Principi di analisi causale Lezione 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Principi di analisi causale Lezione 2"

Transcript

1 Anno accademico 2007/08 Principi di analisi causale Lezione 2 Docente: prof. Maurizio Pisati Logica della regressione Nella sua semplicità, l espressione precedente racchiude interamente la logica della regressione, riassumibile come segue: Il valore assunto dalla variabile dipendente di interesse in corrispondenza di ogni caso osservato può essere espresso in forma matematica come risultato della combinazione dei valori assunti da un determinato insieme di variabili indipendenti in corrispondenza di quel caso 1

2 Logica della regressione In questi termini, la regressione rappresenta uno strumento finalizzato a spiegare o predire le mutevoli manifestazioni di un dato fenomeno di interesse (la variabile dipendente) sulla base di una o più caratteristiche dei membri della popolazione di riferimento (le variabili indipendenti) Scelta delle variabili indipendenti La prima fase del processo di definizione di ogni modello di regressione consiste nello specificare l insieme delle variabili indipendenti, cioè nello scegliere i fattori di eterogeneità della distribuzione della variabile dipendente che si intendono considerare nell analisi 2

3 Scelta delle variabili indipendenti Come si effettua questa scelta? Quali sono i criteri in base ai quali il ricercatore definisce l insieme delle variabili indipendenti? La risposta a questi interrogativi non è univoca, ma dipende dagli obiettivi dell analisi Scelta delle variabili indipendenti In questo corso prenderemo in esame due strategie alternative di selezione delle variabili indipendenti: L approccio predittivo, finalizzato alla stima di valori sconosciuti della variabile dipendente L approccio causale, finalizzato alla stima dell effetto causale esercitato da una determinata variabile indipendente sulla variabile dipendente 3

4 Approccio predittivo Uno dei possibili obiettivi della regressione è quello di predire con la maggiore precisione possibile uno o più valori sconosciuti della variabile dipendente di interesse Il verbo «predire» è qui usato in senso lato per indicare tre tipi di attività conoscitiva Approccio predittivo Prevedere il valore che la variabile dipendente potrà assumere in futuro in corrispondenza di un determinato caso 4

5 Approccio predittivo Ipotizzare il valore che la variabile dipendente avrebbe potuto assumere in passato in corrispondenza di un determinato caso se si fossero verificate determinate condizioni Approccio predittivo Inferire il valore effettivamente assunto dalla variabile dipendente in corrispondenza di un determinato caso 5

6 Approccio predittivo Questi tre tipi di «predizione» si distinguono fra loro perché il valore di interesse della variabile dipendente nel primo caso non si è ancora realizzato, nel secondo caso non si è mai realizzato e nel terzo caso si è già realizzato ma non è ancora stato osservato Modello di regressione Sul piano puramente matematico, specificare un modello di regressione e stimarne i parametri incogniti significa definire le regole di trasformazione che consentono di esprimere il valore assunto dalla variabile dipendente in corrispondenza di un dato caso come combinazione dei valori assunti da un determinato insieme di variabili indipendenti in corrispondenza di quel caso 6

7 Modello di regressione V1 V2 V3 ƒ y V4 Modelli predittivi In questi termini, l uso della regressione a scopo predittivo può essere visto come un procedimento che si articola in tre fasi 7

8 Modelli predittivi: fase 1 La prima fase consiste nello specificare il modello di regressione desiderato Questa fase comprende: la definizione della variabile dipendente di interesse (che, in questo caso, rappresenta il fenomeno oggetto di predizione o target) la selezione delle variabili indipendenti (che, in questo caso, rappresentano le caratteristiche predittive o predittori) Modelli predittivi: fase 1 Per scegliere le variabili indipendenti è necessario disporre di un appropriata matrice dei dati, specificamente di un insieme di casi detti esempi di cui siano noti sia i valori assunti dalle variabili indipendenti considerate, sia i valori assunti dalla variabile dipendente di interesse 8

9 Modelli predittivi: fase 2 La seconda fase consiste nello stimare i valori incogniti dei parametri del modello di regressione prescelto Modelli predittivi: fase 3 La terza fase consiste nell usare le regole di trasformazione definite nelle due fasi precedenti per stimare i valori sconosciuti della variabile dipendente corrispondenti a una o più situazioni di interesse, cioè a una o più combinazioni (reali o ipotetiche) di valori delle variabili indipendenti incluse nel modello di regressione prescelto 9

10 Modello di regressione yˆ i = α + β x + β x + β x + β 1 i1 2 i2 3 i3 4 x i4 Scelta delle variabili indipendenti L obiettivo «naturale» di qualsiasi modello predittivo è quello di generare predizioni il più possibile accurate, cioè il più possibile aderenti alla realtà Il potere predittivo di un dato modello di regressione tende a essere tanto maggiore quanto maggiore è la sua capacità di rappresentare «fedelmente» l eterogeneità che caratterizza la distribuzione della variabile dipendente 10

11 Scelta delle variabili indipendenti In linea di principio, ogni modello di regressione avente finalità predittive dovrebbe includere, in qualità di variabili indipendenti, tutte le variabili (più le loro eventuali interazioni) che contribuiscono in misura significativa a produrre l eterogeneità osservata nella distribuzione della variabile dipendente Scelta delle variabili indipendenti L errore di predizione di un modello di regressione può essere definito come scostamento complessivo fra i valori osservati della variabile dipendente e i corrispondenti valori predetti dal modello 11

12 Scelta delle variabili indipendenti Nell insieme delle variabili indipendenti di un modello di regressione avente finalità predittive vanno incluse tutte le variabili che, da sole o in interazione con altre variabili, contribuiscono a minimizzare l errore di predizione del modello Scelta delle variabili indipendenti Dall insieme delle variabili indipendenti di un modello di regressione avente finalità predittive vanno escluse tutte le variabili che non contribuiscono in alcuna misura a minimizzare l errore di predizione del modello 12

13 Scelta delle variabili indipendenti In primo luogo si definisce l insieme di tutte le potenziali caratteristiche predittive di y In secondo luogo, da questo insieme iniziale si estraggono usando un appropriata matrice dei dati solo quelle variabili che contribuiscono effettivamente a minimizzare l errore di predizione del modello 13

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

La ricerca operativa

La ricerca operativa S.S.I.S. PUGLIA Anno Accademico 2003/2004 Laboratorio di didattica della matematica per l economia e la finanza La ricerca operativa Prof. Palmira Ronchi (palmira.ronchi@ssis.uniba.it) Gli esercizi presenti

Dettagli

Corso semestrale di Analisi e Contabilità dei Costi

Corso semestrale di Analisi e Contabilità dei Costi Corso semestrale di Analisi e Contabilità dei Costi Aureli Selena 1_Sistema di controllo e contabilità analitica Perché analizzare i costi aziendali? La CONOSCENZA DEI COSTI (formazione, composizione,

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

Modelli matematici avanzati per l azienda a.a. 2010-2011

Modelli matematici avanzati per l azienda a.a. 2010-2011 Modelli matematici avanzati per l azienda a.a. 2010-2011 Docente: Pasquale L. De Angelis deangelis@uniparthenope.it tel. 081 5474557 http://www.economia.uniparthenope.it/siti_docenti P.L.DeAngelis Modelli

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

lezione 18 AA 2015-2016 Paolo Brunori

lezione 18 AA 2015-2016 Paolo Brunori AA 2015-2016 Paolo Brunori Previsioni - spesso come economisti siamo interessati a prevedere quale sarà il valore di una certa variabile nel futuro - quando osserviamo una variabile nel tempo possiamo

Dettagli

Corso di. Analisi e contabilità dei costi

Corso di. Analisi e contabilità dei costi Corso di Analisi e Contabilità dei Costi Prof. 1_I costi e il sistema di controllo Perché analizzare i costi aziendali? La CONOSCENZA DEI COSTI (formazione, composizione, comportamento) utile EFFETTUARE

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. CLASSE quinta INDIRIZZO AFM-SIA-RIM-TUR UdA n. 1 Titolo: LE FUNZIONI DI DUE VARIABILI E L ECONOMIA Utilizzare le strategie del pensiero razionale negli aspetti dialettici e algoritmici per affrontare situazioni

Dettagli

Gli aspetti economici di stima

Gli aspetti economici di stima Gli aspetti economici di stima Generalità Per aspetto economico o criterio di stima si intende il tipo di valore che si intende attribuire a un bene economico. Per tipo di valore si intende uno schema

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 29-Analisi della potenza statistica vers. 1.0 (12 dicembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Laboratorio di Pedagogia Sperimentale. Indice

Laboratorio di Pedagogia Sperimentale. Indice INSEGNAMENTO DI LABORATORIO DI PEDAGOGIA SPERIMENTALE LEZIONE III INTRODUZIONE ALLA RICERCA SPERIMENTALE (PARTE III) PROF. VINCENZO BONAZZA Indice 1 L ipotesi -----------------------------------------------------------

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

Elementi di statistica. Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1

Elementi di statistica. Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1 Elementi di statistica Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1 Statistica La statistica si può definire come: l insieme dei metodi

Dettagli

Lezione 1 Introduzione

Lezione 1 Introduzione Lezione 1 Introduzione Argomenti Cosa è l Economia politica I principi fondamentali dell Economia politica Cosa studia l Economia politica Perché studiare l Economia politica 1.1 COSA È L ECONOMIA POLITICA

Dettagli

DoE - Design of Experiment

DoE - Design of Experiment 3 Tecniche di DoE DoE - Design of Experiment Sequenza di Prove Sperimentali da Effettuare per Studiare e Ottimizzare un Processo Un esperimento programmato è una prova o una serie di prove in cui vengono

Dettagli

Modulo didattico sulla misura di grandezze fisiche: la lunghezza

Modulo didattico sulla misura di grandezze fisiche: la lunghezza Modulo didattico sulla misura di grandezze fisiche: la lunghezza Lezione 1: Cosa significa confrontare due lunghezze? Attività n 1 DOMANDA N 1 : Nel vostro gruppo qual è la matita più lunga? DOMANDA N

Dettagli

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica.

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica. Esempio Risultati sperimentali Approssimazione con il criterio dei minimi quadrati Esempio Interpolazione con spline cubica. Esempio 1 Come procedere? La natura del fenomeno suggerisce che una buona approssimazione

Dettagli

Multicollinearità Strumenti quantitativi per la gestione

Multicollinearità Strumenti quantitativi per la gestione Strumenti quantitativi per la gestione Emanuele Taufer Quando non tutto va come dovrebbe I dati Scatter plot Correlazioni RLS e RLM Individuare la MC Variance Inflation Factor Cosa fare in caso di MC Alcune

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

Automazione Industriale (scheduling+mms) scheduling+mms. adacher@dia.uniroma3.it

Automazione Industriale (scheduling+mms) scheduling+mms. adacher@dia.uniroma3.it Automazione Industriale (scheduling+mms) scheduling+mms adacher@dia.uniroma3.it Introduzione Sistemi e Modelli Lo studio e l analisi di sistemi tramite una rappresentazione astratta o una sua formalizzazione

Dettagli

1. Scopo dell esperienza.

1. Scopo dell esperienza. 1. Scopo dell esperienza. Lo scopo di questa esperienza è ricavare la misura di tre resistenze il 4 cui ordine di grandezza varia tra i 10 e 10 Ohm utilizzando il metodo olt- Amperometrico. Tale misura

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA) Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

Che cos è l intelligenza e come funzionano i test del Q.I.

Che cos è l intelligenza e come funzionano i test del Q.I. Che cos è l intelligenza e come funzionano i test del Q.I. Non esiste, al giorno d oggi, un parere unanime della comunità scientifica sulla definizione di intelligenza. In generale, potremmo dire che è

Dettagli

Pedagogia Sperimentale

Pedagogia Sperimentale Pedagogia Sperimentale Caterina Cangià Anno Accademico 2012-2013 LUMSA Formazione Primaria INTRODUZIONE 02. 2 Cos è una STRATEGIA DI RICERCA? Cos è una STRATEGIA DI RICERCA? È l uqlizzo di varie tecniche,

Dettagli

ISI MANUALE PER CORSI QUALITÀ CONTROLLO STATISTICO DEL PROCESSO MANUALE DI UTILIZZO ISI PAGINA 1 DI 9

ISI MANUALE PER CORSI QUALITÀ CONTROLLO STATISTICO DEL PROCESSO MANUALE DI UTILIZZO ISI PAGINA 1 DI 9 CONTROLLO STATISTICO DEL PROCESSO MANUALE DI UTILIZZO ISI PAGINA 1 DI 9 INTRODUZIONE 1.0 PREVENZIONE CONTRO INDIVIDUAZIONE. L'approccio tradizionale nella fabbricazione dei prodotti consiste nel controllo

Dettagli

I Modelli della Ricerca Operativa

I Modelli della Ricerca Operativa Capitolo 1 I Modelli della Ricerca Operativa 1.1 L approccio modellistico Il termine modello è di solito usato per indicare una costruzione artificiale realizzata per evidenziare proprietà specifiche di

Dettagli

Domanda e offerta di lavoro

Domanda e offerta di lavoro Domanda e offerta di lavoro 1. Assumere (e licenziare) lavoratori Anche la decisione di assumere o licenziare lavoratori dipende dai costi che si devono sostenere e dai ricavi che si possono ottenere.

Dettagli

La costruzione di strumenti per la verifica delle competenze. LA PROVA ESPERTA

La costruzione di strumenti per la verifica delle competenze. LA PROVA ESPERTA La costruzione di strumenti per la verifica delle competenze. LA PROVA ESPERTA 1 CONCETTO DI PROVA ESPERTA Per prova esperta si intende una prova di verifica che non si limiti a misurare conoscenze e abilità,

Dettagli

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO Pasquale Iandolo Laboratorio analisi ASL 4 Chiavarese, Lavagna (GE) 42 Congresso Nazionale SIBioC Roma

Dettagli

CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA

CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA ANNO ACCADEMICO 2013-2014 UNIVERSITA DEGLI STUDI DI TERAMO FACOLTA DI MEDICINA VETERINARIA CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA CFU 5 DURATA DEL CORSO : ORE 35 DOCENTE PROF. DOMENICO DI DONATO

Dettagli

PROGETTAZIONE DI UN EAS

PROGETTAZIONE DI UN EAS PROGETTAZIONE DI UN EAS Nome docente Camerlenghi Anna, Demartini Claudia, Turco Maria Cristina Titolo dell'eas P.E.T. Potrei essere trasformata (?) Storie di bottiglie e non solo Target (classe, età alunni...)

Dettagli

CIRCE Scheda 1 I CENTRI DI RESPONSABILITA E I LORO PRODOTTO. Dati quantitativi del prodotto. Descrizione Amministrazione:... Anno:.. Mese:..

CIRCE Scheda 1 I CENTRI DI RESPONSABILITA E I LORO PRODOTTO. Dati quantitativi del prodotto. Descrizione Amministrazione:... Anno:.. Mese:.. CIRCE Scheda 1 I CENTRI DI RESPONSABILITA E I LORO PRODOTTO Descrizione Amministrazione:.... Anno:.. Mese:.. Dati quantitativi del prodotto (1) CdR (2) prodotto (3) Prodotto (4) Volume nell anno (5) Tempo

Dettagli

La categoria «ES» presenta (di solito) gli stessi comandi

La categoria «ES» presenta (di solito) gli stessi comandi Utilizzo delle calcolatrici FX 991 ES+ Parte II PARMA, 11 Marzo 2014 Prof. Francesco Bologna bolfra@gmail.com ARGOMENTI DELLA LEZIONE 1. Richiami lezione precedente 2.Calcolo delle statistiche di regressione:

Dettagli

UNITÀ DIDATTICA di APPRENDIMENTO RIF.Competenza: 4 A.S. 2015/2016. TITOLO: Tecniche di Confezione nell abbigliamento COD. UDA N 4 A PRESENTAZIONE

UNITÀ DIDATTICA di APPRENDIMENTO RIF.Competenza: 4 A.S. 2015/2016. TITOLO: Tecniche di Confezione nell abbigliamento COD. UDA N 4 A PRESENTAZIONE UDA N 4 Tecniche di Confezione nell abbigliamento UNITÀ DIDATTICA di APPRENDIMENTO RIF.Competenza: 4 A.S. 2015/2016 TITOLO: Tecniche di Confezione nell abbigliamento COD. UDA N 4 A PRESENTAZIONE Destinatari

Dettagli

Modelli di Programmazione Lineare e Programmazione Lineare Intera

Modelli di Programmazione Lineare e Programmazione Lineare Intera Modelli di Programmazione Lineare e Programmazione Lineare Intera 1 Azienda Dolciaria Un azienda di cioccolatini deve pianificare la produzione per i prossimi m mesi. In ogni mese l azienda ha a disposizione

Dettagli

Strategie alternative ai metodi sperimentali

Strategie alternative ai metodi sperimentali Strategie alternative ai metodi sperimentali 1. 2. I quasi-esperimenti (non sperimentali) prevedono la descrizione del fenomeno in esame. Il metodo descrive le variabili in esame, non prevede alcuna manipolazione

Dettagli

La Regressione Lineare

La Regressione Lineare La Regressione Lineare. Cos è l Analisi della Regressione Multipla? L analisi della regressione multipla è una tecnica statistica che può essere impiegata per analizzare la relazione tra una variabile

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

Regressione Lineare con un Singolo Regressore

Regressione Lineare con un Singolo Regressore Regressione Lineare con un Singolo Regressore Quali sono gli effetti dell introduzione di pene severe per gli automobilisti ubriachi? Quali sono gli effetti della riduzione della dimensione delle classi

Dettagli

11. Analisi statistica degli eventi idrologici estremi

11. Analisi statistica degli eventi idrologici estremi . Analisi statistica degli eventi idrologici estremi I processi idrologici evolvono, nello spazio e nel tempo, secondo modalità che sono in parte predicibili (deterministiche) ed in parte casuali (stocastiche

Dettagli

Mirco Nanni KDD Lab,ISTI-CNR, Pisa mirco.nanni@isti.cnr.it. DM 2012, 28 marzo 2012. Churn analysis. Introduzione

Mirco Nanni KDD Lab,ISTI-CNR, Pisa mirco.nanni@isti.cnr.it. DM 2012, 28 marzo 2012. Churn analysis. Introduzione Mirco Nanni KDD Lab,ISTI-CNR, Pisa mirco.nanni@isti.cnr.it DM 2012, 28 marzo 2012 Churn analysis Introduzione Contesto generale Attività e servizi caratterizzati da un rapporto continuativo tra fornitore

Dettagli

Un modello matematico di investimento ottimale

Un modello matematico di investimento ottimale Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Investimento per un singolo agente

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.

Dettagli

MINIMIZZAZIONE DEI COSTI

MINIMIZZAZIONE DEI COSTI Università degli studi di MACERATA Facoltà di SCIENZE POLITICHE ECONOMIA POLITICA: MICROECONOMIA A.A. 2009/2010 MINIMIZZAZIONE DEI COSTI Fabio CLEMENTI E-mail: fabio.clementi@univpm.it Web: http://docenti.unimc.it/docenti/fabio-clementi

Dettagli

Lezione 1 Organizzazione, organi e relazioni

Lezione 1 Organizzazione, organi e relazioni Lezione 1 Organizzazione, organi e relazioni Economia e Organizzazione Aziendale Modulo 4 - L organizzazione aziendale Unità didattica 1 Concetti base dell organizzazione Antonio Dallara Concetto di organizzazione

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

Clickomania con Blockly

Clickomania con Blockly Clickomania con Blockly Violetta Lonati Sommario Clickomania è un solitario, noto anche come Chain Shot! o Same Game. Il campo di gioco è costituito da una parete inizialmente coperta di mattoni, uno per

Dettagli

OSSERVAZIONI TEORICHE Lezione n. 4

OSSERVAZIONI TEORICHE Lezione n. 4 OSSERVAZIONI TEORICHE Lezione n. 4 Finalità: Sistematizzare concetti e definizioni. Verificare l apprendimento. Metodo: Lettura delle OSSERVAZIONI e risoluzione della scheda di verifica delle conoscenze

Dettagli

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla Il metodo della regressione può essere esteso dal caso in cui si considera la variabilità della risposta della y in relazione ad una sola variabile indipendente X ad una situazione più generale in cui

Dettagli

l insieme delle misure effettuate costituisce il campione statistico

l insieme delle misure effettuate costituisce il campione statistico Statistica negli esperimenti reali si effettuano sempre un numero finito di misure, ( spesso molto limitato ) l insieme delle misure effettuate costituisce il campione statistico Statistica descrittiva

Dettagli

Metodi di previsione

Metodi di previsione Metodi di previsione Giovanni Righini Università degli Studi di Milano Corso di Logistica I metodi di previsione I metodi di previsione sono usati per ricavare informazioni a sostegno dei processi decisionali

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 39 Introduzione Come si è detto,

Dettagli

Management Sanitario. Modulo di Ricerca Operativa

Management Sanitario. Modulo di Ricerca Operativa Management Sanitario per il corso di Laurea Magistrale SCIENZE RIABILITATIVE DELLE PROFESSIONI SANITARIE Modulo di Ricerca Operativa Prof. Laura Palagi http://www.dis.uniroma1.it/ palagi Dipartimento di

Dettagli

UNITA DI APPRENDIMENTO per la scuola primaria Denominazione Che ora è? Il tempo e gli strumenti per misurarlo. Costruiamo ll orologio.

UNITA DI APPRENDIMENTO per la scuola primaria Denominazione Che ora è? Il tempo e gli strumenti per misurarlo. Costruiamo ll orologio. UNITA DI APPRENDIMENTO per la scuola primaria Denominazione Che ora è? Il tempo e gli strumenti per misurarlo. Costruiamo ll orologio. Prodotti Competenze mirate (Competenze chiave europee e competenze

Dettagli

PIANO DI LAVORO. Prof. BRACCINI MARUSCA DISCIPLINA: MARKETING. Classe 5 Sezione CLM

PIANO DI LAVORO. Prof. BRACCINI MARUSCA DISCIPLINA: MARKETING. Classe 5 Sezione CLM PIANO DI LAVORO Prof. BRACCINI MARUSCA DISCIPLINA: MARKETING Classe 5 Sezione CLM MODULI DURATA (IN ORE) L ambiente economico competitivo dell impresa 25 Il marketing operativo 30 Il piano di marketing

Dettagli

PIANO DI LAVORO (a.s. 2015/2016)

PIANO DI LAVORO (a.s. 2015/2016) Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi) Via Firenze, 51 - Tel. 0587/213400 - Fax 0587/52742 http://www.itcgfermi.it E-mail: mail@itcgfermi.it PIANO DI LAVORO (a.s. 2015/2016)

Dettagli

I.I.S. Primo Levi Badia Polesine A.S. 2012-2013

I.I.S. Primo Levi Badia Polesine A.S. 2012-2013 LGEBR DI BOOLE I.I.S. Primo Levi Badia Polesine.S. 2012-2013 Nel secolo scorso il matematico e filosofo irlandese Gorge Boole (1815-1864), allo scopo di procurarsi un simbolismo che gli consentisse di

Dettagli

Operatori logici e porte logiche

Operatori logici e porte logiche Operatori logici e porte logiche Operatori unari.......................................... 730 Connettivo AND........................................ 730 Connettivo OR..........................................

Dettagli

1. Competenze trasversali

1. Competenze trasversali 1 ISTITUTO D ISTRUZIONE SUPERIORE G. CENA SEZIONE TECNICA ANNO SCOLASTICO 2015/2016 PROGRAMMAZIONE DIDATTICA DI MATEMATICA DOCENTI: PROF. ANGERA GIANFRANCO CLASSE V U TUR Secondo le linee guida, il corso

Dettagli

(a cura di Francesca Godioli)

(a cura di Francesca Godioli) lezione n. 12 (a cura di Francesca Godioli) Ad ogni categoria della variabile qualitativa si può assegnare un valore numerico che viene chiamato SCORE. Passare dalla variabile qualitativa X2 a dei valori

Dettagli

PIANO DI LAVORO ANNUALE

PIANO DI LAVORO ANNUALE PIANO DI LAVORO ANNUALE ISTITUTO: liceo scienze applicate liceo classico X Itc I.Enogastronomia/ospitalità Liceo artistico Scuola media annessa INSEGNANTE: MONICA BIANCHI MATERIA DI INSEGNAMENTO: MATEMATICA

Dettagli

Introduzione. Articolazione della dispensa. Il sistema del controllo di gestione. Introduzione. Controllo di Gestione

Introduzione. Articolazione della dispensa. Il sistema del controllo di gestione. Introduzione. Controllo di Gestione Introduzione Perché il controllo di gestione? L azienda, come tutte le altre organizzazioni, è un sistema che è rivolto alla trasformazione di input (risorse tecniche, finanziarie e umane) in output (risultati

Dettagli

Corso di Alta Formazione per il management di Impresa Sociale (CAFIS)

Corso di Alta Formazione per il management di Impresa Sociale (CAFIS) Corso di Alta Formazione per il management di Impresa Sociale (CAFIS) GIAN LUIGI BULSEI Università del Piemonte Orientale Investire in formazione: l esperienza del CAFIS Perché il CAFIS Fornire un supporto

Dettagli

Verifica di ipotesi e intervalli di confidenza nella regressione multipla

Verifica di ipotesi e intervalli di confidenza nella regressione multipla Verifica di ipotesi e intervalli di confidenza nella regressione multipla Eduardo Rossi 2 2 Università di Pavia (Italy) Maggio 2014 Rossi MRLM Econometria - 2014 1 / 23 Sommario Variabili di controllo

Dettagli

Metodi e tecniche di analisi dei dati nella ricerca psico-educativa Parte II

Metodi e tecniche di analisi dei dati nella ricerca psico-educativa Parte II Laboratorio Metodi e tecniche di analisi dei dati nella ricerca psico-educativa Parte II Laura Palmerio Università Tor Vergata A.A. 2005/2006 Ipotesi sperimentale o alternativa e Ipotesi zero o nulla Ipotesi

Dettagli

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Introduzione : analisi delle relazioni tra due caratteristiche osservate sulle stesse unità statistiche studio del comportamento di due caratteri

Dettagli

Effetti sull opinione di pazienti riguardo all utilizzo di un computer in uno studio medico nell assistenza ordinaria

Effetti sull opinione di pazienti riguardo all utilizzo di un computer in uno studio medico nell assistenza ordinaria Effetti sull opinione di pazienti riguardo all utilizzo di un computer in uno studio medico nell assistenza ordinaria Christopher N. Sciamanna, Scott P. Novak, Bess H. Marcus. International Journal of

Dettagli

Fr = 1 / [ ( 2 * π ) * ( L * C ) ]

Fr = 1 / [ ( 2 * π ) * ( L * C ) ] 1.6 I circuiti risonanti I circuiti risonanti, detti anche circuiti accordati o selettivi, sono strutture fondamentali per la progettazione dell elettronica analogica; con essi si realizzano oscillatori,

Dettagli

La Minimizzazione dei costi

La Minimizzazione dei costi La Minimizzazione dei costi Il nostro obiettivo è lo studio del comportamento di un impresa che massimizza il profitto sia in mercati concorrenziali che non concorrenziali. Ora vedremo la fase della minimizzazione

Dettagli

Il sapere tende oggi a caratterizzarsi non più come un insieme di contenuti ma come un insieme di metodi e di strategie per risolvere problemi.

Il sapere tende oggi a caratterizzarsi non più come un insieme di contenuti ma come un insieme di metodi e di strategie per risolvere problemi. E. Calabrese: Fondamenti di Informatica Problemi-1 Il sapere tende oggi a caratterizzarsi non più come un insieme di contenuti ma come un insieme di metodi e di strategie per risolvere problemi. L'informatica

Dettagli

Statistical learning Strumenti quantitativi per la gestione

Statistical learning Strumenti quantitativi per la gestione Statistical learning Strumenti quantitativi per la gestione Emanuele Taufer Vendite Simbologia Reddito Statistical learning A cosa ci serve f? 1 Previsione 2 Inferenza Previsione Errore riducibile e errore

Dettagli

Concetti preliminari teorici per il corso di Access Avanzato - Sc.Elem Falcone - PON 2010 - Prof. M. Simone

Concetti preliminari teorici per il corso di Access Avanzato - Sc.Elem Falcone - PON 2010 - Prof. M. Simone Concetti preliminari per il corso di Access di database e di DBMS Un database è un insieme ben organizzato di informazioni distribuite su più tabelle all interno dello stesso file e gestite da un apposito

Dettagli

Laboratorio di Termodinamica

Laboratorio di Termodinamica Anno Accademico 2003-2004 Prof. Claudio Luci Laboratorio di Termodinamica http://www.roma1.infn.it/people/luci/corso_labotermo.html Introduzione al corso Richiami di termologia Termometri Calorimetria

Dettagli

LA PREVISIONE DELLA DOMANDA. Corso di Gestione della Produzione prof. De Toni, ing. Fornasier 1

LA PREVISIONE DELLA DOMANDA. Corso di Gestione della Produzione prof. De Toni, ing. Fornasier 1 LA PREVISIONE DELLA DOMANDA Corso di Gestione della Produzione prof. De Toni, ing. Fornasier 1 MANUFACTURING PLANNING & CONTROL SYSTEM Resource planning Production planning Demand management Master production

Dettagli

RACCOLTA, VALIDAZIONE E CONTROLLO DI QUALITÀ DEI DATI

RACCOLTA, VALIDAZIONE E CONTROLLO DI QUALITÀ DEI DATI RACCOLTA, VALIDAZIONE E CONTROLLO DI QUALITÀ DEI DATI 13 SETTEMBRE - 22 OTTOBRE 2004 organizzato da: ISTITUTO SUPERIORE DI SANITA' Ufficio Relazioni Esterne N ID CORSO: 8804 ISTITUTO SUPERIORE DI SANITA

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

Capitolo 5. La produzione e i costi

Capitolo 5. La produzione e i costi Capitolo 5 La produzione e i costi Spostiamo l'attenzione sulle imprese La natura delle imprese L'impresa è una organizzazione, posseduta e gestita da privati, specializzata nella produzione La produzione

Dettagli

Capitolo 1. Contenuti, scopi e metodi dell Estimo. Manuale di Estimo Vittorio Gallerani, Giacomo Zanni, Davide Viaggi

Capitolo 1. Contenuti, scopi e metodi dell Estimo. Manuale di Estimo Vittorio Gallerani, Giacomo Zanni, Davide Viaggi Capitolo 1 Contenuti, scopi e metodi dell Estimo Estimo e pianificazione territoriale a.a. 2005-2006 Corsi di laurea in STAGR (ind. sostenibile) STAS 6 CFU Programma Materiale didattico 1.1 Contenuti e

Dettagli

Economia Aziendale- Corso Progredito

Economia Aziendale- Corso Progredito Economia Aziendale- Corso Progredito Valutazione delle Banche!!! Palmeri Stefano! Voina Daniela! Introduzione Una banca è un istituto di credito che esercita congiuntamente l'attività di raccolta del risparmio

Dettagli

Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte

Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Anno scolastico 01-01 I Docenti della Disciplina Salerno, settembre 01 Anno scolastico

Dettagli

GUIDA DI APPROFONDIMENTO IL CONTROLLO DI GESTIONE: LA CONTABILITÁ ANALITICA

GUIDA DI APPROFONDIMENTO IL CONTROLLO DI GESTIONE: LA CONTABILITÁ ANALITICA WWW.SARDEGNAIMPRESA.EU GUIDA DI APPROFONDIMENTO IL CONTROLLO DI GESTIONE: LA CONTABILITÁ ANALITICA A CURA DEL BIC SARDEGNA SPA 1 SOMMARIO LA NOZIONE E LE CARATTERISTICHE DELLA CONTABILITÀ ANALITICA...

Dettagli

PROGETTO L. INGLESE (Lab. alunni) Move on Trinity 2 RELAZIONE FINALE

PROGETTO L. INGLESE (Lab. alunni) Move on Trinity 2 RELAZIONE FINALE ISTITUTO COMPRENSIVO STATALE G.MARCONI Via Gen.A.Di Giorgio, 4-90143 Palermo Tel e Fax: 091.6255080 e-mail : paic89300r@istruzione.it sito web: www.scuolamediamarconipa.gov.it COD.MEC.: paic89300r PROGETTO

Dettagli

PROGRAMMAZIONE COMPETENZE CHIAVE DI CITTADINANZA

PROGRAMMAZIONE COMPETENZE CHIAVE DI CITTADINANZA PROGRAMMAZIONE COMPETENZE CHIAVE DI CITTADINANZA COMPETENZA 1 IMPARARE AD IMPARARE Abilità/ Capacità Organizzare il proprio lavoro autonomamente - Rispettare le consegne - Mettere in atto strategie appropriate

Dettagli

UNIT 8 Soluzione del problema di controllo con Modelli Poveri 3 - Sintesi per tentativi degli asservimenti nel dominio della variabile complessa

UNIT 8 Soluzione del problema di controllo con Modelli Poveri 3 - Sintesi per tentativi degli asservimenti nel dominio della variabile complessa UNIT 8 Soluzione del problema di controllo con Modelli Poveri 3 - Sintesi per tentativi degli asservimenti nel dominio della variabile complessa Corso di Controlli Automatici Prof. Tommaso Leo Indice UNIT

Dettagli

TECNICHE DI STIMA DEL COSTO DEL CAPITALE AZIONARIO. Docente: Prof. Massimo Mariani

TECNICHE DI STIMA DEL COSTO DEL CAPITALE AZIONARIO. Docente: Prof. Massimo Mariani TECNICHE DI STIMA DEL COSTO DEL CAPITALE AZIONARIO Docente: Prof. Massimo Mariani 1 SOMMARIO Il costo del capitale: la logica di fondo Le finalità del calcolo del costo del capitale Il costo del capitale

Dettagli

I ESERCITAZIONE. Gruppo I 100 individui. Trattamento I Nuovo Farmaco. Osservazione degli effetti sul raffreddore. Assegnazione casuale

I ESERCITAZIONE. Gruppo I 100 individui. Trattamento I Nuovo Farmaco. Osservazione degli effetti sul raffreddore. Assegnazione casuale I ESERCITAZIONE ESERCIZIO 1 Si vuole testare un nuovo farmaco contro il raffreddore. Allo studio partecipano 200 soggetti sani della stessa età e dello stesso sesso e con caratteristiche simili. i) Che

Dettagli

Comunicazione. per il. Sintesi. Linee Guida e Materiali Didattici. Competenze di Base per il Lavoro

Comunicazione. per il. Sintesi. Linee Guida e Materiali Didattici. Competenze di Base per il Lavoro Competenze di base e Comunicazione per il Settore delle Pulizie Sintesi Linee Guida e Materiali Didattici Competenze di Base per il Lavoro Competenze di base e comunicative per lavoratori scarsamente qualificati

Dettagli

Lezione 2. Il modello entità relazione

Lezione 2. Il modello entità relazione Lezione 2 Il modello entità relazione Pag.1 Introduzione alla progettazione delle basi di dati 1. Analisi dei requisiti Quali sono le entità e le relazioni dell organizzazione? Quali informazioni su queste

Dettagli

Modulo: Scarsità e scelta

Modulo: Scarsità e scelta In queste pagine è presentato un primo modello di conversione di concetti, schemi e argomentazioni di natura teorica relativi all argomento le scelte di consumo (presentato preliminarmente in aula e inserito

Dettagli

Informatica 3. Informatica 3. LEZIONE 10: Introduzione agli algoritmi e alle strutture dati. Lezione 10 - Modulo 1. Importanza delle strutture dati

Informatica 3. Informatica 3. LEZIONE 10: Introduzione agli algoritmi e alle strutture dati. Lezione 10 - Modulo 1. Importanza delle strutture dati Informatica 3 Informatica 3 LEZIONE 10: Introduzione agli algoritmi e alle strutture dati Modulo 1: Perchè studiare algoritmi e strutture dati Modulo 2: Definizioni di base Lezione 10 - Modulo 1 Perchè

Dettagli

Valutare un test. Affidabilità e validità di un test. Sensibilità e specificità

Valutare un test. Affidabilità e validità di un test. Sensibilità e specificità Valutare un test 9 Quando si sottopone una popolazione ad una procedura diagnostica, non tutti i soggetti malati risulteranno positivi al test, così come non tutti i soggetti sani risulteranno negativi.

Dettagli

Ing. Simone Giovannetti

Ing. Simone Giovannetti Università degli Studi di Firenze Dipartimento di Elettronica e Telecomunicazioni Ing. Simone Giovannetti Firenze, 29 Maggio 2012 1 Incertezza di Misura (1/3) La necessità di misurare nasce dall esigenza

Dettagli

ISTITUTO TECNICO STATALE MARCONI CAGLIARI ANNO SCOLASTICO 2015/2016 PROGRAMMAZIONE DIDATTICA ANNUALE DISCIPLINA: LINGUA INGLESE CLASSE: I S

ISTITUTO TECNICO STATALE MARCONI CAGLIARI ANNO SCOLASTICO 2015/2016 PROGRAMMAZIONE DIDATTICA ANNUALE DISCIPLINA: LINGUA INGLESE CLASSE: I S ISTITUTO TECNICO STATALE MARCONI CAGLIARI ANNO SCOLASTICO 2015/2016 PROGRAMMAZIONE DIDATTICA ANNUALE DISCIPLINA: LINGUA INGLESE CLASSE: I S DOCENTE: PROF.SSA CARLA COCCO OBIETTIVI EDUCATIVI E FORMATIVI

Dettagli

Lezione 8. La macchina universale

Lezione 8. La macchina universale Lezione 8 Algoritmi La macchina universale Un elaboratore o computer è una macchina digitale, elettronica, automatica capace di effettuare trasformazioni o elaborazioni su i dati digitale= l informazione

Dettagli