INSEGNAMENTO DI ANALISI DI DATI BIOLOGICI LM IN BIOINGEGNERIA - A.A.2013/2014 HOMEWORK 3

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "INSEGNAMENTO DI ANALISI DI DATI BIOLOGICI LM IN BIOINGEGNERIA - A.A.2013/2014 HOMEWORK 3"

Transcript

1 INSEGNAMENTO DI ANALISI DI DATI BIOLOGICI LM IN BIOINGEGNERIA - A.A.2013/2014 HOMEWORK 3 COGNOME: Montanino NOME: Annaclaudia MATRICOLA: DATA: 13 gennaio allegati: montanino_h3_4.zip ESERCIZIO H3_4: Problema ispirato dall articolo reperibile su Nel file smbg.mat sono contenuti dati di Self Monitoring Blood Glucose (SMBG) di un soggetto diabetico. Le misurazioni SMBG sono state eseguite 3 volte al giorno (equispaziate, sempre alla stessa ora) per un periodo della durata di un mese (non sono presenti missing samples). Analizzando graficamente i dati, il diabetologo che ha in cura questo soggetto diabetico ritiene che possa esistere una ciclicità giornaliera nelle misurazioni, che verosimilmente ruota attorno ad un trend mensile. Possiamo pensare che la misurazione del valore glicemico possa essere strutturata così: y(t) = t(t) + c(t) + v(t) dove t(t) rappresenta il trend mensile, c(t) rappresenta la componente ciclica giornaliera e v(t) è il rumore di misura. L obiettivo di questo homework è quello di implementare uno script per separare le componenti t(t) e c(t) mediante filtraggio alla Kalman, a partire da una serie di campioni rumorosi y(t) contenuti nella variabile ys (file smbg.mat), per cercare di confermare o meno se esistono una ciclicità giornaliera ed un trend mensile. I modelli a priori da usare sono: t(t) descritto da un modello a doppia integrazione di un rumore bianco con varianza λ 2 1 = c(t) descritto come un segnale periodico x 3(t) guidato da rumore bianco w(t) con varianza λ 2 2 =16, la cui frequenza f è relativa al numero di campioni SMBG giornalieri. La struttura in termini di variabili di stato è la seguente: { x 3(t + 1) x 4(t + 1) = cos(2πf)x 3(t) + sin(2πf)x 4(t) = sin(2πf)x 3(t) + cos(2πf)x 4(t) + w(t) Va aggiunto che le misurazioni y(t) sono soggette ad errore con CV v = 0.1%. Utilizzare come valori iniziali il vettore di stato x0 e la matrice P 0 contenuti in smbg.mat. Descrivere e commentare i risultati ottenuti. 1 Introduzione Il Filtraggio alla Kalman, in questo esercizio utilizzato per la separazione di componenti di un segnale rumoroso ys, sfrutta possibilità di scrivere modelli stocastici nella forma di modelli di stato: x(t + 1) = F x(t) + w(t) y(t) = Hx(t) + v(t) Dove x è il vettore di stato che contiene anche ciò che si vuole stimare, F è la matrice di transizione di stato, w è il rumore di modello (con matrice di covarianza Q), y è il vettore delle misure, H è la matrice di trasferimento stato-uscita ed infine v è il rumore di misura (con matrice di covarianza R). Nel caso proposto da questo esercizio si vuole decomporre il segnale y(t) in una componente ciclica giornaliera c(t) e un trend mensile t(t) che esprime le variazioni 1

2 lente, da cui: y(t) = t(t) + c(t) + v(t). Viene inoltre fornito un modello a priori per entrambe le componenti e da questi si deduce la loro formulazione in termini di variabili di stato: t(t + 1) = 2t(t) t(t 1) + w(t) = 2x 1 (t) x 2 (t) w(t) c(t) = x 3 (t) x 3 (t + 1) = cos(2πf)x 3 (t) + sin(2πf)x 4 (t) x 4 (t + 1) = sin(2πf)x 3 (t) + cos(2πf)x 4 (t) + w(t) Da ciò è possibile riscrivere il modello ingresso-uscita sotto forma del seguente modello di stato: x 1 (t + 1) x 1 (t) w 1 x 2 (t + 1) x 3 (t + 1) = x 2 (t) 0 0 cos(2πf) sin(2πf) x 3 (t) x 4 (t + 1) 0 0 sin(2πf) cos(2πf) x 4 (t) w 2 R = cov(v) = x 1 y = [ ] x 2 x 3 + v(t) x 4 λ Q = cov(w) = λ 2 2 (y(1)cv v ) (y(2)cv v ) (y(end)cv v ) 2 Una volta scritto il modello in forma di stato è possibile derivare le equazioni del filtro di Kalman che saranno poi implementate nel codice: P (t + 1 t) = F P (t)f T + Q con P (0) = P 0 K(t + 1) = P (t + 1 t)h T [HP (t + 1 t)h T + R(t)] 1 P (t + 1) = [I N K(t + 1)H]P (t + 1 t) ˆx(t + 1 t) = F ˆx(t t) con ˆx(0) = x 0 e(t + 1) = y(t + 1) H ˆx(t + 1 t) ˆx(t + 1 t + 1) = ˆx(t + 1 t) + K(t + 1)e(t + 1) dove P (t + 1 t) è la covarianza dell errore di predizione ad un passo, K(t + 1) è denominato guadagno del filtro, P (t + 1) è la varianza dello stato al passo t+1, ˆx(t + 1 t) è la predizione ad un passo dello stato (imposto w(t) = 0), e(t + 1) è il residuo di predizione ed infine ˆx(t + 1 t + 1) è la stima dello stato al passo t+1 (passo correttivo in cui vengono usate le misure al tempo t + 1 per raffinare la stima). 2

3 2 Presentazione del codice 2.1 montanino_h3_4.m Lo script montanino_h3_4.m implementa un filtro di Kalman atto alla separazione del segnale y(t) nelle due componenti t(t) e c(t). 1 % Analisi di Dati Biologici - HW3 es4 2 % Annaclaudia Montanino % montanino_h3_4_main. m 4 5 close all 6 clear all 7 clc load smbg 11 n= length (ys ); 12 ts =0:8: n *8-8; 13 f =1/3; 14 F =[ cos (2* pi*f) sin (2* pi*f) sin (2* pi*f) cos (2* pi*f )]; 18 H =[ ]; Q= diag ([ ]); 21 R=( ys.^2)*(0.1/)^2; xold =X0; 24 pold =P0; 25 x= zeros ( length (X0),n); for i =1: n xpred =F* xold ; 30 ppred =F* pold *F +Q; 31 K= ppred *H *1./( H* ppred *H +R(i )); e=ys(i)-h* xpred ; 34 xnew = xpred +K*e; 35 I= eye ( size (Q )); 36 pnew =(I-K*H)* ppred ; pold = pnew ; 39 xold = xnew ; 40 x(:,i)= xnew ; 41 end figure subplot (3,1,1) 47 plot (ts,ys, b ) 48 title ( misurazioni SMBG ) 49 xlabel ( Tempo [h] ) ylabel ( Glicemia [mg/dl] ) 51 axis ([ ]) subplot (3,1,2) 3

4 54 plot (ts,x (1,:)) 55 title ( componente t(t) ) 56 xlabel ( Tempo [h] ) 57 ylabel ( Glicemia [mg/dl] ) 58 axis ([ ]) subplot (3,1,3) 61 plot (ts,x (3,:)) 62 title ( componente c(t) ) 63 xlabel ( Tempo [h] ) 64 ylabel ( Glicemia [mg/dl] ) 65 axis ([ ]) figure plot (ts,ys, b ) 70 hold on 71 plot (ts,x(1,:), r ) 72 hold off 73 title ( Confronto misure - trend mensile ) 74 xlabel ( Tempo [h] ) 75 ylabel ( Glicemia [mg/dl] ) 76 axis ([ ]) RIGA 11-RIGA 13: Una volta caricati i dati, viene calcolato il numero di campioni a disposizione n, viene definita la griglia dei tempi ts il cui passo corrisponde a 8 ore (essendo indicato nelle specifiche che si ha 3 campioni equispaziati all interno di una giornata e che non sono presenti missing samples ). Infine viene calcolata la frequenza dei campioni (usata nel modello a priori di c(t) il cui periodo equivale ad un giorno) f = 1/numero di campioni giornalieri. RIGA 14-RIGA 21: Viene costruita la matrice di transizione di stato F, la matrice di trasferimento stato-uscita H, la matrice di covarianza del rumore di modello Q ed infine il vettore R che contiene le varianze dell errore di misura espresse come (y(t) cv) 2 (in questo caso l errore di misura non è tempo-invariante e bisognerà tenerne conto). RIGA 23-RIGA 25: I valori xold e pold vengono inizializzati ai valori forniti nel file smbg.mat. Si tiene inoltre traccia dell intero vettore di stato x = [x 1 x 2 x 3 x 4 ] T del quale poi ci interesserà ispezionare la prima e la terza componenti essendo t(t) = x 1 (t) e c(t) = x 3 (t). RIGA 27-RIGA 41: All interno di questo ciclo f or sono implementate le equazioni descritte nell introduzione (RIGA 29-RIGA 36). Si sottolinea che, avendo errore di misura tempo-variante, alla RIGA 31 si è utilizzato il valore R(i) corrispondente al campione ys(i) che si sta utilizzando. Infine vengono aggiornati i valori di pold e xold che verranno utilizzati al passo successivo. 4

5 3 Risultati e discussione Nelle figure riportate in questo paragrafo sono raffigurati rispettivamente i campioni rumorosi di concentrazione glicemica, il trend mensile e la componente ciclica giornaliera nella prima immagine, mentre nella seconda si è scelto di plottare il trend mensile sovrapposto ai campioni di concentrazione glicemica. 2 misurazioni SMBG componente t(t) componente c(t) Ciò che è possibile osservare innanzitutto è che i risultati confermano la presenza di una ciclicità giornaliera e di un trend mensile. Il trend mensile presenta un andamento simile alla media temporale delle misurazioni smbg e i valori assunti dalla componente ciclica giornaliera variano nel range [- ]mg/dl. A differenza di ciò che nell introduzione di [1] viene indicato come indice di una soddisfacente terapia, nel nostro caso l andamento del trend mensile è tutt altro che costante e non risulta sempre compreso nella fascia euglicemica [80-140]mg/dl (specialmente nella parte centrale dell asse dei tempi). A tal proposito posso osservare che, ai fini della lettura dei dati da parte di un clinico, il trend mensile riassume efficacemente l informazione contenuta nel segnale misurato: visivamente dove il trend supera la soglia dell iperglicemia, anche ys raggiunge valori fuori soglia. Provando a contare (con semplici istruzioni matlab) i valori sopra la soglia iperglicemica è risultato: 5

6 length(find(ys>140)=51 e length(find(x(1,:)>140)=52 che sono valori confrontabili almeno in prima istanza, anche se per indagini più accurate bisogna tener conto di episodi iperglicemici non rilevati dalla sola componente t(t) e viceversa. Si osserva infine che le informazioni fornite sui modelli a priori (con le rispettive varianze del rumore di modello) e sui valori iniziali x 0 e P 0 sono stati scelti sapientemente: le stime sono fin da subito coerenti con il segnale di origine ed inoltre, provando a ricostruire il segnale y(t) come somma delle due componenti trovate e del rumore v(t), si ottiene un andamento identico a quello di origine. 2 Confronto misure trend mensile ipo iper Bibliografia [1] R. Bellazzi, P. Magni, and G. De Nicolao Bayesian Analysis of Blood Glucose Time Series from Diabetes Home Monitoring, IEEE Transactions on Biomedical Engineering, vol. 47, NO. 7, July

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Come evidenziare l informazione contenuta nei dati S. Marsili-Libelli: Calibrazione di Modelli Dinamici pag. Perche PCA? E un semplice metodo non-parametrico per estrarre

Dettagli

Politecnico di Bari Facoltà di Ingegneria

Politecnico di Bari Facoltà di Ingegneria Politecnico di Bari Facoltà di Ingegneria Dispensa per il Corso di Controlli Automatici I Uso del software di calcolo Matlab 4. per lo studio delle risposte nel tempo dei sistemi lineari tempoinvarianti

Dettagli

Appunti sull uso di matlab - I

Appunti sull uso di matlab - I Appunti sull uso di matlab - I. Inizializazione di vettori.. Inizializazione di matrici.. Usare gli indici per richiamare gli elementi di un vettore o una matrice.. Richiedere le dimensioni di una matrice

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Istantanea Set 28, 2013 - Ott 25, 2013 (28 giorni)

Istantanea Set 28, 2013 - Ott 25, 2013 (28 giorni) PAGINA 1 DI 28 Istantanea Set 28, 2013 - Ott 25, 2013 (28 giorni) Glicemia PERIODO DI REFERTAZIONE SELEZIONATO Test 44% Sopra valore stabilito 41% Nel target 15% Sotto valore stabilito Deviazione standard

Dettagli

Preprocessamento dei Dati

Preprocessamento dei Dati Preprocessamento dei Dati Raramente i dati sperimentali sono pronti per essere utilizzati immediatamente per le fasi successive del processo di identificazione, a causa di: Offset e disturbi a bassa frequenza

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

v in v out x c1 (t) Molt. di N.L. H(f) n

v in v out x c1 (t) Molt. di N.L. H(f) n Comunicazioni elettriche A - Prof. Giulio Colavolpe Compito n. 3 3.1 Lo schema di Fig. 1 è un modulatore FM (a banda larga). L oscillatore che genera la portante per il modulatore FM e per la conversione

Dettagli

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t.

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t. Il programma MATLAB In queste pagine si introduce in maniera molto breve il programma di simulazione MAT- LAB (una abbreviazione di MATrix LABoratory). Introduzione MATLAB è un programma interattivo di

Dettagli

Comandi di Input/Output in Matlab

Comandi di Input/Output in Matlab Comandi di Input/Output in Matlab Il comando format controlla la configurazione numerica dei valori esposta da MAT- LAB; il comando regola solamente come i numeri sono visualizzati o stampati, non come

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Dati importati/esportati

Dati importati/esportati Dati importati/esportati Dati importati Al workspace MATLAB script Dati esportati file 1 File di testo (.txt) Spreadsheet Database Altro Elaborazione dati Grafici File di testo Relazioni Codice Database

Dettagli

Analisi e controllo di uno scambiatore di calore

Analisi e controllo di uno scambiatore di calore Università degli Studi di Roma Tor Vergata FACOLTÀ DI INGNEGNERIA Corso di Laurea Magistrale in Ingegneria dell automazione Progetto per il corso di controllo dei processi Analisi e controllo di uno scambiatore

Dettagli

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione.

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione. IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI Lezione 40: Filtro di Kalman - introduzione Cenni storici Filtro di Kalman e filtro di Wiener Formulazione del problema Struttura ricorsiva della soluzione

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

Lab. 1 - Introduzione a Matlab

Lab. 1 - Introduzione a Matlab Lab. 1 - Introduzione a Matlab Alcune informazioni su Matlab Matlab è uno strumento per il calcolo scientifico utilizzabile a più livelli, dalla calcolatrice tascabile, alla simulazione ed analisi di sistemi

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

Equazioni dierenziali ordinarie del prim'ordine

Equazioni dierenziali ordinarie del prim'ordine 21 Maggio 2012 - Lab. di Complementi di Matematica e Calcolo Numerico Equazioni dierenziali ordinarie del prim'ordine Indice 1 Integrazione di un'equazione cinetica 2 2 Cinetica di adsorbimento di Langmuir

Dettagli

Se il flusso termico specifico fornito dalla resistenza elettrica è

Se il flusso termico specifico fornito dalla resistenza elettrica è Transitorio termico per un Ferro da stiro (esercizio 5.9 di Fundamentals of Heat and Mass Transfer, F.P. Incropera, D.P. Dewitt, T.L. Bergman, A.S. Lavine, 6th Edition, Wiley, 2007. La piastra di un ferro

Dettagli

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli

INTRODUZIONE A. Guido Vagliasindi Controlli Automatici A.A. 06/07 Introduzione a MATLAB

INTRODUZIONE A. Guido Vagliasindi Controlli Automatici A.A. 06/07 Introduzione a MATLAB INTRODUZIONE A Documentazione Sito web di Mathworks: www.mathworks.com seguendo i link alla voce support e possibile trovare i manuali di Matlab in formato pdf. (http://www.mathworks.com/access/helpdesk/help/techd

Dettagli

Analisi statistica di dati

Analisi statistica di dati Dipartimento di Ingegneria Aerospaziale Tecnica e Sperimentazione Aerospaziale 3 anno, N.O. AA 2005-2006 Docente: Gian Luca Ghiringhelli Autori: Fogante Andrea 673293... Gobbi Lorenzo 661410... Lanzani

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

UNIVERSITA DI PISA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA ANNO ACCADEMICO 2004-2005 TESI DI LAUREA

UNIVERSITA DI PISA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA ANNO ACCADEMICO 2004-2005 TESI DI LAUREA UNIVERSITA DI PISA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA ANNO ACCADEMICO 2004-2005 TESI DI LAUREA SVILUPPO DI METODI DECONVOLUTIVI PER L INDIVIDUAZIONE DI SORGENTI INDIPENDENTI

Dettagli

Studente: SANTORO MC. Matricola : 528

Studente: SANTORO MC. Matricola : 528 CORSO di LAUREA in INFORMATICA Corso di CALCOLO NUMERICO a.a. 2004-05 Studente: SANTORO MC. Matricola : 528 PROGETTO PER L ESAME 1. Sviluppare una versione dell algoritmo di Gauss per sistemi con matrice

Dettagli

Funzioni matlab per la gestione dei file. Informatica B Prof. Morzenti

Funzioni matlab per la gestione dei file. Informatica B Prof. Morzenti Funzioni matlab per la gestione dei file Informatica B Prof. Morzenti File Contenitori di informazione permanenti Sono memorizzati su memoria di massa Possono continuare a esistere indipendentemente dalla

Dettagli

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Alessandro Rezzani Abstract L articolo descrive una delle tecniche di riduzione della dimensionalità del data set: il metodo dell analisi delle componenti principali (Principal

Dettagli

Rapida Introduzione all uso del Matlab Ottobre 2002

Rapida Introduzione all uso del Matlab Ottobre 2002 Rapida Introduzione all uso del Matlab Ottobre 2002 Tutti i tipi di dato utilizzati dal Matlab sono in forma di array. I vettori sono array monodimensionali, e così possono essere viste le serie temporali,

Dettagli

Introduzione allo Scilab Parte 3: funzioni; vettori.

Introduzione allo Scilab Parte 3: funzioni; vettori. Introduzione allo Scilab Parte 3: funzioni; vettori. Felice Iavernaro Dipartimento di Matematica Università di Bari http://dm.uniba.it/ iavernaro felix@dm.uniba.it 13 Giugno 2007 Felice Iavernaro (Univ.

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

. analisi teorica (studio di esistenza, unicità della soluzione, sensitività rispetto ai dati, regolarità, comportamento qualitativo).

. analisi teorica (studio di esistenza, unicità della soluzione, sensitività rispetto ai dati, regolarità, comportamento qualitativo). 1 Modelli matematici Un modello è un insieme di equazioni e altre relazioni matematiche che rappresentano fenomeni fisici, spiegando ipotesi basate sull osservazione della realtà. In generale un modello

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

1. Scopo dell esperienza.

1. Scopo dell esperienza. 1. Scopo dell esperienza. Lo scopo di questa esperienza è ricavare la misura di tre resistenze il 4 cui ordine di grandezza varia tra i 10 e 10 Ohm utilizzando il metodo olt- Amperometrico. Tale misura

Dettagli

Lezione del 28-11-2006. Teoria dei vettori ordinari

Lezione del 28-11-2006. Teoria dei vettori ordinari Lezione del 8--006 Teoria dei vettori ordinari. Esercizio Sia B = {i, j, k} una base ortonormale fissata. ) Determinare le coordinate dei vettori v V 3 complanari a v =,, 0) e v =, 0, ), aventi lunghezza

Dettagli

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie Metodi numerici per la risoluzione di equazioni differenziali ordinarie Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 5-31 ottobre 2005 Outline 1 Il problema di Cauchy Il problema

Dettagli

Evoluzione competitiva dei controlli in produzione nelle filiere dei mezzi di trasporto. Torino, Centro Congressi Lingotto 14 15 aprile 2010

Evoluzione competitiva dei controlli in produzione nelle filiere dei mezzi di trasporto. Torino, Centro Congressi Lingotto 14 15 aprile 2010 Evoluzione competitiva dei controlli in produzione nelle filiere dei mezzi di trasporto INDICI E PIANI DI PROCESS CAPABILITY Prof. Biagio Palumbo (Università di Napoli Federico II - Dipartimento Ingegneria

Dettagli

Laboratorio di Elettrotecnica

Laboratorio di Elettrotecnica 1 Laboratorio di Elettrotecnica Rappresentazione armonica dei Segnali Prof. Pietro Burrascano - Università degli Studi di Perugia Polo Scientifico Didattico di Terni 2 SEGNALI: ANDAMENTI ( NEL TEMPO, NELLO

Dettagli

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente 1.1 Il motore a corrente continua Il motore a corrente continua, chiamato così perché per funzionare deve essere alimentato con tensione e corrente costante, è costituito, come gli altri motori da due

Dettagli

Introduzione a MATLAB

Introduzione a MATLAB Introduzione a MATLAB Enzo TONTI 19 aprile 2003 Questa dispensa si può scaricare dal sito http://www.dic.units.it/perspage/tonti oppure prelevare via FTP dal sito ftp.dic.units.it/pub/science ed ha il

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

General Linear Model. Esercizio

General Linear Model. Esercizio Esercizio General Linear Model Una delle molteplici applicazioni del General Linear Model è la Trend Surface Analysis. Questa tecnica cerca di individuare, in un modello di superficie, quale tendenza segue

Dettagli

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1 Potenza dello studio e dimensione campionaria Laurea in Medicina e Chirurgia - Statistica medica 1 Introduzione Nella pianificazione di uno studio clinico randomizzato è fondamentale determinare in modo

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

Analisi dei sistemi nel dominio del tempo

Analisi dei sistemi nel dominio del tempo Appunti di Teoria dei Segnali a.a. 010/011 L.Verdoliva In questa sezione studieremo i sistemi tempo continuo e tempo discreto nel dominio del tempo. Li classificheremo in base alle loro proprietà e focalizzeremo

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

Proposta di un set di indicatori per valutare i risultati del PAN

Proposta di un set di indicatori per valutare i risultati del PAN Proposta di un set di indicatori per valutare i risultati del PAN Alessandra Galosi - Stefano Lucci Luca Segazzi ISPRA Istituto Superiore per la Protezione e Ricerca Ambientale 1.Premessa 2. L attività

Dettagli

B9. Equazioni di grado superiore al secondo

B9. Equazioni di grado superiore al secondo B9. Equazioni di grado superiore al secondo Le equazioni di terzo grado hanno una, due o tre soluzioni, risolvibili algebricamente con formule molto più complesse di quelle dell equazione di secondo grado.

Dettagli

Appunti dalle Lezioni di MECCANICA RAZIONALE

Appunti dalle Lezioni di MECCANICA RAZIONALE Università degli Studi de L Aquila Appunti dalle Lezioni di MECCANICA RAZIONALE tenute dal prof. Raffaele ESPOSITO i INDICE Indice.......................................................................

Dettagli

Grafici di redditività BREAK-EVEN ANALYSIS

Grafici di redditività BREAK-EVEN ANALYSIS Grafici di redditività BREAK-EVEN ANALYSIS 1 Analisi del punto di equilibrio o di pareggio Consiste nella determinazione grafica o matematica del quantitativo di vendita al quale i costi totali e i ricavi

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA ANALISI EDIANTE LO SPETTRO DI RISPOSTA arco BOZZA * * Ingegnere Strutturale, già Direttore della Federazione regionale degli Ordini degli Ingegneri del Veneto (FOIV), Amministratore di ADEPRON DINAICA

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento Analisi della varianza a una via a misure ripetute (Anova con 1 fattore within) modello strutturale dell'analisi della varianza a misure ripetute con 1 fattore: y = μ ik 0 +π i +α k + ik ε ik interazione

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Elettronica Circuiti nel dominio del tempo

Elettronica Circuiti nel dominio del tempo Elettronica Circuiti nel dominio del tempo Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Circuiti nel dominio del tempo 14 aprile 211

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Earned Value e monitoring del progetto

Earned Value e monitoring del progetto IT Project Management Lezione 8 Earned Value Federica Spiga A.A. 2009-2010 1 Aspetti economico-finanziari (1) Costi C Fine progetto T Tempo La curva a S è chiamata baseline dei costi risultato dell aggregazione

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

Cosa sono gli esoneri?

Cosa sono gli esoneri? Cosa sono gli esoneri? Per superare l esame di Istituzioni di Matematiche è obbligatorio superare una prova scritta. Sono previsti due tipi di prova scritta: gli esoneri e gli appelli. Gli esoneri sono

Dettagli

SciPy. Programmazione Orientata agli Oggetti e Scripting in Python

SciPy. Programmazione Orientata agli Oggetti e Scripting in Python SciPy Programmazione Orientata agli Oggetti e Scripting in Python SciPy: Informazioni di Base Libreria di algoritmi e strumenti matematici Fornisce: moduli per l'ottimizzazione, per l'algebra lineare,

Dettagli

(2) t B = 0 (3) E t In presenza di materia, le stesse equazioni possono essere scritte E = B

(2) t B = 0 (3) E t In presenza di materia, le stesse equazioni possono essere scritte E = B Equazioni di Maxwell nei mezzi e indice di rifrazione I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA) E ϱ ɛ 0 () E B (2) B 0 (3) E B µ 0 j + µ 0 ɛ 0

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

COMUNE DI MONTECCHIO EMILIA

COMUNE DI MONTECCHIO EMILIA COMUNE DI MONTECCHIO EMILIA Allegato sub. 1) SISTEMA DI DELLA PERFORMANCE INDIVIDUALE DELLE POSIZIONI ORGANIZZATIVE, DEL PERSONALE E DEL SEGRETARIO COMUNALE* informato ai principi di cui all art 9 cc.

Dettagli

ANALISI DI SEGNALI BIOLOGICI

ANALISI DI SEGNALI BIOLOGICI ANALISI DI SEGNALI BIOLOGICI A.Accardo accardo@units.it LM Neuroscienze A.A. 2010-11 Parte II 1 Analisi in frequenza di un segnale l analisi in frequenza di un segnale o analisi di Fourier descrive il

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it

Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it Corso di laurea magistrale in Ingegneria delle Telecomunicazioni Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it Trasmettitore

Dettagli

MANUALE MATLAB. A cura di Giuseppe Ciaburro. http://www.ciaburro.it. info@ciaburro.it

MANUALE MATLAB. A cura di Giuseppe Ciaburro. http://www.ciaburro.it. info@ciaburro.it MANUALE MATLAB A cura di Giuseppe Ciaburro http://www.ciaburro.it info@ciaburro.it Indice 1 Introduzione 4 1.1 Matlab.............................................. 4 1.2 Per iniziare...........................................

Dettagli

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t),

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t), SINTESI. Una classe importante di problemi probabilistici e statistici é quella della stima di caratteristiche relative ad un certo processo aleatorio. Esistono svariate tecniche di stima dei parametri

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

0.1 Balistica. Figure 1:

0.1 Balistica. Figure 1: Fiure 1: 0.1 Balistica Triste ma vero: un forte impulso alla nascita della fisica moderna venne dal bisono di sapere dove accidenti finissero le palle sparate dai cannoni... 0.1.1 Bersalio fisso Abbiamo

Dettagli

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA)

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) 4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) L analisi della varianza è un metodo sviluppato da Fisher, che è fondamentale per l interpretazione statistica di molti dati biologici ed è alla

Dettagli

3. TEORIA DELL INFORMAZIONE

3. TEORIA DELL INFORMAZIONE 3. TEORIA DELL INFORMAZIONE INTRODUZIONE MISURA DI INFORMAZIONE SORGENTE DISCRETA SENZA MEMORIA ENTROPIA DI UNA SORGENTE NUMERICA CODIFICA DI SORGENTE 1 TEOREMA DI SHANNON CODICI UNIVOCAMENTE DECIFRABILI

Dettagli

Fortran per Ingegneri

Fortran per Ingegneri Fortran per Ingegneri Lezione 5 A.A. 0/04 Ing. Davide Vanzo davide.vanzo@unitn.it Ing. Simone Zen simone.zen@unitn.it ufficio: Laboratorio didattico di modellistica ambientale ( piano) Tel interno: 488

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Apprendimento dei concetti relativi alle misure dirette, indirette ed alla propagazione degli errori

Apprendimento dei concetti relativi alle misure dirette, indirette ed alla propagazione degli errori U n i v e r s i t à d e g l i S t u d i d i U d i n e - Facoltà di Ingegneria Laboratorio di Fisica Generale 1 1 Il sistema massa-molla: Apprendimento dei concetti relativi alle misure dirette, indirette

Dettagli

Bozza di Regolamento sul rapporto di lavoro a tempo parziale

Bozza di Regolamento sul rapporto di lavoro a tempo parziale Bozza di Regolamento sul rapporto di lavoro a tempo parziale Art. 1 Personale avente diritto I rapporti di lavoro a tempo parziale possono essere attivati nei confronti dei dipendenti comunali a tempo

Dettagli

Introduzione. Classificazione delle non linearità

Introduzione. Classificazione delle non linearità Introduzione Accade spesso di dover studiare un sistema di controllo in cui sono presenti sottosistemi non lineari. Alcuni di tali sottosistemi sono descritti da equazioni differenziali non lineari, ad

Dettagli

ANALISI DEI DATI CON SPSS

ANALISI DEI DATI CON SPSS STRUMENTI E METODI PER LE SCIENZE SOCIALI Claudio Barbaranelli ANALISI DEI DATI CON SPSS II. LE ANALISI MULTIVARIATE ISBN 978-88-7916-315-9 Copyright 2006 Via Cervignano 4-20137 Milano Catalogo: www.lededizioni.com

Dettagli

Sistemi e modelli matematici

Sistemi e modelli matematici 0.0.. Sistemi e modelli matematici L automazione è un complesso di tecniche volte a sostituire l intervento umano, o a migliorarne l efficienza, nell esercizio di dispositivi e impianti. Un importante

Dettagli

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1 Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 Capitolo 3. L'analisi della varianza. Il problema dei confronti multipli. La soluzione drastica di Bonferroni ed il test

Dettagli

LIVELLO STRATEGICO E TATTICO

LIVELLO STRATEGICO E TATTICO Corso di Laurea Triennale in INGEGNERIA GESTIONALE Anno Accademico 2012/13 Prof. Davide GIGLIO 1 ESEMPI DI PROBLEMI DECISIONALI LIVELLO STRATEGICO Capacity growth planning LIVELLO TATTICO Aggregate planning

Dettagli

Breve introduzione al metodo del Analytic Hierarchy Process (AHP)

Breve introduzione al metodo del Analytic Hierarchy Process (AHP) Breve introduzione al metodo del Analytic Hierarchy Process (AHP) Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova 2 Il metodo SAW costruisce un peso con cui valutare le alternative

Dettagli