ammissione: e) Calcolare la frazione di studenti che ottengono un punteggio esattamente uguale al punteggio minimo richiesto per superare il test di ammissione: f) Calcolare la frazione di studenti che ottengono un punteggio minore di 421: g) Calcolare la frazione di studenti che ottengono un punteggio tra 400 e 600: h) Calcolare la frazione di studenti che ottengono un punteggio tra 300 e 700: 5 di 6

6 i) Calcolare la frazione di studenti che ottengono un punteggio tra 200 e 800: Corso di Statistica, II parte l) Calcolare la frazione di studenti che ottengono un punteggio superiore a 800: m) Calcolare la frazione di studenti che ottengono un punteggio superiore a 1000: n) Calcolare la frazione di studenti che ottengono un punteggio inferiore a 1000: ESERCIZIO 8 Rispondere alle seguenti domande: - Se X è una v.c. di Bernoulli allora X può assumere solo valori positivi - Se X è una v.c. Binomiale relativa ad n prove: allora X può assume n valori - Sia X una variabile casuale di Poisson, allora P(X=x) è definita per ogni x su R - Sia X una variabile casuale Ipergeometrica, allora X può assumere qualunque valore in R - Sia X una variabile casuale Ipergeometrica, allora X può assumere qualunque valore maggiore di 0 - Sia X una variabile casuale geometrica, allora X può assumere qualunque valore in R - Sia X una variabile casuale geometrica, allora X può assumere qualunque valore maggiore di 0 - Sia X una variabile casuale binomiale negativa, allora X può assumere qualunque valore in R - Sia X una variabile casuale binomiale negativa, allora X può assumere qualunque valore maggiore di 0 6 di 6

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Distribuzione di probabilità, funzione di ripartizione di una v.c. discreta Il tasso di cambio

Dettagli

Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo.

Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo. Capitolo 1 9 Ottobre 00 Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo. 000, Milano Esercizio 1.0.1 (svolto in classe [II recupero Ing. Matematica aa.00-0-rivisitato]nel

Dettagli

Tutorato di Probabilità e Statistica

Tutorato di Probabilità e Statistica Università Ca Foscari di Venezia Dipartimento di informatica 20 aprile 2006 Variabili aleatorie... Example Giochiamo alla roulette per tre volte 1 milione sull uscita del numero 29. Qual è la probabilità

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

Esercitazione n.1 (v.c. Binomiale, Poisson, Normale)

Esercitazione n.1 (v.c. Binomiale, Poisson, Normale) Esercizio 1. Un azienda produce palline da tennis che hanno probabilità 0,02 di essere difettose, indipendentemente l una dall altra. La confezione di vendita contiene 8 palline prese a caso dalla produzione

Dettagli

Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco

Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco Alfonso Iodice D Enza April 26, 2007 1...prima di cominciare Contare, operazione solitamente semplice, può diventare complicata se lo scopo

Dettagli

Si considerino gli eventi A = nessuno studente ha superato l esame e B = nessuno studente maschio ha superato l esame. Allora A c B è uguale a:

Si considerino gli eventi A = nessuno studente ha superato l esame e B = nessuno studente maschio ha superato l esame. Allora A c B è uguale a: TEST DI AUTOVALUTAZIONE - SETTIMANA 2 I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia 1 Parte A 1.1 Si considerino gli

Dettagli

2 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 15 febbraio 2011

2 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 15 febbraio 2011 2 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 15 febbraio 2011 1) Non sfogliare questo fascicolo finché l insegnante non ti dice di farlo. 2) E ammesso l utilizzo di calcolatrici

Dettagli

DISTRIBUZIONI DI PROBABILITÀ

DISTRIBUZIONI DI PROBABILITÀ Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI

Dettagli

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita NOTA 1 Gli esercizi sono presi da compiti degli scorsi appelli, oppure da testi o dispense di colleghi. A questi ultimi

Dettagli

Esercitazioni 2013/14

Esercitazioni 2013/14 Esercitazioni 2013/14 Esercizio 1 Due ditte V e W partecipano ad una gara di appalto per la costruzione di un tratto di autostrada che viene assegnato a seconda del prezzo. L offerta fatta dalla ditta

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 3 A. Sia una variabile casuale che si distribuisce secondo

Dettagli

E NECESSARIO RICORRERE ALLE VARIABILI CASUALI

E NECESSARIO RICORRERE ALLE VARIABILI CASUALI IL CONCETTO DI VARIABILE CASUALE Associare una misura di probabilità al verificarsi di un certo evento (come esito di un esperimento) non sempre è sufficiente a risolvere gran parte dei problemi reali

Dettagli

Il campionamento statistico

Il campionamento statistico Lezione 13 Gli strumenti per il miglioramento della Qualità Il campionamento statistico Aggiornamento: 19 novembre 2003 Il materiale didattico potrebbe contenere errori: la segnalazione e di questi errori

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008 Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica 18 dicembre 008 Esame sull intero programma: esercizi da A a D Esame sulla seconda parte del programma: esercizi

Dettagli

Temi di Esame a.a. 2012-2013. Statistica - CLEF

Temi di Esame a.a. 2012-2013. Statistica - CLEF Temi di Esame a.a. 2012-2013 Statistica - CLEF I Prova Parziale di Statistica (CLEF) 11 aprile 2013 Esercizio 1 Un computer è collegato a due stampanti, A e B. La stampante A è difettosa ed il 25% dei

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 16 luglio 2006 V.a. discrete e distribuzioni discrete Esercizio 1 Dimostrare la proprietà della mancanza di memoria della legge geometrica, ovvero

Dettagli

PROBABILITA' E VARIABILI CASUALI

PROBABILITA' E VARIABILI CASUALI PROBABILITA' E VARIABILI CASUALI ESERCIZIO 1 Due giocatori estraggono due carte a caso da un mazzo di carte napoletane. Calcolare: 1) la probabilità che la prima carta sia una figura oppure una carta di

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA Dipartimento di Ingegneria Meccanica Chimica e dei Materiali PROGETTAZIONE E GESTIONE DEGLI IMPIANTI INDUSTRIALI Esercitazione 6 ORE ELEMENTI DI STATISTICA Prof. Ing. Maria Teresa Pilloni Anno Accademico

Dettagli

Dall'analisi dei prospetti informativi diffusi dalla Borsa di Paperopoli Gastone ricava le seguenti informazioni sul rendimento dei tre titoli:

Dall'analisi dei prospetti informativi diffusi dalla Borsa di Paperopoli Gastone ricava le seguenti informazioni sul rendimento dei tre titoli: ESERCIZIO 1 Gastone investe i suoi risparmi in tre titoli (A: Paperone & Co; B: Rockerduck & Co; C: Bassotti & Co) quotati sul mercato di Paperopoli. La composizione percentuale del portafoglio di Gastone

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Modelli di Variabili Aleatorie Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Sulla base della passata esperienza il responsabile della produzione di un azienda

Dettagli

Esercizio 1. Svolgimento

Esercizio 1. Svolgimento Esercizio 1 Vengono lanciate contemporaneamente 6 monete. Si calcoli: a) la probabilità che si presentino esattamente 2 testa ; b) la probabilità di ottenere almeno 4 testa ; c) la probabilità che l evento

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Le variabili casuali. Variabile statistica e variabile casuale. Distribuzione di probabilità della v.c X: X P(X) 0 ⅛ 1 ⅜ 3 ⅛

Le variabili casuali. Variabile statistica e variabile casuale. Distribuzione di probabilità della v.c X: X P(X) 0 ⅛ 1 ⅜ 3 ⅛ Università di Macerata Facoltà di Scienze Politiche - Anno accademico 009- Una variabile casuale è una variabile che assume determinati valori con determinate probabilità; Ad una variabile casuale è associata

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Stima puntuale per la proporzione Da un lotto di arance se ne estraggono 400, e di queste 180

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento

Dettagli

COMPITO DI SCIENZE NATURALI 23 gennaio 2012. Modulo di probabilità e statistica

COMPITO DI SCIENZE NATURALI 23 gennaio 2012. Modulo di probabilità e statistica COMPITO DI SCIENZE NATURALI 23 gennaio 2012 Modulo di probabilità e statistica 1. In Svizzera, al primo gennaio di ogni anno, tutti i cittadini vengono sottoposti a vaccinazione contro l influenza annuale.

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio

Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio Alessandro Sicco sicco@dm.unito.it Lezione 1. Calcolo combinatorio, formula delle probabilitá totali, formula di Bayes Esercizio 1.1. 7 bambini

Dettagli

LA STATISTICA NEI TEST DI AMMISSIONE ALL UNIVERSITÀ

LA STATISTICA NEI TEST DI AMMISSIONE ALL UNIVERSITÀ LA STATISTICA NEI TEST DI AMMISSIONE ALL UNIVERSITÀ 1 Test di ingresso ad architettura 2012. Dati MIUR. La paga media oraria di 60 lavoratori è di 8 euro. Alcuni però ricevono 7,5 euro all ora mentre i

Dettagli

R - Esercitazione 5. Lorenzo Di Biagio dibiagio@mat.uniroma3.it. Lunedì 2 Dicembre 2013. Università Roma Tre

R - Esercitazione 5. Lorenzo Di Biagio dibiagio@mat.uniroma3.it. Lunedì 2 Dicembre 2013. Università Roma Tre R - Esercitazione 5 Lorenzo Di Biagio dibiagio@mat.uniroma3.it Università Roma Tre Lunedì 2 Dicembre 2013 Intervalli di confidenza (1) Sia X 1,..., X n un campione casuale estratto da un densità f (x,

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni)

Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni) STATISTICA (2) ESERCITAZIONE 4 18.02.2013 Dott.ssa Antonella Costanzo Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni) Sia X una popolazione distribuita secondo la legge Bernoulliana

Dettagli

1. la probabilità che siano tutte state uccise con pistole; 2. la probabilità che nessuna sia stata uccisa con pistole;

1. la probabilità che siano tutte state uccise con pistole; 2. la probabilità che nessuna sia stata uccisa con pistole; Esercizi di Statistica della 5 a settimana (Corso di Laurea in Biotecnologie, Università degli Studi di Padova). Esercizio 1. L FBI ha dichiarato in un rapporto che il 44% delle vittime di un omicidio

Dettagli

Tabella 7. Dado truccato

Tabella 7. Dado truccato 0 ALBERTO SARACCO 4. Compiti a casa 7novembre 200 4.. Ordini di grandezza e calcolo approssimato. Esercizio 4.. Una valigia misura 5cm di larghezza, 70cm di lunghezza e 45cm di altezza. Quante palline

Dettagli

Test statistici di verifica di ipotesi

Test statistici di verifica di ipotesi Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/03/2011

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/03/2011 FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/3/2 ESERCIZIO (2+2+2+2) La seguente tabella riporta la distribuzione della variabile "Stato Civile"

Dettagli

Il prodotto di tre numeri in progressione aritmetica è 16640, il più piccolo è 20. Calcolare i tre numeri.

Il prodotto di tre numeri in progressione aritmetica è 16640, il più piccolo è 20. Calcolare i tre numeri. Scrivi i primi termini delle seguenti successioni: =1; =; = + Individua la legge che genera ognuna delle seguenti successioni: -1,, -, 4, -5, In una progressione aritmetica la somma del primo, quarto,

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

Test sul calcolo della probabilità

Test sul calcolo della probabilità Test sul calcolo della probabilità 2 Test sul calcolo della probabilità Test sul calcolo della probabilità. La probabilità p di un evento E, quando si indica con E il suo complementare, è : a) 0 se E è

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docente: dott. F. Zucca Esercitazione # Esercizi Statistica Descrittiva Esercizio I gruppi sanguigni di persone sono B, B, AB, O,

Dettagli

IL DIRETTORE GENERALE. Vista la legge 26 marzo 1990, n.62; Visto il Decreto Legislativo 30 marzo 2001, n.165;

IL DIRETTORE GENERALE. Vista la legge 26 marzo 1990, n.62; Visto il Decreto Legislativo 30 marzo 2001, n.165; Prot. N. 2011/47318 /Giochi / LTT IL DIRETTORE GENERALE Vista la legge 4 agosto 1955, n. 722 e successive modificazioni; Vista la legge 26 marzo 1990, n.62; Visto il regolamento generale delle lotterie

Dettagli

More details >>> HERE <<<

More details >>> HERE <<< More details >>> HERE http://dbvir.com/lotteria/pdx/catv998/ Tags: sistema vincere la lotteria il metodo più

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che Statistica Cognome: Laurea Triennale in Biologia Nome: 26 luglio 2012 Matricola: Tema A 1. Parte A 1.1. Sia x 1, x 2,..., x n un campione di n dati con media campionaria x e varianza campionaria s 2 x

Dettagli

Matematica Applicata. Probabilità e statistica

Matematica Applicata. Probabilità e statistica Matematica Applicata Probabilità e statistica Fenomeni casuali Fenomeni che si verificano in modi non prevedibili a priori 1. Lancio di una moneta: non sono in grado di prevedere con certezza se il risultato

Dettagli

Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera

Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera 1. Avete risparmiato 10 dollari che volete investire per un anno in azioni e/o buoni del tesoro

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 28/05/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Nel gico del

Dettagli

Lezione 3 - Probabilità totale, Bayes -Alberi PROBABILITÀ TOTALE TEOREMA DI BAYES ALBERI E GRAFI

Lezione 3 - Probabilità totale, Bayes -Alberi PROBABILITÀ TOTALE TEOREMA DI BAYES ALBERI E GRAFI Lezione 3 - robabilità totale, ayes -lberi ROILITÀ TOTLE TEOREM DI YES LERI E GRFI GRUO MT06 Dip. Matematica, Università di Milano - robabilità e Statistica per le Scuole Medie -SILSIS - 2007 Lezione 3

Dettagli

PROVE D'ESAME DI CPS A.A. 2009/2010. 0 altrimenti.

PROVE D'ESAME DI CPS A.A. 2009/2010. 0 altrimenti. PROVE D'ESAME DI CPS A.A. 009/00 0/06/00 () (4pt) Olimpiadi, nale dei 00m maschili, 8 nalisti. Si sa che i 4 atleti nelle corsie centrali hanno probabilità di correre in meno di 0 secondi. I 4 atleti delle

Dettagli

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete.

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete. Parliamo di probabilità. Supponiamo di avere un sacchetto con dentro una pallina rossa; posso aggiungere tante palline bianche quante voglio, per ogni pallina bianca che aggiungo devo pagare però un prezzo

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Calcolo delle probabilità Il Sig. Rossi abita nella città X e lavora nella città Y, poco distante.

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 010-011 Corso di Psicometria - Modulo B Dott. Marco Vicentini marco.vicentini@unipd.it Rev. 10/01/011 La distribuzione F di Fisher - Snedecor

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

INDIZIONE E MODALITÀ TECNICHE DI SVOLGIMENTO DELLA LOTTERIA AD ESTRAZIONE ISTANTANEA CON PARTECIPAZIONE A DISTANZA DENOMINATA LA FORTUNA GIRA ON LINE

INDIZIONE E MODALITÀ TECNICHE DI SVOLGIMENTO DELLA LOTTERIA AD ESTRAZIONE ISTANTANEA CON PARTECIPAZIONE A DISTANZA DENOMINATA LA FORTUNA GIRA ON LINE Prot. 2007/ /Giochi Ltt IL DIRETTORE GENERALE INDIZIONE E MODALITÀ TECNICHE DI SVOLGIMENTO DELLA LOTTERIA AD ESTRAZIONE ISTANTANEA CON PARTECIPAZIONE A DISTANZA DENOMINATA LA FORTUNA GIRA ON LINE Visto

Dettagli

LA STATISTICA NEI TEST INVALSI

LA STATISTICA NEI TEST INVALSI LA STATISTICA NEI TEST INVALSI 1 Prova Nazionale 2011 Osserva il grafico seguente che rappresenta la distribuzione percentuale di famiglie per numero di componenti, in base al censimento 2001. Qual è la

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Esercizi test ipotesi. Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010

Esercizi test ipotesi. Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Esercizi test ipotesi Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Verifica delle ipotesi - Esempio quelli di Striscia la Notizia" effettuano controlli casuali per vedere se le pompe

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI 1. L azienda Wood produce legno compensato per costruzioni

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

Esercizi di Calcolo delle Probabilità (calcolo combinatorio)

Esercizi di Calcolo delle Probabilità (calcolo combinatorio) Esercizi di Calcolo delle Probabilità (calcolo combinatorio 1. Lanciamo due dadi regolari. Qual è la probabilità che la somma delle facce rivolte verso l alto sia pari a 7? 1/6 2. Due palline vengono estratte

Dettagli

Tutoraggio di Calcolo delle Probabilità, 2-3 Marzo 2010

Tutoraggio di Calcolo delle Probabilità, 2-3 Marzo 2010 Tutoraggio di Calcolo delle Probabilità, 2-3 Marzo 200 Esercizio. Dati due eventi A e B, scrivete, in termini di operazioni booleane, l espressione dell evento: {si verifica esattamente un solo evento

Dettagli

Edited by Foxit PDF Editor Copyright (c) by Foxit Software Company, 2004 For Evaluation Only.

Edited by Foxit PDF Editor Copyright (c) by Foxit Software Company, 2004 For Evaluation Only. In un mercato del lavoro competitivo esistono due tipi di lavoratori, quelli con alta produttività L A, che producono per 30 $ l'ora, e quelli con bassa produttività, L B, che producono per 5 $ l'ora.

Dettagli

L Analisi della Varianza ANOVA (ANalysis Of VAriance)

L Analisi della Varianza ANOVA (ANalysis Of VAriance) L Analisi della Varianza ANOVA (ANalysis Of VAriance) 1 CONCETTI GENERALI Finora abbiamo descritto test di ipotesi finalizzati alla verifica di ipotesi sulla differenza tra parametri di due popolazioni

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

Anteprima Finale Categoria Corsi di Matematica

Anteprima Finale Categoria Corsi di Matematica 1 di 8 08/04/2011 8.58 SiS-Scuola-27-SEZIONE MATEMATICA fad TC127 Quiz Finale Categoria Corsi di Matematica Tentativo 1 Sei collegato come piero zulli. (Esci) Info Risultati Anteprima Modifica Anteprima

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni Statistica Economica Materiale didattico a cura del docente Analisi dei residui Test Esatto di Fisher Differenza fra proporzioni 1 Analisi dei residui Il test statistico ed il suo p-valore riassumono la

Dettagli

Full version is >>> HERE <<<

Full version is >>> HERE <<< Full version is >>> HERE http://pdfo.org/lotteria/pdx/1105t1035/ Tags: 491w fresh website lotteria italia comprare biglietti -

Dettagli

ABCD è un rettangolo, e M è il punto medio del segmento BC. Cosa si può dire dell area del triangolo AMC?

ABCD è un rettangolo, e M è il punto medio del segmento BC. Cosa si può dire dell area del triangolo AMC? Avvertenze: quelli che seguono sono esempi di quesiti. Non si tratta, nel suo complesso, di un esempio di prova, nel senso che non sono necessariamente rispettate le proporzioni di quesiti dei diversi

Dettagli

SPC e distribuzione normale con Access

SPC e distribuzione normale con Access SPC e distribuzione normale con Access In questo articolo esamineremo una applicazione Access per il calcolo e la rappresentazione grafica della distribuzione normale, collegata con tabelle di Clienti,

Dettagli

*Il numero di serie del biglietto si trova nell area in basso del biglietto, come indicato nella figura

*Il numero di serie del biglietto si trova nell area in basso del biglietto, come indicato nella figura LOTTERIA ITALIA 2013 - FREQUENTLY ASKED QUESTIONS 1. LOTTERIA ITALIA: Estrazione finale e premi 1.1 Che premi posso vincere? Un premio di prima categoria da 5 milioni di euro. Sono inoltre previsti altri

Dettagli

Laboratorio di dinamiche socio-economiche

Laboratorio di dinamiche socio-economiche Dipartimento di Matematica Università di Ferrara giacomo.albi@unife.it www.giacomoalbi.com 21 febbraio 2012 Seconda parte: Econofisica La probabilità e la statistica come strumento di analisi. Apparenti

Dettagli

Scommesse e concorsi a pronostico

Scommesse e concorsi a pronostico Scommesse singole ippiche e sportive Scommesse e concorsi a pronostico La percentuale di probabilità di vincita si ricava dal rapporto tra il singolo esito e il numero di esiti possibili, ovvero: (Singolo

Dettagli

Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità David Barbato Questa raccolta comprende sia gli esercizi dell esercitazione del 14 febbraio sia gli esercizi di ricapitolazione sulle

Dettagli

*Il numero di serie del biglietto si trova nell area in basso del biglietto, come indicato nella figura

*Il numero di serie del biglietto si trova nell area in basso del biglietto, come indicato nella figura LOTTERIA ITALIA 2015 - FREQUENTLY ASKED QUESTIONS 1. LOTTERIA ITALIA: Estrazione finale e premi 1.1 Che premi posso vincere? Un premio di prima categoria da 5 milioni di euro. Sono inoltre previsti altri

Dettagli

BLACK SLOT COME SI GIOCA A BLACK SLOT:

BLACK SLOT COME SI GIOCA A BLACK SLOT: BLACK SLOT COME SI GIOCA A BLACK SLOT: Questo videogioco utilizza quattro display per informare il giocatore lungo tutto il corso della partita. Indicheremo questi display con le lettere A) B) C) D) per

Dettagli

Statistica inferenziale

Statistica inferenziale Statistica inferenziale Popolazione e campione Molto spesso siamo interessati a trarre delle conclusioni su persone che hanno determinate caratteristiche (pazienti, atleti, bambini, gestanti, ) Osserveremo

Dettagli

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520:

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520: Fig. 10.bis.1 Variazioni percentuali Variazione percentuale di x dalla data zero alla data uno: x1 x 0 %x = 100% x 0 = variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del

Dettagli

PROBABILITÀ DI VINCITA DEI GIOCHI PUBBLICI CON VINCITA IN DENARO

PROBABILITÀ DI VINCITA DEI GIOCHI PUBBLICI CON VINCITA IN DENARO PROBABILITÀ DI VINCITA DEI GIOCHI PUBBLICI CON VINCITA IN DENARO Materiale di consultazione contenente le probabilità di vincita dei giochi pubblici con vincita in denaro ai sensi dell art.7 del decreto

Dettagli

Paperone e Rockerduck: a cosa serve l antitrust?

Paperone e Rockerduck: a cosa serve l antitrust? Paperone e Rockerduck: a cosa serve l antitrust? Paperone Anna Torre, Rockerduck Ludovico Pernazza 1-14 giugno 01 Università di Pavia, Dipartimento di Matematica Concorrenza Due imprese Pap e Rock operano

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

IL DIRETTORE GENERALE. Vista la legge 26 marzo 1990, n.62; Visto il Decreto Legislativo 30 marzo 2001, n.165;

IL DIRETTORE GENERALE. Vista la legge 26 marzo 1990, n.62; Visto il Decreto Legislativo 30 marzo 2001, n.165; Prot. N. 2012/ 55293 /Giochi / LTT IL DIRETTORE GENERALE Vista la legge 4 agosto 1955, n. 722 e successive modificazioni; Vista la legge 26 marzo 1990, n.62; Visto il regolamento generale delle lotterie

Dettagli

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr. Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame dell 11/1/2012 NOME COGNOME N. Matr. Rispondere alle domande nel modo più completo possibile, cercando di

Dettagli

Un gioco con tre dadi

Un gioco con tre dadi Un gioco con tre dadi Livello scolare: biennio Abilità interessate Costruire lo spazio degli eventi in casi semplici e determinarne la cardinalità. Valutare la probabilità in diversi contesti problematici.

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Riepilogo: Postulati del calcolo della probabilità (Kolmogorov): Dato un evento A Ω, dove è lo spazio degli

Dettagli

Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte

Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Anno scolastico 01-01 I Docenti della Disciplina Salerno, settembre 01 Anno scolastico

Dettagli

SOLUZIONI ESERCITAZIONE NR. 6 Variabili casuali binomiale e normale

SOLUZIONI ESERCITAZIONE NR. 6 Variabili casuali binomiale e normale SOLUZIONI ESERCITAZIONE NR. 6 Variabili casuali binomiale e normale ESERCIZIO nr. 1 I Presidi delle scuole medie superiori di una certa cittá italiana hanno indetto tra gli studenti dell ultimo anno una

Dettagli

CENNI DI METODI STATISTICI

CENNI DI METODI STATISTICI Corso di Laurea in Ingegneria Aerospaziale CENNI DI METODI STATISTICI Docente: Page 1 Page 2 Page 3 Due eventi si dicono indipendenti quando il verificarsi di uno non influisce sulla probabilità di accadimento

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

Kangourou Italia Gara del 15 marzo 2001 Categoria Student Per studenti di quarta e quinta superiore

Kangourou Italia Gara del 15 marzo 2001 Categoria Student Per studenti di quarta e quinta superiore Kangourou Italia Gara del 1 marzo 001 Categoria Student Per studenti di quarta e quinta superiore Regole:! La prova è individuale. E vietato l uso di calcolatrici di qualunque tipo.! Vi è una sola risposta

Dettagli