INSEGNAMENTO DI ANALISI DI DATI BIOLOGICI LM IN BIOINGEGNERIA - A.A.2013/2014 HOMEWORK 3

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "INSEGNAMENTO DI ANALISI DI DATI BIOLOGICI LM IN BIOINGEGNERIA - A.A.2013/2014 HOMEWORK 3"

Transcript

1 INSEGNAMENTO DI ANALISI DI DATI BIOLOGICI LM IN BIOINGEGNERIA - A.A.2013/2014 HOMEWORK 3 COGNOME: Montanino NOME: Annaclaudia MATRICOLA: DATA: 13 gennaio allegati: montanino_h3_4.zip ESERCIZIO H3_4: Problema ispirato dall articolo reperibile su Nel file smbg.mat sono contenuti dati di Self Monitoring Blood Glucose (SMBG) di un soggetto diabetico. Le misurazioni SMBG sono state eseguite 3 volte al giorno (equispaziate, sempre alla stessa ora) per un periodo della durata di un mese (non sono presenti missing samples). Analizzando graficamente i dati, il diabetologo che ha in cura questo soggetto diabetico ritiene che possa esistere una ciclicità giornaliera nelle misurazioni, che verosimilmente ruota attorno ad un trend mensile. Possiamo pensare che la misurazione del valore glicemico possa essere strutturata così: y(t) = t(t) + c(t) + v(t) dove t(t) rappresenta il trend mensile, c(t) rappresenta la componente ciclica giornaliera e v(t) è il rumore di misura. L obiettivo di questo homework è quello di implementare uno script per separare le componenti t(t) e c(t) mediante filtraggio alla Kalman, a partire da una serie di campioni rumorosi y(t) contenuti nella variabile ys (file smbg.mat), per cercare di confermare o meno se esistono una ciclicità giornaliera ed un trend mensile. I modelli a priori da usare sono: t(t) descritto da un modello a doppia integrazione di un rumore bianco con varianza λ 2 1 = c(t) descritto come un segnale periodico x 3(t) guidato da rumore bianco w(t) con varianza λ 2 2 =16, la cui frequenza f è relativa al numero di campioni SMBG giornalieri. La struttura in termini di variabili di stato è la seguente: { x 3(t + 1) x 4(t + 1) = cos(2πf)x 3(t) + sin(2πf)x 4(t) = sin(2πf)x 3(t) + cos(2πf)x 4(t) + w(t) Va aggiunto che le misurazioni y(t) sono soggette ad errore con CV v = 0.1%. Utilizzare come valori iniziali il vettore di stato x0 e la matrice P 0 contenuti in smbg.mat. Descrivere e commentare i risultati ottenuti. 1 Introduzione Il Filtraggio alla Kalman, in questo esercizio utilizzato per la separazione di componenti di un segnale rumoroso ys, sfrutta possibilità di scrivere modelli stocastici nella forma di modelli di stato: x(t + 1) = F x(t) + w(t) y(t) = Hx(t) + v(t) Dove x è il vettore di stato che contiene anche ciò che si vuole stimare, F è la matrice di transizione di stato, w è il rumore di modello (con matrice di covarianza Q), y è il vettore delle misure, H è la matrice di trasferimento stato-uscita ed infine v è il rumore di misura (con matrice di covarianza R). Nel caso proposto da questo esercizio si vuole decomporre il segnale y(t) in una componente ciclica giornaliera c(t) e un trend mensile t(t) che esprime le variazioni 1

2 lente, da cui: y(t) = t(t) + c(t) + v(t). Viene inoltre fornito un modello a priori per entrambe le componenti e da questi si deduce la loro formulazione in termini di variabili di stato: t(t + 1) = 2t(t) t(t 1) + w(t) = 2x 1 (t) x 2 (t) w(t) c(t) = x 3 (t) x 3 (t + 1) = cos(2πf)x 3 (t) + sin(2πf)x 4 (t) x 4 (t + 1) = sin(2πf)x 3 (t) + cos(2πf)x 4 (t) + w(t) Da ciò è possibile riscrivere il modello ingresso-uscita sotto forma del seguente modello di stato: x 1 (t + 1) x 1 (t) w 1 x 2 (t + 1) x 3 (t + 1) = x 2 (t) 0 0 cos(2πf) sin(2πf) x 3 (t) x 4 (t + 1) 0 0 sin(2πf) cos(2πf) x 4 (t) w 2 R = cov(v) = x 1 y = [ ] x 2 x 3 + v(t) x 4 λ Q = cov(w) = λ 2 2 (y(1)cv v ) (y(2)cv v ) (y(end)cv v ) 2 Una volta scritto il modello in forma di stato è possibile derivare le equazioni del filtro di Kalman che saranno poi implementate nel codice: P (t + 1 t) = F P (t)f T + Q con P (0) = P 0 K(t + 1) = P (t + 1 t)h T [HP (t + 1 t)h T + R(t)] 1 P (t + 1) = [I N K(t + 1)H]P (t + 1 t) ˆx(t + 1 t) = F ˆx(t t) con ˆx(0) = x 0 e(t + 1) = y(t + 1) H ˆx(t + 1 t) ˆx(t + 1 t + 1) = ˆx(t + 1 t) + K(t + 1)e(t + 1) dove P (t + 1 t) è la covarianza dell errore di predizione ad un passo, K(t + 1) è denominato guadagno del filtro, P (t + 1) è la varianza dello stato al passo t+1, ˆx(t + 1 t) è la predizione ad un passo dello stato (imposto w(t) = 0), e(t + 1) è il residuo di predizione ed infine ˆx(t + 1 t + 1) è la stima dello stato al passo t+1 (passo correttivo in cui vengono usate le misure al tempo t + 1 per raffinare la stima). 2

3 2 Presentazione del codice 2.1 montanino_h3_4.m Lo script montanino_h3_4.m implementa un filtro di Kalman atto alla separazione del segnale y(t) nelle due componenti t(t) e c(t). 1 % Analisi di Dati Biologici - HW3 es4 2 % Annaclaudia Montanino % montanino_h3_4_main. m 4 5 close all 6 clear all 7 clc load smbg 11 n= length (ys ); 12 ts =0:8: n *8-8; 13 f =1/3; 14 F =[ cos (2* pi*f) sin (2* pi*f) sin (2* pi*f) cos (2* pi*f )]; 18 H =[ ]; Q= diag ([ ]); 21 R=( ys.^2)*(0.1/)^2; xold =X0; 24 pold =P0; 25 x= zeros ( length (X0),n); for i =1: n xpred =F* xold ; 30 ppred =F* pold *F +Q; 31 K= ppred *H *1./( H* ppred *H +R(i )); e=ys(i)-h* xpred ; 34 xnew = xpred +K*e; 35 I= eye ( size (Q )); 36 pnew =(I-K*H)* ppred ; pold = pnew ; 39 xold = xnew ; 40 x(:,i)= xnew ; 41 end figure subplot (3,1,1) 47 plot (ts,ys, b ) 48 title ( misurazioni SMBG ) 49 xlabel ( Tempo [h] ) ylabel ( Glicemia [mg/dl] ) 51 axis ([ ]) subplot (3,1,2) 3

4 54 plot (ts,x (1,:)) 55 title ( componente t(t) ) 56 xlabel ( Tempo [h] ) 57 ylabel ( Glicemia [mg/dl] ) 58 axis ([ ]) subplot (3,1,3) 61 plot (ts,x (3,:)) 62 title ( componente c(t) ) 63 xlabel ( Tempo [h] ) 64 ylabel ( Glicemia [mg/dl] ) 65 axis ([ ]) figure plot (ts,ys, b ) 70 hold on 71 plot (ts,x(1,:), r ) 72 hold off 73 title ( Confronto misure - trend mensile ) 74 xlabel ( Tempo [h] ) 75 ylabel ( Glicemia [mg/dl] ) 76 axis ([ ]) RIGA 11-RIGA 13: Una volta caricati i dati, viene calcolato il numero di campioni a disposizione n, viene definita la griglia dei tempi ts il cui passo corrisponde a 8 ore (essendo indicato nelle specifiche che si ha 3 campioni equispaziati all interno di una giornata e che non sono presenti missing samples ). Infine viene calcolata la frequenza dei campioni (usata nel modello a priori di c(t) il cui periodo equivale ad un giorno) f = 1/numero di campioni giornalieri. RIGA 14-RIGA 21: Viene costruita la matrice di transizione di stato F, la matrice di trasferimento stato-uscita H, la matrice di covarianza del rumore di modello Q ed infine il vettore R che contiene le varianze dell errore di misura espresse come (y(t) cv) 2 (in questo caso l errore di misura non è tempo-invariante e bisognerà tenerne conto). RIGA 23-RIGA 25: I valori xold e pold vengono inizializzati ai valori forniti nel file smbg.mat. Si tiene inoltre traccia dell intero vettore di stato x = [x 1 x 2 x 3 x 4 ] T del quale poi ci interesserà ispezionare la prima e la terza componenti essendo t(t) = x 1 (t) e c(t) = x 3 (t). RIGA 27-RIGA 41: All interno di questo ciclo f or sono implementate le equazioni descritte nell introduzione (RIGA 29-RIGA 36). Si sottolinea che, avendo errore di misura tempo-variante, alla RIGA 31 si è utilizzato il valore R(i) corrispondente al campione ys(i) che si sta utilizzando. Infine vengono aggiornati i valori di pold e xold che verranno utilizzati al passo successivo. 4

5 3 Risultati e discussione Nelle figure riportate in questo paragrafo sono raffigurati rispettivamente i campioni rumorosi di concentrazione glicemica, il trend mensile e la componente ciclica giornaliera nella prima immagine, mentre nella seconda si è scelto di plottare il trend mensile sovrapposto ai campioni di concentrazione glicemica. 2 misurazioni SMBG componente t(t) componente c(t) Ciò che è possibile osservare innanzitutto è che i risultati confermano la presenza di una ciclicità giornaliera e di un trend mensile. Il trend mensile presenta un andamento simile alla media temporale delle misurazioni smbg e i valori assunti dalla componente ciclica giornaliera variano nel range [- ]mg/dl. A differenza di ciò che nell introduzione di [1] viene indicato come indice di una soddisfacente terapia, nel nostro caso l andamento del trend mensile è tutt altro che costante e non risulta sempre compreso nella fascia euglicemica [80-140]mg/dl (specialmente nella parte centrale dell asse dei tempi). A tal proposito posso osservare che, ai fini della lettura dei dati da parte di un clinico, il trend mensile riassume efficacemente l informazione contenuta nel segnale misurato: visivamente dove il trend supera la soglia dell iperglicemia, anche ys raggiunge valori fuori soglia. Provando a contare (con semplici istruzioni matlab) i valori sopra la soglia iperglicemica è risultato: 5

6 length(find(ys>140)=51 e length(find(x(1,:)>140)=52 che sono valori confrontabili almeno in prima istanza, anche se per indagini più accurate bisogna tener conto di episodi iperglicemici non rilevati dalla sola componente t(t) e viceversa. Si osserva infine che le informazioni fornite sui modelli a priori (con le rispettive varianze del rumore di modello) e sui valori iniziali x 0 e P 0 sono stati scelti sapientemente: le stime sono fin da subito coerenti con il segnale di origine ed inoltre, provando a ricostruire il segnale y(t) come somma delle due componenti trovate e del rumore v(t), si ottiene un andamento identico a quello di origine. 2 Confronto misure trend mensile ipo iper Bibliografia [1] R. Bellazzi, P. Magni, and G. De Nicolao Bayesian Analysis of Blood Glucose Time Series from Diabetes Home Monitoring, IEEE Transactions on Biomedical Engineering, vol. 47, NO. 7, July

Analisi dei segnali nel dominio della frequenza

Analisi dei segnali nel dominio della frequenza Laboratorio di Telecomunicazioni - a.a. 2010/2011 Lezione n. 7 Analisi dei segnali nel dominio della frequenza docente L.Verdoliva In questa lezione affrontiamo il problema dell analisi dei segnali tempo

Dettagli

Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD.

Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD. Advanced level Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD. Sommario Toolbox finance Analisi dei portafogli Analisi grafica Determinate Date Toolbox statistics Analisi

Dettagli

Elaborazione nel dominio della frequenza Soluzioni

Elaborazione nel dominio della frequenza Soluzioni Elaborazione dei Segnali Multimediali a.a. 2009/2010 Elaborazione nel dominio della frequenza Soluzioni 1 La trasformata discreta 1D Calcoliamo lo spettro di x(n) = R L (n) al variare di L = 2, 10, 20,

Dettagli

MATLAB: Una veloce introduzione (Parte II)

MATLAB: Una veloce introduzione (Parte II) MATLAB: Una veloce introduzione (Parte II) Author: Luca Albergante 1 Dipartimento di Matematica, Università degli Studi di Milano 14 Marzo 2011 L. Albergante (Univ. of Milan) MATLAB 14 Marzo 2011 1 / 14

Dettagli

Finestre grafiche. >> figure >> figure(n)

Finestre grafiche. >> figure >> figure(n) Finestre grafiche MATLAB ha anche la possibilità di lavorare con delle finestre grafiche sulle quali si possono fare disegni bidimensionali o tridimensionali. Una finestra grafica viene aperta con il comando

Dettagli

LEZIONE DI MATLAB 2.0. Ing.Irene Tagliente E-mail: irene.tagliente@opbg.net

LEZIONE DI MATLAB 2.0. Ing.Irene Tagliente E-mail: irene.tagliente@opbg.net LEZIONE DI MATLAB 2.0 Ing.Irene Tagliente E-mail: irene.tagliente@opbg.net Cos è Matlab Il programma MATLAB si è imposto in ambiente ingegneristico come strumento per la simulazione e l'analisi dei sistemi

Dettagli

Cenni sull'impiego di Matlab. Matrici

Cenni sull'impiego di Matlab. Matrici Cenni sull'impiego di Matlab Il Matlab è un potente valutatore di espressioni matriciali con valori complessi. Lavorando in questo modo il Matlab indica una risposta ad ogni comando od operazione impartitagli.

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

INTRODUZIONE A MATLAB Matrix Laboratory

INTRODUZIONE A MATLAB Matrix Laboratory INTRODUZIONE A MATLAB Matrix Laboratory Introduzione Linguaggio di programmazione per applicazioni scientifiche e numeriche Vasto set di funzioni predefininte Interprete di comandi Possibilità di scrivere

Dettagli

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it]

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it] Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3 Danilo Caporale [caporale@elet.polimi.it] Outline 2 Funzione di trasferimento e risposta in frequenza Diagrammi di Bode e teorema

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione

Dettagli

Fondamenti di Automatica. Modellistica dei sistemi dinamici a tempo discreto

Fondamenti di Automatica. Modellistica dei sistemi dinamici a tempo discreto Fondamenti di Automatica Modellistica dei sistemi dinamici a tempo discreto Sistemi dinamici a tempo discreto I sistemi dinamici a tempo discreto sono sistemi in cui tutte le grandezze variabili sono funzioni

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

Introduzione a Matlab

Introduzione a Matlab Introduzione a Matlab Ruggero Donida Labati Dipartimento di Tecnologie dell Informazione via Bramante 65, 26013 Crema (CR), Italy ruggero.donida@unimi.it Perché? MATLAB is a high-level technical computing

Dettagli

Matlab per applicazioni statistiche

Matlab per applicazioni statistiche Matlab per applicazioni statistiche Marco J. Lombardi 19 aprile 2005 1 Introduzione Il sistema Matlab è ormai uno standard per quanto riguarda le applicazioni ingegneristiche e scientifiche, ma non ha

Dettagli

Corso di Fondamenti di Segnali e Trasmissione - Appello del 07 Settembre 2005

Corso di Fondamenti di Segnali e Trasmissione - Appello del 07 Settembre 2005 Corso di Fondamenti di Segnali e Trasmissione - Appello del 07 Settembre 2005 Gli esercizi devono essere risolti solo sui fogli dei colori indicati Per esiti e soluzioni si veda il sito web del corso:

Dettagli

Politecnico di Bari Facoltà di Ingegneria

Politecnico di Bari Facoltà di Ingegneria Politecnico di Bari Facoltà di Ingegneria Dispensa per il Corso di Controlli Automatici I Uso del software di calcolo Matlab 4. per lo studio delle risposte nel tempo dei sistemi lineari tempoinvarianti

Dettagli

MATLAB-SIMULINK. Grafici 2D e 3D. Ing. Alessandro Pisano. pisano@diee.unica.it

MATLAB-SIMULINK. Grafici 2D e 3D. Ing. Alessandro Pisano. pisano@diee.unica.it 1 MATLAB-SIMULINK Grafici 2D e 3D Ing. Alessandro Pisano pisano@diee.unica.it 2 Indice 3 7 10 10 11 12 13 14 16 17 22 24 28 34 36 39 44 Grafici 2D Griglia, label e titolo Grafici sovrapposti. Colori Legenda

Dettagli

ANALISI ALGORITMICA CON MATLAB

ANALISI ALGORITMICA CON MATLAB ANALISI ALGORITMICA CON MATLAB Di Rizzo Roberto PREMESSA Nel vasto campo del trading on line, e più specificatamente nell Analisi Tecnica, software come Excel e MatLab sono quelli tra i più utilizzati,

Dettagli

FONDAMENTI DI SEGNALI E TRASMISSIONE 6 Laboratorio

FONDAMENTI DI SEGNALI E TRASMISSIONE 6 Laboratorio FONDAMENTI DI SEGNALI E TRASMISSIONE 6 Laboratorio Paolo Mazzucchelli mazzucch@elet.polimi.it Quantizzazione Il segnale y(t) non solo è campionato sull asse dei tempi, ma anche i valori di ordinata sono

Dettagli

Lezioni su MATLAB. Ingegneria Civile/Meccanica

Lezioni su MATLAB. Ingegneria Civile/Meccanica Lezioni su ali in Ingegneria Civile/Meccanica Corso di laboratorio di informatica 06/07 Sommario ali in 1 2 3 4 ali 5 6 in ali in : MATrix LABoratory È un ambiente per l analisi e la simulazione dei sistemi

Dettagli

Sistema di monitoraggio in continuo della glicemia

Sistema di monitoraggio in continuo della glicemia Sistema di monitoraggio in continuo della glicemia Dal test sull urina all autocontrollo domiciliare fino al monitoraggio nei fluidi interstiziali Nell urina 1940-50: Clinitest, Clinistix strip, Acetest,

Dettagli

Comandi di Input/Output in Matlab

Comandi di Input/Output in Matlab Comandi di Input/Output in Matlab Il comando format controlla la configurazione numerica dei valori esposta da MAT- LAB; il comando regola solamente come i numeri sono visualizzati o stampati, non come

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Modelli matematici e realtà:

Modelli matematici e realtà: Piano Lauree Scientifiche Matematica e Statistica 2010-11 Modelli matematici e realtà: sulle equazioni differenziali - prima parte R. Vermiglio 1 1 Dipartimento di Matematica e Informatica - Università

Dettagli

Dal diario glicemico ai sistemi più evoluti

Dal diario glicemico ai sistemi più evoluti Dal diario glicemico ai sistemi più evoluti Torino, 14 ottobre 2014 Cristina Gottero S.C. Endocrinologia e Malattie Metaboliche Ospedale Maria Vittoria ASL TO2 Torino Agenda: Glucometri e diario glicemico

Dettagli

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro Segnali e Sistemi Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione 2. Notazione............................. 2 2 Classificazione

Dettagli

MAGNETIC RESONANCE IMAGING

MAGNETIC RESONANCE IMAGING MAGNETIC RESONANCE IMAGING L'MRI èuna tecnica di generazione di immagini usata prevalentemente per scopi diagnostici in campo medico, basata sul principio fisico della risonanza magnetica nucleare. Le

Dettagli

Operazioni su stringhe

Operazioni su stringhe MAT R LAB O I X L E Z I O N E 4 I N T R O R A T O R Y 1) Stringe 2) Matrici di celle 3) Strutture 4) File 5) Grafici Stringhe stringa / testo = un vettore-riga di lettere (rinchiuso in ) S= The quick lazy

Dettagli

Applicazione della tsvd all elaborazione di immagini

Applicazione della tsvd all elaborazione di immagini Applicazione della tsvd all elaborazione di immagini A cura di: Mauro Franceschelli Simone Secchi Indice pag Introduzione. 1 Problema diretto.. 2 Problema Inverso. 3 Simulazioni.. Introduzione Scopo di

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2011-2012 Lezione 6 Indice 1 Il metodo bootstrap 2 Esercitazione 3 Interpolazione

Dettagli

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D)

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D) ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI () Una immagine (digitale) permette di percepire solo una rappresentazione 2D del mondo La visione 3D si pone lo scopo di percepire il mondo per come è in 3 dimensioni

Dettagli

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t.

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t. Il programma MATLAB In queste pagine si introduce in maniera molto breve il programma di simulazione MAT- LAB (una abbreviazione di MATrix LABoratory). Introduzione MATLAB è un programma interattivo di

Dettagli

APPLICAZIONI DI UN NUOVO INDICE DI RISCHIO DINAMICO PER L INTERPRETAZIONE DI DATI DI MONITORAGGIO CONTINUO DEL GLUCOSIO.

APPLICAZIONI DI UN NUOVO INDICE DI RISCHIO DINAMICO PER L INTERPRETAZIONE DI DATI DI MONITORAGGIO CONTINUO DEL GLUCOSIO. APPLICAZIONI DI UN NUOVO INDICE DI RISCHIO DINAMICO PER L INTERPRETAZIONE DI DATI DI MONITORAGGIO CONTINUO DEL GLUCOSIO Fersini Chiara 7 dicembre 21 1 INDICE INTRODUZIONE 1. ANALISI DEL SEGNALE GLICEMICO:

Dettagli

Introduzione a Matlab

Introduzione a Matlab Introduzione a Matlab 1 Introduzione Matlab (MATrix LABoratory) è un software per il calcolo scientifico, particolarmente sviluppato per quanto riguarda la gestione ed elaborazione di vettori e matrici.

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

IL FILTRAGGIO DEL SEGNALE

IL FILTRAGGIO DEL SEGNALE CAPITOLO 4 IL FILTRAGGIO DEL SEGNALE 4.1 - SISTEMA LINEARE NON DISTORCENTE E un sistema lineare che restituisce in uscita una replica indistorta del segnale di entrata, intendendo x(t) y(t) = Ax(t-t 0

Dettagli

Grafici tridimensionali

Grafici tridimensionali MatLab Lezione 3 Grafici tridimensionali Creazione di un Grafico 3D (1/4) Si supponga di voler tracciare il grafico della funzione nell intervallo x = [0,5]; y=[0,5] z = e -(x+y)/2 sin(3x) sin(3y) Si può

Dettagli

CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI Ingegneria Meccatronica CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI Ingegneria Meccatronica CONTROLLI AUTOMATICI e AZIONAMENTI ELETTRICI INTRODUZIONE A MATLAB Ing. Alberto Bellini Tel. 0522 522626 e-mail: alberto.bellini@unimore.it

Dettagli

Informatica B 2013-2014

Informatica B 2013-2014 2013-2014 Matlab Laboratorio del 17/12/2013 Responsabili di laboratorio: Gianluca Durelli: durelli@elet.polimi.it Luigi Malago : malago@di.unimi.it Materiale di laboratorio reperibile all indirizzo: www.gianlucadurelli.com

Dettagli

TaleteWeb Prevenzione. Manuale d uso

TaleteWeb Prevenzione. Manuale d uso TaleteWeb Manuale d uso 1 L applicazione consente la programmazione ed il controllo delle attività del Dipartimento di di un azienda sanitaria locale. Per accedere all applicazione, selezionare l app dell

Dettagli

Interpolazione ed approssimazione di funzioni

Interpolazione ed approssimazione di funzioni Interpolazione ed approssimazione di funzioni Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 9 novembre 2007 Outline 1 Polinomi Valutazione di un polinomio Algoritmo di Horner

Dettagli

Analisi di risposte di sistemi dinamici in MATLAB

Analisi di risposte di sistemi dinamici in MATLAB Laboratorio di Fondamenti di Automatica Seconda esercitazione Analisi di risposte di sistemi dinamici in MATLAB 2005 Alberto Leva, Marco Lovera, Maria Prandini Premessa Scopo di quest'esercitazione di

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

CONFRONTO TRA TECNICHE DI PREVISIONE: Processi regressivi e reti neurali artificiali

CONFRONTO TRA TECNICHE DI PREVISIONE: Processi regressivi e reti neurali artificiali Paolo Mezzera Ottobre 2003 CONFRONTO TRA TECNICHE DI PREVISIONE: Processi regressivi e reti neurali artificiali Questo lavoro ha lo scopo di confrontare previsioni ottenute mediante processi regressivi

Dettagli

MATLAB (3) - Grafica 2 e 3D

MATLAB (3) - Grafica 2 e 3D Laboratorio di Informatica per Ingegneria elettrica A.A. 21/211 Prof. Sergio Scippacercola MATLAB (3) - Grafica 2 e 3D N.B. le slide devono essere utilizzate solo come riferimento agli argomenti trattati

Dettagli

Introduzione a MATLAB INTRODUZIONE A MATLAB

Introduzione a MATLAB INTRODUZIONE A MATLAB INTRODUZIONE A MATLAB 1 Il programma MATLAB: indice Introduzione, help e files Punteggiatura e variabili Operatori Matrici Polinomi Istruzione IF-THEN-ELSE e Cicli Stringhe di testo, input ed output Grafici

Dettagli

Facoltà di Ingegneria Industriale. Matlab/Octave - Esercitazione 3

Facoltà di Ingegneria Industriale. Matlab/Octave - Esercitazione 3 Facoltà di Ingegneria Industriale Laurea in Ingegneria Energetica, Meccanica e dei Trasporti Matlab/Octave - Esercitazione 3 funzioni definizione ed invocazione delle funzioni semantica dell invocazione

Dettagli

Rappresentazione nello spazio degli stati

Rappresentazione nello spazio degli stati Chapter 1 Rappresentazione nello spazio degli stati La modellazione di un sistema lineare di ordine n, fornisce un insieme di equazioni differenziali che una volta trasformate nel dominio discreto, possono

Dettagli

Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 3)

Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 3) Università degli Studi di Padova - Facoltà di Ingegneria Corso di Laurea in Ingegneria Biomedica A.A. 7-8 Laboratorio di Elaboraione di Dati, Segnali e Immagini Biomediche (Parte 3) Prof. Giovanni Sparacino

Dettagli

Sommario. 1 Specifiche della soluzione. Davide Anastasia, Nicola Cogotti. 27 dicembre 2005

Sommario. 1 Specifiche della soluzione. Davide Anastasia, Nicola Cogotti. 27 dicembre 2005 Utilizzo delle reti neurali di tipo MLP e RBF per l approssimazione di funzioni reali di variabile reale note mediante coppie di punti (x,y) in presenza di rumore Davide Anastasia, Nicola Cogotti 27 dicembre

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

PRBS: Pseudo Random Binary Sequences

PRBS: Pseudo Random Binary Sequences PRBS: Pseudo Random Binary Sequences Chiara Masiero http://automatica.dei.unipd.it/people/chiara-masiero DEI - UniPD 3 Novembre 2 C. Masiero (DEI - UniPD) PRBS tutorial 3 Novembre 2 / 8 Motivazione Contesto

Dettagli

FON DAMEN TI DI IN FORMATICA

FON DAMEN TI DI IN FORMATICA Università di Salerno Corso di FONDAMENTI DI INFORMATICA Corso di Laurea Ingegneria Meccanica & Ingegneria Gestionale Mat. Pari Docente : Ing. Secondulfo Giovanni Anno Accademico 29-21 UNITÀ IV A GRAFICA

Dettagli

Appunti sull uso di matlab - I

Appunti sull uso di matlab - I Appunti sull uso di matlab - I. Inizializazione di vettori.. Inizializazione di matrici.. Usare gli indici per richiamare gli elementi di un vettore o una matrice.. Richiedere le dimensioni di una matrice

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Controlli Automatici - A.A. 1/11 Ingegneria Gestionale 13 Settembre 11 - Esercizi Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

Control System Toolbox

Control System Toolbox Control System Toolbox E` un insieme di funzioni per l analisi di sistemi dinamici (tipicamente lineari tempo invarianti o LTI) e per la sintesi di controllori (in particolare a retroazione). All'interno

Dettagli

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Come evidenziare l informazione contenuta nei dati S. Marsili-Libelli: Calibrazione di Modelli Dinamici pag. Perche PCA? E un semplice metodo non-parametrico per estrarre

Dettagli

Linee Guida per la Formulazione di una Proposta Commerciale per la Diagnosi Energetica nel Campo Civile ed Industriale

Linee Guida per la Formulazione di una Proposta Commerciale per la Diagnosi Energetica nel Campo Civile ed Industriale Linee Guida per la Formulazione di una Proposta Commerciale per la Diagnosi Energetica nel Campo Civile ed Industriale Revisione n.00 del 22 giugno 2015 NOTA: Se di interesse il documento può essere pubblicato

Dettagli

v in v out x c1 (t) Molt. di N.L. H(f) n

v in v out x c1 (t) Molt. di N.L. H(f) n Comunicazioni elettriche A - Prof. Giulio Colavolpe Compito n. 3 3.1 Lo schema di Fig. 1 è un modulatore FM (a banda larga). L oscillatore che genera la portante per il modulatore FM e per la conversione

Dettagli

Filtraggio dei dati. bozza bozza bozza

Filtraggio dei dati. bozza bozza bozza Filtraggio dei dati In molte applicazioni è necessario rimuovere da una serie di dati il rumore che ad essi si sovrappone. Questo al fine ad esempio di estrarre il segnale vero da una serie di misure sperimentali,

Dettagli

Modellazione e Analisi di Reti Elettriche

Modellazione e Analisi di Reti Elettriche Modellazione e Analisi di eti Elettriche Modellazione e Analisi di eti Elettriche Davide Giglio Introduzione alle eti Elettriche e reti elettriche costituite da resistori, condensatori e induttori (bipoli),

Dettagli

Analisi matriciale delle reti di Petri (P/T) - sifoni e trappole -

Analisi matriciale delle reti di Petri (P/T) - sifoni e trappole - Analisi matriciale delle reti di Petri (P/T) - sifoni e trappole - - richiami preliminari sulle proprietà strutturali - Abbiamo visto che alcune caratteristiche dei sistemi dinamici (DES compresi) non

Dettagli

Prestazioni dei sistemi in retroazione

Prestazioni dei sistemi in retroazione Prestazioni dei sistemi in retroazione (ver..2). Sensitività e sensitività complementare Sia dato il sistema in retroazione riportato in Fig... Vogliamo determinare quanto è sensibile il sistema in anello

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

Analisi di scenario File Nr. 10

Analisi di scenario File Nr. 10 1 Analisi di scenario File Nr. 10 Giorgio Calcagnini Università di Urbino Dip. Economia, Società, Politica giorgio.calcagnini@uniurb.it http://www.econ.uniurb.it/calcagnini/ http://www.econ.uniurb.it/calcagnini/forecasting.html

Dettagli

Politecnico di Milano. Segnali per le Telecomunicazioni 2014. Matlab. Analisi dei codici matlab presentati nel corso del semestre

Politecnico di Milano. Segnali per le Telecomunicazioni 2014. Matlab. Analisi dei codici matlab presentati nel corso del semestre Politecnico di Milano Segnali per le Telecomunicazioni 2014 Matlab Analisi dei codici matlab presentati nel corso del semestre Autori Badini Federico mat. 816820 - federico.badini@mail.polimi.it Bodini

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Descrizione del funzionamento di un Lock-in Amplifier

Descrizione del funzionamento di un Lock-in Amplifier Descrizione del funzionamento di un Lock-in Amplifier S.C. 0 luglio 004 1 Propositi di un amplificatore Lock-in Il Lock-in Amplifier é uno strumento che permette di misurare l ampiezza V 0 di una tensione

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

Elementi Finiti: stime d errore e adattività della griglia

Elementi Finiti: stime d errore e adattività della griglia Elementi Finiti: stime d errore e adattività della griglia Elena Gaburro Università degli studi di Verona Master s Degree in Mathematics and Applications 05 giugno 2013 Elena Gaburro (Università di Verona)

Dettagli

Capitolo 2. Un introduzione all analisi dinamica dei sistemi

Capitolo 2. Un introduzione all analisi dinamica dei sistemi Capitolo 2 Un introduzione all analisi dinamica dei sistemi Obiettivo: presentare una modellistica di applicazione generale per l analisi delle caratteristiche dinamiche di sistemi, nota come system dynamics,

Dettagli

Elaborazione nel dominio della frequenza

Elaborazione nel dominio della frequenza Elaborazione dei Segnali Multimediali a.a. 2009/2010 Elaborazione nel dominio della frequenza L.Verdoliva In questa esercitazione esamineremo la trasformata di Fourier discreta monodimensionale e bidimensionale.

Dettagli

Prova scritta di Controlli Automatici

Prova scritta di Controlli Automatici Prova scritta di Controlli Automatici Corso di Laurea in Ingegneria Meccatronica, AA 2011 2012 10 Settembre 2012 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare

Dettagli

Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 6)

Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 6) Università degli Studi di Padova - Facoltà di Ingegneria Corso di Laurea in Ingegneria Biomedica A.A. 26-27 Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 6) Prof. Giovanni Sparacino

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione (con alcune integrazioni) da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo i dati nel file esercizio10_dati.xls.

Dettagli

Regressione non lineare con un modello neurale feedforward

Regressione non lineare con un modello neurale feedforward Reti Neurali Artificiali per lo studio del mercato Università degli studi di Brescia - Dipartimento di metodi quantitativi Marco Sandri (sandri.marco@gmail.com) Regressione non lineare con un modello neurale

Dettagli

Cultura Tecnologica di Progetto

Cultura Tecnologica di Progetto Cultura Tecnologica di Progetto Politecnico di Milano Facoltà di Disegno Industriale - DATABASE - A.A. 2003-2004 2004 DataBase DB e DataBase Management System DBMS - I database sono archivi che costituiscono

Dettagli

4 Risoluzione del modello di Lotka-Volterra

4 Risoluzione del modello di Lotka-Volterra praticata, il parametro ε è positivo e quindi si ha un numero di prede maggiore e un numero di predatori minore rispetto al caso senza pesca. 4 Risoluzione del modello di Lotka-Volterra Il sistema di Lotka-Volterra

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del 08.02.2008. x 1.

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del 08.02.2008. x 1. NOME:... MATRICOLA:.... Scienza dei Media e della Comunicazione, A.A. 007/008 Analisi Matematica, Esame scritto del 08.0.008 Indicare per quali R vale la seguente diseguaglianza : + >. Se y - - è il grafico

Dettagli

UD6 - MATLAB. Gestione della grafica

UD6 - MATLAB. Gestione della grafica UD6 - MATLAB Gestione della grafica Grafici MatLab può produrre grafici 2D e 3D Disegnare un Grafico Il comando plot produce grafici in 2 dimensioni; plot(x,y)apre una finestra e disegna il punto (x,y);

Dettagli

Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo

Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo Esercitazioni di Controlli Automatici LS (Prof. C. Melchiorri) Si consideri il motore elettrico

Dettagli

Statistica II, Laurea magistrale in Ing. Gestionale, a.a. 20010/11 Esempi di domande e dissertazioni

Statistica II, Laurea magistrale in Ing. Gestionale, a.a. 20010/11 Esempi di domande e dissertazioni Statistica II, Laurea magistrale in Ing. Gestionale, a.a. 20010/11 Esempi di domande e dissertazioni Note. Si pensi di poter rispondere alle seguenti domande avendo l ausilio di: 1) un foglio con l elenco

Dettagli

Identificazione di sistemi dinamici

Identificazione di sistemi dinamici Scuola universitaria professionale della Svizzera italiana SUP SI Dipartimento Tecnologie Innovative Identificazione di sistemi dinamici Ivan Furlan 21 dicembre 2011 Identificazione di sistemi dinamici

Dettagli

Laboratorio di Matematica Computazionale A.A. 2008-2009 Lab. 1 - Introduzione a Matlab

Laboratorio di Matematica Computazionale A.A. 2008-2009 Lab. 1 - Introduzione a Matlab Laboratorio di Matematica Computazionale A.A. 2008-2009 Lab. 1 - Introduzione a Matlab Alcune informazioni su Matlab Matlab è uno strumento per il calcolo scientifico utilizzabile a più livelli, dalla

Dettagli

Esperimentazioni di Fisica 3 AA 2013-2014. Tracking ADC. M. De Vincenzi

Esperimentazioni di Fisica 3 AA 2013-2014. Tracking ADC. M. De Vincenzi Esperimentazioni di Fisica 3 AA 2013-2014 Tracking ADC M. De Vincenzi 1 Introduzione La digitalizzazione di segnali analogici si realizza tramite dispositivi che vengono detti ADC (acronimo per Analog

Dettagli

min 4x 1 +x 2 +x 3 2x 1 +x 2 +2x 3 = 4 3x 1 +3x 2 +x 3 = 3 x 1 +x 2 3x 3 = 5 Innanzitutto scriviamo il problema in forma standard: x 1 x 2 +3x 3 = 5

min 4x 1 +x 2 +x 3 2x 1 +x 2 +2x 3 = 4 3x 1 +3x 2 +x 3 = 3 x 1 +x 2 3x 3 = 5 Innanzitutto scriviamo il problema in forma standard: x 1 x 2 +3x 3 = 5 IL METODO DEL SIMPLESSO 65 Esercizio 7.4.4 Risolvere utilizzando il metodo del simplesso il seguente problema di PL: min 4 + + + + = 4 + + = + = 5 Innanzitutto scriviamo il problema in forma standard:

Dettagli

DEL CIRCUITO INTER-LABORATORIO BLUETONGUE-RT-PCR

DEL CIRCUITO INTER-LABORATORIO BLUETONGUE-RT-PCR Istituto G. Caporale Teramo Campo Boario 6 Teramo ITALY Telefono +9-86- Fax +9-86-5 R E P O R T F I N A L E DEL CIRCUITO INTER-LABORATORIO BLUETONGUE-RT-PCR Distribuzione / . INTRODUZIONE.... CAMPIONI.....

Dettagli

6.2 Modelli per il monossido di carbonio

6.2 Modelli per il monossido di carbonio 6.2 Modelli per il monossido di carbonio La serie temporale scelta per l addestramento è quella rilevata in via Piave poiché tra le stazioni idonee, per legge, al controllo di questo inquinante essa presenta

Dettagli

ESAME SCRITTO DI ELEMENTI DI INFORMATICA E PROGRAMMAZIONE. 27 Gennaio 2015

ESAME SCRITTO DI ELEMENTI DI INFORMATICA E PROGRAMMAZIONE. 27 Gennaio 2015 COGNOME E NOME: MATRICOLA: Civile Ambiente e Territorio Non si possono consultare manuali, appunti e calcolatrici. Esercizio 1: [3 punto] Rappresentare i numeri 36 e 91 (in base 10) in notazione binaria

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

Ruolo della tecnologia nella gestione del diabete

Ruolo della tecnologia nella gestione del diabete Ruolo della tecnologia nella gestione del diabete Valeria Grancini U.O. Endocrinologia e Malattie del Metabolismo Servizio di Diabetologia Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico di Milano

Dettagli

RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito:

RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito: RICERCA OPERATIVA Prerequisiti Rappresentazione retta Rappresentazione parabola Equazioni e disequazioni Ricerca Operativa Studio dei metodi e delle strategie al fine di operare scelte e prendere decisioni

Dettagli

PARTE TERZA. STATISTICA DESCRITTIVA MULTIDIMENSIONALE (Analisi delle Relazioni)

PARTE TERZA. STATISTICA DESCRITTIVA MULTIDIMENSIONALE (Analisi delle Relazioni) PARTE TERZA STATISTICA DESCRITTIVA MULTIDIMESIOALE (Analisi delle Relazioni) La notazione matriciale 3 III.. LA OTAZIOE MATRICIALE III... L analisi statistica dei fenomeni multivariati L intrinseca complessità

Dettagli

Elaborazione numerica. Teoria dei segnali

Elaborazione numerica. Teoria dei segnali Elaborazione numerica e Teoria dei segnali Raccolta di Esercizi Fiandrino Claudio agosto 00 II Indice I Teoria dei segnali 5 Esercizi di base 7. Esercizio............................. 7. Esercizio.............................

Dettagli

Software di calcolo numerico, analisi, statistica e simulazione. Un esempio pratico: Octave

Software di calcolo numerico, analisi, statistica e simulazione. Un esempio pratico: Octave Software di calcolo numerico, analisi, statistica e simulazione Un esempio pratico: Octave Problemi tradizionali Risoluzione di funzioni matematiche complesse Esecuzione di calcoli matriciali Analisi

Dettagli