COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia"

Transcript

1 COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze mtemtiche prticolrmente elevte. Tuttvi, quest ppendice è stt penst per offrirvi delle pillole mtemtiche che formernno un kit di soprvvivenz per ffrontre si l teori economic, si gli esercizi connessi. In prticolre, l obiettivo è dimostrrvi come i concetti mtemtici che probbilmente vete visto fino d or solo d un punto di vist teorico, si mettono l servizio degli studiosi per meglio spiegre l reltà economic che ci circond.. L funzione mtemtic e l su utilità in economi Per cpire l utilità ed il senso di utilizzre le funzioni mtemtiche nello studio dell economi, prtimo dl considerre lcuni semplici esempi legti ll vit di tutti i giorni. Il cro petrolio rende slte le bollette degli itlini Durnte l crisi economic, le fmiglie hnno visto diminuire i loro redditi ed infine soffrirne è stto il consumo ggregto Lo stipendio mensile di un lvortore, dto il suo slrio orrio, dipende dl numero di ore lvorte Srete tutti d ccordo che le precedenti ffermzioni posso essere reinterprette ffermndo che le bollette degli itlini sono funzione del prezzo del petrolio, che i livelli di consumo ggregto sono funzione dei redditi delle fmiglie, e che lo stipendio mensile è funzione del slrio orrio. L funzione è quindi un relzione fr due vribili, ed in prticolre ess è l relzione ttrverso cui possimo spiegre il legme esistente fr un vribile

2 che chimimo dipendente ed un vribile che chimimo indipendente. In termini economici, l vribile dipendente è l vribile di cui voglimo studire l ndmento, mentre l vribile indipendente è quell vribile ttrverso cui cerchimo di spiegre l dipendente. Studire il legme fr queste due vribili signific cercre di cpire come vri un l vrire dell ltr, in che direzione l prim cmbi in seguito d un specific vrizione dell second. Ritornndo i nostri esempi, nel cso del consumo e dei redditi delle fmiglie, diremo che il consumo è l vribile dipendente e che il reddito delle fmiglie è l vribile indipendente. In termini formli, possimo rissumere e stilizzre quest relzione con un semplice formul, scrivendo: ( ) Essere ricorsi d un formulzione mtemtic ci h permesso di trdurre in termini sintetici un relzione che fino questo punto er stt solmente figurt. L grnde importnz dell funzione mtemtic per lo studio dell economi risiede ppunto nel dre l possibilità ll economist di esprimere semplicemente e sinteticmente concetti complessi. Fccimo or un psso ulteriore per comprendere l importnz e le peculirità dell funzione mtemtic. Abbimo detto che l funzione è un relzione che leg due vribili, m chiedimoci or se l tipologi propri di quest relzione influisce sul legme fr vribili oppure no. L rispost è, come potete intuire, ffermtiv, ovvero, l tipologi di relzione esistente fr due vribili è vitle per cpire il legme fr esse. In questo senso l funzione può essere considert un mcchin di trsformzione, il cui input è l vribile indipendente e il cui output è rppresentto dll vribile dipendente. Grficmente: f f() y Figur

3 L form dell sctol è essenzile per cpire l trsformzione. Considerte d esempio l funzione rdice qudrt, y. Scomponendo l espressione, possimo dire che y è il risultto dell trsformzione di ttrverso l mcchin rdice qudrt. Ancor, considerndo l elevmento potenz, d 5 esempio y, rrivimo d esplicitre l relzione dicendo che l output, y, è il risultto dell elevmento potenz dell input,. Per input nche numericmente uguli, il risultto è sostnzilmente diverso. Abbimo insistito su questo concetto perché è importnte distinguere fr l funzione, l mcchin, e le sue componenti/risultnti. Qundo scriverete y, ricordtevi che l funzione non è l espressione nel suo complesso, m solmente il simbolo, e che il risultto cmbierà second dei vri input che inserirete nell funzione. Dopo quest breve digressione, ritornimo ll definizione cnonic di funzione mtemtic, che fferm: Dti due insiemi A e B, si definisce funzione quell prticolre relzione che ssoci d ogni elemento di A uno ed un solo elemento di B Considerndo l esempio dello stipendio di un lvortore vremo: A ore lvorte B stipendio Figur Per ogni elemento contenuto in A, l funzione ssoci d esso uno ed un solo elemento contenuto in B. Questo signific che non possono verificrsi situzioni come l seguente: 3

4 A ore lvorte B stipendio Figur 3 Considerndo un gruppo omogeneo di lvortori, che occupno l stess posizione, d ogni quntittivo di ore lvorte corrisponde uno ed un solo stipendio, e non un plurlità di stipendi. L insieme A e l insieme B vengono definiti, rispettivmente, dominio e codominio dell funzione. Il dominio è l insieme di definizione dell funzione, ovvero l sctol d dove possimo estrrre le nostre vribili indipendenti, mentre il codominio è l sctol che contiene le vribili dipendenti. In prticolre, si dice che il codominio è l insieme dei vlori dell funzione, o nche che esso è l insieme delle immgini dell funzione. Avrete notto che nelle frsi precedenti l prol possimo è stt evidenzit: per qule motivo? D un punto di vist mtemtico, le funzioni non sono definite per qulsisi vlore, inftti non sempre il dominio corrisponde con l insieme dei numeri reli. D un punto di vist economico, l fccend si f ulteriormente complict. 000 Considerte d esempio l seguente funzione: y. L funzione in questione è, come vedremo fr poco, un frtt. Interpretndo economicmente l relzione, immginte che y si il prezzo unitrio l qule voglimo vendere l quntità di un bene. Il dominio mtemtico dell funzione è rppresentto d tutti i vlori di diversi d zero, quindi, ffinché l relzione bbi senso mtemtico, è sufficiente che si diverso d zero. Questo vuol nche dire che riusciremo clcolre un immgine dell funzione, un y, nche per vlori negtivi dell. D un punto di vist economico, vrebbe senso frlo? E possibile considerre quntità di bene negtive d un punto di vist economico? L rispost è 4

5 ovvimente no. Questo però ci port concludere che non sempre dominio mtemtico e dominio economico coincidono, e tle ffermzione è prticolrmente rilevnte qundo, d esempio, ndimo disegnre il grfico dell funzione: di fronte d un funzione come quell precedente, se foste di fronte d un tem di mtemtic potreste utilizzre l intero pino crtesino con tutti e quttro i suoi qudrnti; se foste invece di fronte d un tem di economi, l unico qudrnte ll interno del qule potreste disegnre l funzione è il primo. Quest ultimo ppunto sull funzione ci port d ddentrrci nell nlisi del grfico di un funzione e nello studio di cos esso rppresenti. Il grfico dell funzione mostr visivmente quli vlori ssume l vribile y l vrire dell : per questo motivo, il vlore che ssume l vribile y second di ciscun vlore dell vribile si chim immgine dell funzione, ovvero, si trtt dei vlori che ssume l funzione l vrire di. Figur 4 Il grfico precedente mostr l esempio di un funzione monoton. Un funzione si dice tle qulor si verifichi un delle seguenti condizioni: ) i) ii) f ( ) f ( ) f ( f ( ) ) Nel primo cso, l condizione di monotonicità fferm che per ogni minore o ugule, l immgine di è nch ess minore o ugule ll immgine di. Nel secondo cso, l condizione di monotonicità fferm che per ogni mggiore o ugule, l immgine di è nch ess mggiore o ugule 5

6 ll immgine di. In ltre prole, l ordinmento delle vribili è rispettto nche dlle rispettive immgini. Un esempio di funzione non monoton è il grfico seguente: Figur 5 Esistono, inftti, vlori di tle per cui per i quli l condizione f ) f ( ) non si verific. (. Principli tipi di funzione: funzioni polinomili Le funzioni più comuni, ed nche quelle che mggiormente vengono utilizzte durnte il corso, sono le funzioni polinomili. Il polinomio è l somm di più monomi non simili fr loro. I polinomi si dicono di grdo n, dove n è il grdo mssimo dei monomi che lo compongono. Avremo quindi che se i monomi componenti un determinto polinomio hnno grdo mssimo pri uno, il polinomio srà di grdo uno; se il grdo mssimo dei monomi è due, llor il polinomio vrà grdo due; e così vi per tutti i grdi mggiori di due. Esempi di polinomi di vri grdi sono le espressioni: i) y + 3 ii) iii) y 5 y Il primo polinomio è di I grdo, il secondo di II grdo, mentre il terzo di VI grdo. Le funzioni polinomili hnno come dominio l intero insieme dei numeri reli. 6

7 .. Polinomi di primo grdo. Rette In generle, i polinomi di I grdo sono funzioni che hnno equzione: ) f ( ) + b e vengono definite funzioni lineri. Le funzioni lineri sono crtterizzte d proporzionlità dirett tr l vribile y e l vribile. Due vribili si dicono direttmente proporzionli se il loro rpporto è costnte. Due vribili, invece, si dicono inversmente proporzionli se il loro prodotto c è costnte. L funzione f ( ), d esempio, è crtterizzt d proporzionlità invers. Affermre che esiste proporzionlità dirett o invers fr due vribili non implic considerzioni circ l quntificzione dell imptto dell vrizione di un vribile sull ltr. In ltre prole, dire che esiste proporzionlità dirett signific che se l vribile ument, llor nche l vribile y ument; così come dire che esiste proporzionlità invers implic che d un umento dell corrisponde un diminuzione dell y e vicevers. Non implic invece che l vrizione dell y, di qulsisi segno ess si, si proporzionle ll vrizione dell. L y vri in modo proporzionle rispetto ll qundo, d esempio, d un vrizione del 50% di corrisponde un vrizione del 50% di y. L vrizione di y è più che proporzionle rispetto ll vrizione di qundo, d esempio, se l ument del 0%, l y registr un umento del 0%. L vrizione di y è meno che proporzionle rispetto ll vrizione di qundo, d esempio, se l ument del 0%, l y registr un umento del 5%. Come potete notre, l quntificzione dell proporzionlità non h null che vedere con il segno dell proporzionlità: dire che y è vrit meno che proporzionlmente rispetto d, non implic che l vrizione dell y bbi lo stesso segno dell vrizione dell. Potremo vere inftti, che se ument del 30%, y diminuisc del 60%: in questo cso vremo un relzione di proporzionlità invers e llo stesso tempo l y vrierà più che proporzionlmente rispetto ll. 7

8 Di prticolre interesse per i nostri obiettivi è l crtterizzzione geometric dei polinomi di primo e secondo grdo. L mggior prte delle relzioni economiche che ndremo studire è, inftti, rppresentbile ttrverso questi due costrutti lgebrici. L equzione del polinomio di primo grdo rppresent geometricmente l equzione di un rett, nell su form generic: 3) y + b Il coefficiente è detto coefficiente ngolre dell rett: esso misur l pendenz dell rett e, d un punto di vist lgebrico, dice di qunto vri l vribile y seguito di un vrizione unitri dell vribile. Proprio per questo motivo l pendenz dell rett si clcol come: 4) Pendenz VARIAZIONE VARIAZIONE y ( y ( y) ) A vrizioni di possono corrispondere vrizioni positive o negtive dell y, e per questo si prl di rette inclinte positivmente o negtivmente. Se ll umentre di l y ument vi è quindi un vrizione positiv si dice che l rett è inclint positivmente, mentre se ll umentre dell l y diminuisce vrizione negtiv l rett srà inclint negtivmente. Vedimo un esempio di rett inclint negtivmente: Figur 6 8

9 Nell figur 6, qundo il vlore dell vribile ument pssndo d, l vribile y diminuisce, inftti, f ) > f ( ) e f ) f ( ) 0. Nel clcolo dell pendenz risulterà: f ( ) f ( ) 5) < 0 ( ( < Nell equzione 3, il coefficiente b rppresent l intercett dell rett con l sse delle ordinte. L intercett misur il vlore dell ordint del punto in cui l rett in questione intersec l sse delle ordinte. Per questo motivo, ess si clcol impostndo il sistem: 6) y + b 0 dove 0 è l equzione dell sse delle ordinte. Prim di concludere con le rette, un ultimo ppunto rigurdnte coefficiente ngolre e intercett. Se vrire è il coefficiente ngolre, ssistimo d un rotzione dell rett, mentre se vrire è l intercett, vremo uno spostmento prllelo dell rett verso l lto o verso il bsso... Polinomi di secondo grdo. Prbole Per qunto rigurd i polinomi di secondo grdo, dl punto di vist geometrico l loro equzione rppresent l equzione di un prbol: 7) y + b + c In prticolre, l equzione 7 rppresent un prbol il cui sse di simmetri è prllelo ll sse delle ordinte, mentre l equzione 8 8) y + by + c 9

10 rppresent un prbol con sse di simmetri prllelo ll sse delle scisse. A second del segno del coefficiente, l prbol vrà concvità rivolt verso il bsso oppure verso l lto: se è positivo, l concvità srà verso l lto, mentre se ssume vlori negtivi l concvità dell prbol srà rivolt verso il bsso. Il coefficiente c rppresent l ordint del punto in cui l prbol intersec l sse delle ordinte; esso inftti si ricv risolvendo il sistem: 9) y 0 + b + c y c 0 Al contrrio, se l obiettivo è trovre l intersezione dell prbol con l sse delle scisse, si risolverà il sistem: y + b + c 0) + b + c 0 y 0 Le rdici dell equzione di secondo grdo risultnte dll soluzione del sistem rppresentno le scisse dei punti in cui l prbol intersec l sse delle scisse. Tli rdici sono rppresentte d numeri reli se il discriminnte dell equzione è mggiore di zero; se il discriminnte fosse minore di zero, l equzione non vrebbe rdici reli e quindi l prbol corrispondente non incroci mi l sse delle scisse. Infine, qulor il discriminnte si ugule zero, l prbol tnge l sse delle scisse in un unico preciso punto. Rissumendo: se b 4c > 0, b ± b 4c ) se b 4c < 0 Nessun rdice rele se b 4c 0 b 0

11 . Altri tipi di funzione Dopo ver nlizzto in dettglio le funzioni polinomili, rivolgimo or l ttenzione d ltri tipi di funzione che è necessrio conoscere per lo studio dell economi. Funzioni frtte Le funzioni frtte sono funzioni del tipo: ) f ( ) p( ) q( ) dove p() e q() sono due polinomi. Queste funzioni esistono solo per vlori dell vribile che non nnullno il denomintore, e quindi il loro dominio è determinto ponendo il polinomio l denomintore diverso d zero. Funzioni esponenzili Le espressioni: 3) f ( ) oppure f ( ) e vengono definite funzioni esponenzili. In prticolre, l prim equzione rppresent un funzione esponenzile in bse, dove è un numero rele positivo diverso d, mentre l second è un funzione esponenzile in bse e, dove e è il numero di Nepero (e,783 ). Le esponenzili hnno per dominio l intero insieme dei numeri reli. Il loro grfico è rppresentto dll curv: Figur 7

12 Il grfico delle esponenzili h per sintoto l sse delle scisse, mentre intersec l sse delle ordinte nel punto (0;). Dl grfico dell funzione si può notre che il vlore dell funzione esponenzile, y, è sempre positivo per qulsisi vlore ssunto dll vribile. Le funzioni esponenzili godono di lcune proprietà che è importnte conoscere. Volendo rissumerle in un qudro sintetico: ( ) ( b ) 0 y : y y y + y y b Funzioni logritmiche Le funzioni logritmiche hnno equzione: 4) f ( ) log Così come per le funzioni esponenzili, nche le logritmiche possono presentrsi con bsi diverse. Le logritmiche più utilizzte sono le funzioni in bse nturle e e le funzioni in bse 0, rispettivmente: 5) y loge ln ; y log0 log Le logritmiche sono definite nell intervllo dei numeri reli positivi. L sintoto è costituito dll sse delle ordinte, mentre il punto di intersezione dell curv con l sse delle scisse è (;0).

13 Il loro grfico è rppresentto dll curv: Figur 8 Esiste un strett relzione fr funzioni esponenzili e funzioni logritmiche. Inftti vle sempre l identità per l qule: 6) log ovvero, il logritmo è l esponente che deve ssumere per ottenere. Secondo l stess logic, possimo ffermre che: 7) log k k 3

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è: Titolzione Acido Debole Bse Forte L rezione che vviene nell titolzione di un cido debole HA con un bse forte NOH è: HA(q) NOH(q) N (q) A (q) HO Per quest rezione l costnte di equilibrio è: 1 = = >>1 w

Dettagli

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti Problemi di mssimo e minimo in Geometri olid Problemi su poliedri Indice dei problemi risolti In generle, un problem si riferisce un figur con crtteristice specifice (p.es., il numero dei lti dell bse)

Dettagli

Appunti di Analisi matematica 1. Paolo Acquistapace

Appunti di Analisi matematica 1. Paolo Acquistapace Appunti di Anlisi mtemtic Polo Acquistpce 23 febbrio 205 Indice Numeri 4. Alfbeto greco................................. 4.2 Insiemi..................................... 4.3 Funzioni....................................

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti:

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti: Minori di un mtrice Si A K m,n, si definisce minore di ordine p con p N, p

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

Variazioni di sviluppo del lobo frontale nell'uomo

Variazioni di sviluppo del lobo frontale nell'uomo Istituto di Antropologi dell Regi Università di Rom Vrizioni di sviluppo del lobo frontle nell'uomo pel Dott. SERGIO SERGI Libero docente ed iuto ll cttedr di Antropologi. Il problem dei rpporti di sviluppo

Dettagli

EQUILIBRI IN SOLUZIONE ACQUOSA

EQUILIBRI IN SOLUZIONE ACQUOSA Dispense CHIMICA GENERALE E ORGANICA (STAL) 010/11 Prof. P. Crloni EQUILIBRI IN SOLUZIONE ACQUOSA Qundo si prl di rezioni di equilirio dei composti inorgnici, un considerzione prticolre viene rivolt lle

Dettagli

Le spese di ricerca e sviluppo: gestione contabile ed iscrizione in bilancio *

Le spese di ricerca e sviluppo: gestione contabile ed iscrizione in bilancio * www.solmp.it Le : gestione contbile ed iscrizione in bilncio * Piero Pisoni, Fbrizio Bv, Dontell Busso e Alin Devlle ** 1. Premess Le sono esminte nei seguenti spetti: Il presente elborto è trtto d: definizione

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :,

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :, TRASFORMAZIONI GEOMETRICHE Un rsforzione geoeric del pino in sé è un corrispondenz iunivoc r i puni del pino P P, P P P è l igine di P rispeo ll rsforzione. Ad ogni puno P(,) corrisponde uno ed un solo

Dettagli

Cuscinetti ad una corona di sfere a contatto obliquo

Cuscinetti ad una corona di sfere a contatto obliquo Cuscinetti d un coron di sfere conttto obliquo Cuscinetti d un coron di sfere conttto obliquo 232 Definizione ed ttitudini 232 Serie 233 Vrinti 233 Tollernze e giochi 234 Elementi di clcolo 236 Crtteristiche

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

YOGURT. Dosi per. 150 più secondo il. fermenti. eccezionalee. il nostroo lavorare. intestino. forma. Alla fine

YOGURT. Dosi per. 150 più secondo il. fermenti. eccezionalee. il nostroo lavorare. intestino. forma. Alla fine YOGURT FATTO IN CASAA CON YOGURTIERA Lo yogurt ftto in cs è senz ltro un modoo sno per crere un limento eccezionlee per l nostr slute. Ricco di ltticii iut intestino fermenti il nostroo lvorre meglioo

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

Domanda n. del Pensione n. cat. abitante a Prov. CAP. via n. DICHIARA, sotto la propria responsabilità, che per gli anni:

Domanda n. del Pensione n. cat. abitante a Prov. CAP. via n. DICHIARA, sotto la propria responsabilità, che per gli anni: Mod. RED Sede di Domnd n. del Pensione n. ct. nto il stto civile bitnte Prov. CAP vi n. DICHIARA, sotto l propri responsbilità, che per gli nni: A B (brrre l csell reltiv ll propri situzione) NON POSSIEDE

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro.

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro. Viett l pubbliczione, l riprouzione e l ivulgzione scopo i lucro. GA00001 Qul è l mpiezz ell ngolo che si ottiene ) 95 b) 275 c) 265 ) 5 b sottreno 85 un ngolo giro? GA00002 Due ngoli ll circonferenz che

Dettagli

10 Progetto con modelli tirante-puntone

10 Progetto con modelli tirante-puntone 0 Progetto con modelli tirnte-puntone 0. Introduzione I modelli tirnte-puntone (S&T Strut nd Tie) sono utilizzti per l progettzione delle membrture in c.. che non possono essere schemtizzte come solidi

Dettagli

Le operazioni fondamentali in N Basic Arithmetic Operations in N

Le operazioni fondamentali in N Basic Arithmetic Operations in N Operzioi fodetli i - 1 Le operzioi fodetli i Bsic Arithetic Opertios i I geerle u operzioe è u procedieto che due o più ueri, dti i u certo ordie e detti terii dell'operzioe, e ssoci u ltro, detto risultto

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

Metodi d integrazione di Montecarlo

Metodi d integrazione di Montecarlo Metodi d itegrzioe di Motecrlo Simulzioe l termie simulzioe ell su ccezioe scietific h u sigificto diverso dll ccezioe correte. Nell uso ordirio è sioimo si fizioe; ell uso scietifico è sioimo di imitzioe,

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

Comparazione delle performance di 6 cloni di Gamay ad altitudine elevata

Comparazione delle performance di 6 cloni di Gamay ad altitudine elevata Comprzione delle performnce di 6 cloni di Gmy d ltitudine elevt 1 / 46 Motivzioni Selezione clonle IAR-4 Lo IAR-4 è stto selezionto in mbiente montno d un prticolre popolzione di mterile stndrd, dll qule

Dettagli

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE.

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE. FCA D UN CCUTO SSTO CONTNNT PÙ GNATO CON UN TMNAL COMUN SNZA TMNAL COMUN. Si verifino quttro iruiti on due genertori: genertori on polrità onorde e un terminle omune genertori on polrità disorde e un terminle

Dettagli

LE INTERSEZIONI Dispense didattiche di TOPOGRAFIA

LE INTERSEZIONI Dispense didattiche di TOPOGRAFIA lsse qurt Docente: In. Ntt MODULO I: IL RILIEVO TOOGRFIO UD I: L INQUDRMENTO ON LE RETI - INTERSEZIONI LE INTERSEZIONI Dispense didttiche di TOOGRFI r M unto di ollins O s θ 00 O d O d 00 θ θ ω ' ω θ c'

Dettagli

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4.0. Esponenziale. Nella prima sezione abbiamo definito le potenze con esponente reale. Vediamo ora in dettaglio le proprietà della funzione esponenziale a,

Dettagli

MATRICI SIMILI E MATRICI DIAGONALIZZABILI

MATRICI SIMILI E MATRICI DIAGONALIZZABILI MATRICI SIMILI E MATRICI DIAGONALIZZABILI DEFINIZIONE: Due mtici qudte A e B, dello stesso odine n, si dicono simili se esiste un mtice non singole S, tle che isulti: B S A S L mtice S si chim nche mtice

Dettagli

ESERCITAZIONI. I. 1)Una coppia ha già due figlie. Se pianificassero di avere 6 figli, con quale probabilità avranno una famiglia di tutte figlie?

ESERCITAZIONI. I. 1)Una coppia ha già due figlie. Se pianificassero di avere 6 figli, con quale probabilità avranno una famiglia di tutte figlie? ESERCITZIONI. I 1)Un coppi h già due figlie. Se pinificssero di vere 6 figli, con qule probbilità vrnno un fmigli di tutte figlie? ) 1/4 b)1/8 c)1/16 d)1/32 e)1/64 2)In un fmigli con 3 bmbini, qul e l

Dettagli

Codici bifissi ed insiemi Sturmiani

Codici bifissi ed insiemi Sturmiani Università degli Studi di Plermo Fcoltà di Scienze MM. FF. NN. Corso di Lure Specilistic in Mtemtic Codici ifissi ed insiemi Sturmini Studente Frncesco Dolce Reltore Prof. Antonio Restivo Anno Accdemico

Dettagli

Fatturiamo. Versione 5. Manuale per l utente. Active Software Corso Italia 149-34170 Gorizia email info@activeweb.it

Fatturiamo. Versione 5. Manuale per l utente. Active Software Corso Italia 149-34170 Gorizia email info@activeweb.it Ftturimo Versione 5 Mnule per l utente Active Softwre Corso Itli 149-34170 Gorizi emil info@ctiveweb.it Se questo documento ppre nell finestr del vostro browser Internet di defult, richimte il comndo Registr

Dettagli

11. Attività svolta dall Agenzia, risorse e aspetti organizzativi

11. Attività svolta dall Agenzia, risorse e aspetti organizzativi 11. Attività svolt dll Agenzi, risorse e spetti orgnizztivi 11.1 Attività istituzionle svolt i sensi dell Deliberzione istitutiv In un vlutzione complessiv delle ttività svolte dll Agenzi i sensi dell

Dettagli

temperatura; Trasporto di massa, calore e quantità di moto, relazioni di bilancio; La viscosità; Cenni di

temperatura; Trasporto di massa, calore e quantità di moto, relazioni di bilancio; La viscosità; Cenni di FISICA-TECNICA Ki Gllucci ki.gllucci@univq.i kgllucci@unie.i Progr del corso Dinic dei fluidi: Regii di oo; Moo szionrio di un fluido idele; Moo szionrio di un fluido rele; Il eore di Bernoulli; Perdie

Dettagli

L ELLISSOIDE TERRESTRE

L ELLISSOIDE TERRESTRE L ELLISSOIDE TERRESTRE Fin dll scond mtà dl XVII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di rifrimnto pr l Trr è stt individut in un ELLISSOIDE DI ROTAZIONE. E l suprfici

Dettagli

PERDITE SU CREDITI E SVALUTAZIONE CREDITI

PERDITE SU CREDITI E SVALUTAZIONE CREDITI PERDITE SU CREDITI E SVALUTAZIONE CREDITI Codice civile: I crediti devono essere iscritti secondo il vlore presumibile di relizzzione; quindi già l netto dell svlutzione derivnte dl monitorggio di ciscun

Dettagli

LA PREVISIONE DELLE TEMPERATURE MINIME IN TEMPO REALE:

LA PREVISIONE DELLE TEMPERATURE MINIME IN TEMPO REALE: LA PREVISIONE DELLE TEMPERATURE MINIME IN TEMPO REALE: DAI MODELLI TRADIZIONALI AI NUOVI APPROCCI REAL-TIME TEMPERATURE MINIMUM PREDICTION: FROM TRADITIONAL MODELS TO NEW APPROACHES Stefno Dll Nor 1, Emnuele

Dettagli

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione 07 Guid ll progettzione Scelt tubzioni e giunti 2 tubi di misur [mm] Dimetro tubzioni unità esterne (A) Giunti 12Hp 1Hp 1Hp Selezionre il dimetro delle unità esterne dll seguente tbell Giunto Y tr unità

Dettagli

4. Trasporto pubblico non di linea: taxi e noleggio con conducente (NCC)

4. Trasporto pubblico non di linea: taxi e noleggio con conducente (NCC) 4. Trsporto pubblico non di line: txi e noleggio con conducente (NCC) L domnd di mobilità dei cittdini incontr un corrispondente offert delle diverse modlità di trsporto, sull bse delle crtteristiche degli

Dettagli

Epigrafe. Premessa. D.Lgs. 29 dicembre 2006, n. 311 (1).

Epigrafe. Premessa. D.Lgs. 29 dicembre 2006, n. 311 (1). D.Lgs. 29-12-2006 n. 311 Disposizioni correttive ed integrtive l D.Lgs. 19 gosto 2005, n. 192, recnte ttuzione dell direttiv 2002/91/CE, reltiv l rendimento energetico nell'edilizi. Pubblicto nell Gzz.

Dettagli

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO Così come avviene per i numeri ( 180 = 5 ), la scomposizione in fattori di un polinomio è la trasformazione di un polinomio in un prodotto di più polinomi irriducibili

Dettagli

v999999999 Italià (més grans de 25 anys) Aferrau una etiqueta identificativa Convocatòri a 2015 de codi de barres Model 1

v999999999 Italià (més grans de 25 anys) Aferrau una etiqueta identificativa Convocatòri a 2015 de codi de barres Model 1 Aferru un etiquet identifictiv v999999999 de codi de brres Itlià (més grns de 25 nys) Model 1 Not 1ª Not 2ª Aferru l cpçler d exmen un cop cbt l exercici Puntució: preguntes vertder/fls: 1 punt; preguntes

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio Il Moello elzionle Proposto E. F. o nel 1970 per vorire l inipenenz ei ti e reso isponiile ome moello logio in DM reli nel 1981 si s sul onetto mtemtio i relzione, questo ornise l moello un se teori he

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

NOME BUBBICO ROCCO LUIGI CODICE FISCALE

NOME BUBBICO ROCCO LUIGI CODICE FISCALE Riservto ll Poste itline Sp N. Protocollo t di presentzione UNI CONORME AL PROVVEIMENTO AGENZIA ELLE ENTRATE EL 000 E SUCCESSIVI PROVVEIMENTI Periodo d'impost 0 COGNOME COICE ISCALE Informtiv sul trttmento

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Momento di una forza rispettto ad un punto

Momento di una forza rispettto ad un punto Momento di un fo ispettto d un punto Rihimimo lune delle definiioni e popietà sui vettoi già disusse ll iniio del oso Podotto vettoile: ϑ ϑ sin sin θ Il vettoe è dietto lungo l pependiole l pino individuto

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

INTERCONNESSIONE CONNETTIVITÀ

INTERCONNESSIONE CONNETTIVITÀ EMC VMA AX 10K EMC VMAX 10K fornisce e un'rchitettu ur scle-out multi-controlller Tier 1 rele e che nsolidmento ed efficienz. EMC VMAX 10 0K utilizz l stess s grntisce lle ziende con stemi VMAX 20 0K e

Dettagli

GUIDA INCENTIVI all ASSUNZIONE e alla CREAZIONE d IMPRESA AGEVOLAZIONI SU DISPOSIZIONI NAZIONALI, REGIONALI E PROVINCIALI

GUIDA INCENTIVI all ASSUNZIONE e alla CREAZIONE d IMPRESA AGEVOLAZIONI SU DISPOSIZIONI NAZIONALI, REGIONALI E PROVINCIALI GUIDA ll ASSUNZIONE e ll CREAZIONE d IMPRESA AGEVOLAZIONI SU DISPOSIZIONI NAZIONALI, REGIONALI E PROVINCIALI Aggiornt l 31 gennio 2015 PROGRAMMA POT Pinificzione Territorile Opertiv PROGRAMMA POT Pinificzione

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

STUD FOTOVOLTAICO 16 LED 1.2W CW

STUD FOTOVOLTAICO 16 LED 1.2W CW Cod. 1879.185M STUD FOTOVOLTAICO 16 LED 1.2W CW Crtteristiche tecniche Corpo in lluminio pressofuso Portello di chiusur vno cblggio/btterie in termoindurente Riflettore in lluminio vernicito binco Diffusore

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

TEORIA DELLA PROBABILITÀ II

TEORIA DELLA PROBABILITÀ II TEORIA DELLA PROBABILITÀ II Diprtimento di Mtemti ITIS V.Volterr Sn Donà di Pive Versione [14-15] Indie 1 Clolo omintorio 1 1.1 Introduzione............................................ 1 1.2 Permutzioni...........................................

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

Misure di base su una carta. Calcoli di distanze

Misure di base su una carta. Calcoli di distanze Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

a Crediamo nel concetto di cucina a chilometro zero e nei prodotti di stagione, crediamo nel rispetto dell ambiente e delle tradizioni.

a Crediamo nel concetto di cucina a chilometro zero e nei prodotti di stagione, crediamo nel rispetto dell ambiente e delle tradizioni. Credimo nel concetto di cucin chilometro zero e nei prodotti di stgione, credimo nel rispetto dell mbiente e delle trdizioni. L nostr propost enogstronomic è bst sull riscopert delle ricette più semplici

Dettagli

Costruzioni con riga e compasso. Fabio Stumbo Dipartimento di Matematica Università di Ferrara Ferrara, I f.stumbo@unife.it

Costruzioni con riga e compasso. Fabio Stumbo Dipartimento di Matematica Università di Ferrara Ferrara, I f.stumbo@unife.it ostruzioni con riga e compasso Fabio Stumbo Dipartimento di Matematica Università di Ferrara Ferrara, I f.stumbo@unife.it INDIE 2 Indice 1 Note storiche 3 2 ostruzioni fondamentali 8 2.1 Definizione e

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

DICHIARAZIONE DI INIZIO ATTIVITÀ, VARIAZIONE DATI O CESSAZIONE ATTIVITÀ AI FINI IVA

DICHIARAZIONE DI INIZIO ATTIVITÀ, VARIAZIONE DATI O CESSAZIONE ATTIVITÀ AI FINI IVA Modello 9/11 DIHIRZIONE DI INIZIO TTIVITÀ, VRIZIONE DTI O ESSZIONE TTIVITÀ I FINI IV (IMPRESE INDIVIDULI E LVORTORI UTONOMI) Informativa sul dei dati personali ai sensi dell art. 13 del D.Lgs. n. 196 del

Dettagli

www.scuolainweb.altervista.org Problemi di Fisica La Dinamica

www.scuolainweb.altervista.org Problemi di Fisica La Dinamica www.suolinweb.ltevist.og L Dinmi Poblemi di isi L Dinmi PROBLEA N. Un opo di mss m 4 kg viene spostto on un foz ostnte 3 N su un supefiie piv di ttito pe un ttto s,3 m. Supponendo he il opo inizilmente

Dettagli

4. Qual è il requisito principale per la saldatura di acciai a basso contenuto di carbonio (acciai dolci)?

4. Qual è il requisito principale per la saldatura di acciai a basso contenuto di carbonio (acciai dolci)? 1. Qule ei metoi ell eleno è ppliile ll ossizione ell iio? Menio Iniezione Chimio A sintill 2. Qule elle seguenti frsi rigur l punzontur? È un lvorzione lo he non inue grne eformzione el pezzo È un lvorzione

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Lo studio di unzione Ing. Alessandro Pochì Appunti di analisi Matematica per la Classe VD (a.s. 011/01) Schema generale per lo studio di una unzione Premessa Per Studio unzione si intende, generalmente,

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem)

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Raccolta di Esercizi di Matematica Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Contenuti: 8-1. L ordine Algebrico delle Operazioni 8-2. Problemi sulle Percentuali 8-3. Le Forme Standard e Point-Slope

Dettagli

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Microeconomia venerdì 29 febbraio 2008 La struttura della lezione

Dettagli

IL DIRIGENTE SCOLASTICO IN EUROPA

IL DIRIGENTE SCOLASTICO IN EUROPA n u m e r o m o n o g r f i c o IL DIRIGENTE SCOLASTICO IN EUROPA PREMESSA Nell Comuniczione dell Commissione Europe del 3 luglio 2008, intitolt Migliorre le competenze per il 21 secolo: un ordine del

Dettagli

APPROFONDIMENTI SUI NUMERI

APPROFONDIMENTI SUI NUMERI APPROFONDIMENTI SUI NUMERI. Il sistem di umerzioe deimle Be presto, ll operzioe turle del otre, si è ggiut l esigez di «rppresetre» i umeri. I sistemi di umerzioe possiili soo molti; per or i limitimo

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Grazie. Normativa sulle emissioni dell'epa. Avviso relativo alla garanzia. Servizio "Mercury Premier"

Grazie. Normativa sulle emissioni dell'epa. Avviso relativo alla garanzia. Servizio Mercury Premier Grzie per vere cquistto uno dei migliori motori fuoribordo sul mercto che si rivelerà un ottimo investimento per l nutic d diporto. Il fuoribordo è stto fbbricto d Mercury Mrine, leder internzionle nel

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

IL LIBRO DI MORMON UN ALTRO TESTAMENTO DI GESÙ CRISTO

IL LIBRO DI MORMON UN ALTRO TESTAMENTO DI GESÙ CRISTO IL LIBRO DI MORMON UN ALTRO TESTAMENTO DI GESÙ CRISTO IL LIBRO DI MORMON UN ALTRO TESTAMENTO DI GESÙ CRISTO IL Libro di Mormon RACCONTO SCRITTO SU TAVOLE PER MANO DI MORMON TRATTO DALLE TAVOLE DI NEFI

Dettagli