Calcolo di autovalori

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Calcolo di autovalori"

Transcript

1 lcolo d utolor Dt l trce deterre l uero e ettore o ullo tl che l l utolore utoettore Esepo 9 9 b 8 b 8 b geerle o è ultplo d. Se però oero c soo due dreo lugo le qul fuo coe se fosse oltplcto per uo sclre. ooscere le dreo lugo le qul gsce coe sclre seplfc proble lcolo d utolor Dt l trce deterre l uero e ettore o ullo tl che l : Esepo 6 l utolore utoettore o è 7 utoettore Se è u utoettore che og ultplo d lo è. I Mtlb: eg resttusce gl utolor delll trce

2 lcolo d utolor Dt l trce deterre l uero e ettore o ullo tl che l l utolore utoettore I prtc cercho l e tl che - l I E possble che u sste lere oogeeo bb u soluoe o ull solo se è sgolre oero det - l I equoe crtterstc Gl utolor soo le rdc del poloo crtterstco 9 Esepo det I det 8 Soluo: 7± 9 Iftt s h:

3 Esepo lcolre gl utolor delle seguet trc: 6 8 olteplctà I Mtlb: eg resttusce gl utolor delll trce 6 Lo spettro d è l see degl utolor d. Il rggo spettrle d è ρ Dt S trce o sgolre B S - S è sle d Mtrc sl ho gl stess utolor. D: S S Isersco l trce dettà I S S - S S S S S poe S S S B B.. c t

4 è dgolble se S - S D dgole S o sgolre t.c. Gl utolor d u trce dgole D soo gl eleet sull dgole è dgolble se e solo se possede utoettor lerete dpedet Gl utoettor ssoct d utolor dstt soo lerete dpedet Se gl utolor d soo dstt llor è dgolble 7 Locloe degl utolor Per og or turle le che ρ ρ coè gl utolor s troo el cercho d cetro l orge e rggo. Iftt gl utolor soo: 6 8

5 9 Locloe degl utolor - eore d Gerschgor S l u utolore d... c t S l dce dell copoete d sso odulo dell utoettore. r Qud { } r c t.. Poché o è oto pror

6 eore d Gerschgor l è u utolore che d e qud: { c c c t.. cptoldo: eore d Gerschgor r... c... { } r c t.. { } c c t..

7 - eore d Gerschgor - esepo { } 8 { } 8 eore d Gerschgor - esepo Esepo: 8 { } { } { } { } { } 8 { } { } { } { } { } 8

8 { } { } { } eore d Gerschgor - esepo { } { 8 } { } { } { } { } { 8 } eore d Gerschgor - esepo

9 eore d Gerschgor Il teore oltre stblsce che d og copoete d o oero d og uoe coess ssle d cerch o pprtegoo tt utolor qut soo cerch che costtuscoo l copoete cotdo utolore e cercho co l su olteplctà D quest potes dscede che è rele d olteplctà uo. Suppoo che corrspodet utoettor Metodo delle potee lcolo dell utolore d sso odulo. Suppoo che l utolore d odulo s uco so lerete dpedet Scelgo t.c.... l > successoe d ettor copoete -s 8

10 9 Metodo delle potee t.c. Dostroe Se l < Metodo delle potee L utolore d o odulo d è l recproco dell utolore d sso odulo d - poché se l è u utolore d llor l - è u utolore d -.

11 Metodo delle potee Ipleetoe Fssto for.. ed Le copoet d possoo crescere olto odulo!!! orloe... for.. w ed w w w OSSEVZIONI geere d og teroe s scegle l dce coe l posoe dell pr copoete d odulo sso d w. utlre u opportuo crtero d rresto! Metodo delle potee Ossero sull coerge: l eloctà d coerge dpede dl rpporto / : quto pù è pccolo tto pù rpdete coerge qudo l coerge può rsultre eccessete let. I quest stuoe l etodo ee usto per otteere solo u st le d glorre successete co u etodo pù eloce d esepo l etodo delle potee erse. Se è rele ed h olteplctà l coerge è geerlete let. Se gl utolor soo rel e dstt ed ho lo stesso odulo geere l etodo o coerge.

12 utolore d o odulo E l recproco dell utolore d sso odulo d - / utolore d utolore d o odulo d sso odulo d -... for.. w w w w P LU... for.. rsol w w Ipleetoe w w ed ed N.B. geere d og teroe s scegle l dce coe l posoe dell pr copoete d odulo sso d w. Metodo delle potee erse Sere per glorre l pprossoe p d u utolore l p I p p Qud l - p è u utolore d - p I. Qud l -p - è u utolore d - p I - Se p p µ è utolore d - p I - Qud clcolto µ d es co l etodo delle potee p µ

13 Metodo delle potee erse Ipleetoe p: pprossoe d u utolore glore pprossoe: Se l pprossoe le p o è suffceteete buo l coerge del etodo rsult ss let. doe µ è utolore d -pi - p p µ e qud /µ è utolore d -pi P pi LU... p p; for rsol piw p p w w w ed N.B. geere d og teroe s scegle l dce coe l posoe dell pr copoete d odulo sso d w. Mtetc del web: Google e Pge Lrr Pge e Serge Br specld Ifortc Stford ho etto l otore d rcerc pù foso. Pge creò u progr per spere qul st coteeo u l d u cert pg Bcub. Pesdo ll bbloetr lutoe d u rtcolo sull bse delle sue cto Pge e Br deroo u progr per surre l port d u pg web cotdo qute ltre pge rdo d ess. Proble: ordre le pge preset sul web bse ll loro port pge r Per ulteror fo stre l sto web del Prof. B: 6

14 Pge L port d u pg è legt lle sue coesso e o l suo coteuto L port d u pg è trsfert lle pg cu ess put L port d u pg è dt dll so delle fro d port delle pge che d ess puto oero Io soo portte se frequeto persoe portt Se o soo portte llor che le persoe che frequeto soo portt 7 Pge cotu Nuero le pge del web d e defo l trce d coetttà G g co g se c è u l dll pg ll pg g ltret. Idcho co l port dell pg ; r l uero d l che prtoo dll pg dto dll so de lor sull rg dell trce d coetttà; c l uero d l che puto ll pg dto dll so de lor sull colo dell trce d coetttà; 8

15 Pge cotu Per l port dell pg rsult Sste lere sprso: le soluo forscoo l lello d port delle sgole pge L equoe d Google è: g g g r r dg g g d r r r co d pretro tr e d solto d.8 Il Pge ee clcolto u olt l ese su 9 pge r 9 Pge cotu S l trce cu eleet soo d r g d o è sprs è l odfc d u trce sprs; l ggor prte de suo eleet h u lore pccolsso tr e ; l so d cscu colo è Dll teor è oto che l utolore d sso odulo d u trc sfftt è e l corrspodete utoettore soddsf d clcolre er tert col etodo delle potee

16 Metod bst su trsforo d sltude Il clcolo s bs su u successoe d trsforo d sltude edte trc ortogol oero s deter u successoe t. c. Q Q co Q Q I Og è sle d stess utolor eore: rele setrc esste Q ortogole t.c. D Q Q dgole l trsforoe o ee u uero fto d pss eore: rele esste Q ortogole t.c. Q Q è d Hesseberg trdgole se è setrc l trsforoe ee u uero fto d pss Fttoroe Q d trce eroe. S dt u trce Q Q ortogole Q trgolre superore S deter usdo rflettor eleetr. ost / opero. Il codo Mtlb è qr. S potrebbe usre per rsolere sste ler b Q b è pù costos dell eloe d Guss

17 rsforo d Householder U rflettore eleetre è u trce del tpo U I uu u u u U è setrc U U ortogole U U I olutor U I S uso per trodurre er u ettore h: ettore o ullo U I uu u σ e π σ ± π u è t.c U σ e e E possble costrure l rflettore eleetre U tle che U oero U o lter le pre - copoet d ed troduce er dll. copoete Posso costrure u successoe d rflettor eleetr t.c. U troduce er ell pr colo ftt ecceoe per l pro eleeto; U troduce er ell secod colo ftt ecceoe per l secodo eleeto; etc. U U U trgolre superore Q Q

18 lgorto Q per l clcolo degl utolor S costrusce u successoe d trc sl d utldo l fttoroe Q d og teroe che coergoo ll for trgolre lt co utolor sull dgole oppure d u for qustrgolre el cso d utolor copless for. [Q ]qr Q ed e soo sl. Iftt Q qud Q Q Q Q usdo d esepo l codo le d tlb Se l trce h utolor rel per l coerge ll for trgolre s rchede che: > >... > Ioltre gl eleet sotto l dgole prcple coergoo ero co eloctà: O Doe è l -es teroe del etodo. 6

19 lgorto Q co trsloe shft E u cceleroe del etodo bse el cso bb utolor c odulo. Dto µ : for. [Q ] qr µ I ed Q µ I L trce è sle. L eloctà d coerge è: O / µ µ 7 ggoreto dello shft µ lgorto Q co trsloe shft Lo shft può essere fsso oppure ggorto d og teroe. d esepo s può sceglere for. [Q ] qr µ I ed Q µ I µ è l st dell utolore. Qudo s oto co l ccurte desdert l etodo Q prosegurà sull sotto-trce : : e così fo trore tutt gl utolor. 8

20 lgorto Q co trsloe shft rtero d rresto per trc co utolor rel S cotroll l lore dell eleeto sottodgole: toll Se l codoe è soddsftt predo pprossoe dell utolore. coe toll è u toller fsst geere dell orde dell precsoe cch. 9 Utlo dell fttoroe Q el proble de qudrt Sste sordetert << Proble: Dt c c deterre tle che o Detero l fttoroe Q d esste che per le trc rettgolr: Q co Q * Q

21 Le trc ortogol o ltero l or due d u ettore: Prtoo *: * Q c Q c Q Q c * c c c c c rsult o qudo c Il proble de qudrt s rcoduce qud ll rsoluoe d u sste trgolre superore

Lezione 8. Risultanti e discriminanti.

Lezione 8. Risultanti e discriminanti. Lezoe 8 Prerequst: Rdc d polo Cp d spezzeto Lezoe 5 Rsultt e dscrt I quest sezoe studo crter eettv per stlre qudo due polo coecet u cpo ho rdc cou S F u cpo Proposzoe 8 I polo o ull, ] ho u rdce coue u

Dettagli

VALORI MEDI (continua da Lezione 5)

VALORI MEDI (continua da Lezione 5) VALORI MEDI (cotu d Lezoe 5) Dott.ss Pol Vcrd 6. L ed rtetc è lere coè è vrte per trsforzo ler de dt. S u dstrbuzoe utr d ed A. Effettuo u trsforzoe lere delle osservzo coè b c d dove c e d soo due costt

Dettagli

MATEMATICA FINANZIARIA 3. RENDITE

MATEMATICA FINANZIARIA 3. RENDITE MATEMATICA FINANZIAIA Prof. Adre Berrd 999 3. ENDITE Coro d Mtetc Fzr 999 d Adre Berrd Sezoe 3 ENDITA Operzoe fzr copot, crtterzzt d cdeze (,,...,,...,, rcuotere quelle cdeze,,...,,...,, t e d port d pgre

Dettagli

Variabili Aleatorie vettoriali

Variabili Aleatorie vettoriali Vrbl letore vettorl Vrbl letore vettorl Vrbl letore vettorl: Itroduzoe Vrbl letore dpedet Idc d poszoe per V vettorl rsorzo d V vettorl Idc d dspersoe: Moet Mtrce d Covrz Propzoe dell Covrz V.. VORILI

Dettagli

Formule di Integrazione Numerica

Formule di Integrazione Numerica Formule d Itegrzoe Numerc Itegrzoe umerc: geerltà Prolem: vlutre l tegrle deto: I d F F utlzzo opportue tecce umerce qudo: l prmtv d o e esprmle orm cus d esempo s/, ep- ; dcoltà el clcolre ltcmete l prmtv

Dettagli

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000 Diesioeto di ssi di otore correte cotiu Si idividuio i pretri pricipli di u cchi correte cotiu eccitzioe idipedete i rdo di uovere u tr veloce ote che sio le seueti specifiche: Tesioe di lietzioe dell

Dettagli

Modelli di Schedulazione

Modelli di Schedulazione EW Modell d Schedulazoe Idce Maccha Sgola Tepo d Copletaeto Totale Tepo d Copletaeto Totale Pesato Tepo d Rtardo Totale Maespa co set-up dpedete dalla sequeza Tepo d Copletaeto Totale co vcolo d precedeza

Dettagli

PROBLEMI DI TRASPORTO

PROBLEMI DI TRASPORTO Metod e modell per l supporto lle decso Prof Ferddo Pezzell - Ig Lug De Gov PROBLEMI DI TRSPORTO OFFERT IMPINTI UTENTI DOMND ( ) (org) (destzo) ( b ) (5) (8) (2) 2 2 (2) (3) 3 3 (9) 4 (9) c COSTO UNITRIO

Dettagli

Esercitazioni di Elettrotecnica: doppi-bipoli

Esercitazioni di Elettrotecnica: doppi-bipoli . Mffucc: serctzon su dopp-pol er.-9 Unerstà degl tud d ssno serctzon d lettrotecnc: dopp-pol prof. ntono Mffucc er.. ottore 9 . Mffucc: serctzon su dopp-pol er.-9. opp-pol n rege stzonro.. on rferento

Dettagli

EQUAZIONI ESPONENZIALI -- LOGARITMI

EQUAZIONI ESPONENZIALI -- LOGARITMI Equzioi espoezili e riti pg 1 Adolfo Sioe 1998 EQUAZIONI ESPONENZIALI -- LOGARITMI Fuzioe Espoezile Dto u uero rele positivo osiderio l fuzioe f : R R he d ogi eleeto R f orrispodere l'eleeto y =. Se =

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

Con una rappresentazione parametrica, una curva c è data come una funzione a valori vettoriali di un singolo parametro reale:

Con una rappresentazione parametrica, una curva c è data come una funzione a valori vettoriali di un singolo parametro reale: Co u rppresetzoe prmetrc, u curv c è dt come u fuzoe vlor vettorl d u sgolo prmetro rele: c : D R E t.c. c( u o ( x ( u... x ( u I cu o è l orge del rfermeto, D geere cocde co l tervllo [,] e x soo le

Dettagli

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi.

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi. 7. Redte I questo captolo edremo solamete u caso d redta, che useremo po per geeralzzare le redte e dedurre tutt gl altr cas. S defsce redta ua successoe d captal (rate) tutte da pagare, o tutte da rscuotere,

Dettagli

INFORMATICA 3 LEZIONE 10 FONDAMENTI DI MATEMATICA

INFORMATICA 3 LEZIONE 10 FONDAMENTI DI MATEMATICA INFORMATICA 3 LEZIONE FONDAMENTI DI MATEMATICA Isem e relzo Iseme: collezo d membr o elemet dstt d u tpo d bse. U membro può essere u elemeto prmtvo d u tpo d bse oppure u seme. U seme o cotee elemet duplct.

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte

Dettagli

Diagrammi di Bode. (versione del ) Funzioni di trasferimento

Diagrammi di Bode.  (versione del ) Funzioni di trasferimento Dgr d Bode www.de.g.uo.t/er/tr/ddtt.ht veroe del 5-- Fuo d trfereto Le fuo d trfereto f.d.t de rut ler teo vrt oo fuo rol oè rort tr due olo oeffet rel dell vrle Per evtre d trttre eltete quttà gre, trodue

Dettagli

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE)

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) Mggi C. & Bccesci P. Soluzioe problem V Puto 1: T Clcolre l soluzioe stziori dell (1) euivle d imporre l

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali Grndee sclr: I ettor engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee ettorl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

Soluzione di sistemi lineari. Esistenza delle soluzioni. Quante soluzioni? 1 se singolare 0 o infinite se non singolare

Soluzione di sistemi lineari. Esistenza delle soluzioni. Quante soluzioni? 1 se singolare 0 o infinite se non singolare L (sistei) L (sistei) Soluzioe di sistei lieri Esistez delle soluzioi etodi per l soluzioe di sistei di equzioi lieri: Eliizioe di vriili etodo di Crer trice ivers Tipi di sistei: Sistei deteriti Sistei

Dettagli

UNIVERSITÀ DEGLI STUDI DI BARI CATTEDRA DI MATEMATICA PER L'ECONOMIA DIPARTIMENTO DI SCIENZE ECONOMICHE E METODI MATEMATICI

UNIVERSITÀ DEGLI STUDI DI BARI CATTEDRA DI MATEMATICA PER L'ECONOMIA DIPARTIMENTO DI SCIENZE ECONOMICHE E METODI MATEMATICI FASCICOLO FUORI COMMERCIO DISTRIBUITO GRATUITAMENTE AGLI STUDENTI DEL CORSO DI MATEMATICA PER L'ECONOMIA ANNO ACCADEMICO 008-009 UNIVERSITÀ DEGLI STUDI DI BARI CATTEDRA DI MATEMATICA PER L'ECONOMIA DIPARTIMENTO

Dettagli

REGRESSIONE LINEARE MULTIPLA

REGRESSIONE LINEARE MULTIPLA REGRESSIONE LINERE ULTIPL Itroduzoe Per u ù gevole lettur d questo ctolo s cosgl lo studo relre dell regressoe lere selce rgoeto trttto el Ctolo Iftt l regressoe lere ultl è u estesoe dell regressoe lere

Dettagli

Le operazioni fondamentali in N Basic Arithmetic Operations in N

Le operazioni fondamentali in N Basic Arithmetic Operations in N Operzioi fodetli i - 1 Le operzioi fodetli i Bsic Arithetic Opertios i I geerle u operzioe è u procedieto che due o più ueri, dti i u certo ordie e detti terii dell'operzioe, e ssoci u ltro, detto risultto

Dettagli

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa.

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa. L misur: Misurre u grdezz fisic sigific stilire qute uità di misur soo coteute ell grdezz stess. L misur di u grdezz si dice dirett qudo si effettu per cofroto co u grdezz d ess omogee scelt come cmpioe

Dettagli

ma non sono uguali fra loro

ma non sono uguali fra loro Defiizioe U fuzioe f defiit i D (doiio) si dice cotiu i u puto c D se esiste i tle puto (è cioè possiile clcolre f (c)); se esiste, fiito, il ite dell fuzioe per che tede c e se il vlore del ite coicide

Dettagli

Attualizzazione. Attualizzazione

Attualizzazione. Attualizzazione Attualzzazoe Il problema erso alla captalzzazoe prede l ome d attualzzazoe Abbamo ua operazoe fazara elemetare e dato l motate M dobbamo determare l corrspodete captale zale C L'attualzzazoe è la operazoe

Dettagli

Lezione 3. Gruppi risolubili.

Lezione 3. Gruppi risolubili. Lezoe 3 Prerequst: Lezo 1 2 Class d cougo e cetralzzat rupp rsolubl I questo captolo troducamo ua ozoe che come vedremo seguto fuge da raccordo tra la teora de grupp e la teora de camp Defzoe 31 Dato u

Dettagli

L INTEGRALE DEFINITO b f (x) d x a 1

L INTEGRALE DEFINITO b f (x) d x a 1 L INTEGRALE DEFINITO ( ) d ARGOMENTI. Il Trpezoide re del Trpezoide. L itegrle deiito de. Di Riem. Proprietà dell itegrle deiito teorem dell medi. L uzioe itegrle teorem di Torricelli-Brrow e corollrio

Dettagli

A=B se e solo se 1) m=p 2) n=q 3) a i,j =b i,j K per ogni i=1,,m e j=1,,n. Studiamo ora alcune delle proprietà che regolano queste operazioni.

A=B se e solo se 1) m=p 2) n=q 3) a i,j =b i,j K per ogni i=1,,m e j=1,,n. Studiamo ora alcune delle proprietà che regolano queste operazioni. Osservzioe: due trii soo idetihe se e solo se ho lo stesso uero di righe lo stesso uero di oloe e ho le stesse etrte i K: dte A i j i B i j i p j...... j...... q AB se e solo se p q ij ij K per ogi i e

Dettagli

Progressioni geometriche

Progressioni geometriche Progressioi geometriche Comicimo co due esempi: Esempio Cosiderimo l successioe di umeri:, 6,, 4, 48, 96 L successioe è tle che si pss d u termie l successivo moltiplicdo il precedete per. Si dice che

Dettagli

LA PROPAGAZIONE DEGLI ERRORI:

LA PROPAGAZIONE DEGLI ERRORI: LA PROPAGAZIOE DEGLI ERRORI: Fio d or io visto coe deterire l errore di u grdezz isurt direttete. Spesso però cpit ce il vlore dell grdezz ce si vuole deterire o è isurile, deve essere ricvto prtire d

Dettagli

STUDIO DELLA STABILITA' DEI SISTEMI IN RETROAZIONE CON IL METODO DEL LUOGO DELLE RADICI

STUDIO DELLA STABILITA' DEI SISTEMI IN RETROAZIONE CON IL METODO DEL LUOGO DELLE RADICI STUDIO DELLA STABILITA' DEI SISTEMI IN RETROAZIONE CON IL METODO DEL LUOGO DELLE RADICI U sste d cotrollo s defsce retrozoe, o cte chus, se oper utlzzdo, oltre l segle d rfereto solo forzo che rgurdo l

Dettagli

I. COS E UNA SUCCESSIONE

I. COS E UNA SUCCESSIONE 5 - LE SUCCESSIONI I. COS E UNA SUCCESSIONE L sequez 0 = = 0 3 = 3 = 4 =... 3 5 = +... costituisce u esempio di SUCCESSIONE. 90 Ecco u ltro esempio di successioe: 3 4 = 3 = 3 3 = 3 4 = 3... = 3... U successioe

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

4. Metodo semiprobabilistico agli stati limite

4. Metodo semiprobabilistico agli stati limite 4. Metodo seiprobabilistico agli stati liite Tale etodo cosiste el verificare che le gradezze che ifluiscoo i seso positivo sulla, valutate i odo da avere ua piccolissia probabilità di o essere superate,

Dettagli

FUNZIONI ESPONENZIALI

FUNZIONI ESPONENZIALI CONCETTI INTRODUTTIVI FUNZIONI ESPONENZIALI POTENZE AD ESPONENTE RAZIONALE L teori delle poteze può essere estes che lle poteze che ho per espoete u NUMERO RAZIONALE INSIEME Q. Ho seso solo le poteze che

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

Premessa... 1. Equazioni i differenziali lineari

Premessa... 1. Equazioni i differenziali lineari Apput d Cotroll Autoatc Captolo 3 parte I Sste dac lear Preessa... Equazo dfferezal lear... Evoluzoe lbera ed evoluzoe forzata... Uso della trasforazoe d Laplace... 3 Esepo... 7 Osservazo sulla rsposta

Dettagli

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3

Dettagli

Costi di Entrata e Struttura del Mercato. Economia Industriale Università Bicocca A.A. 2012-2013 Christian Garavaglia

Costi di Entrata e Struttura del Mercato. Economia Industriale Università Bicocca A.A. 2012-2013 Christian Garavaglia Cost d Etrt e truttur del Merto Eoom Idustrle Uverstà Bo A.A. 2012-2013 Chrst Grvgl Cotesto e oett For bbmo lzzto l fuzometo d u merto olgopolsto osderdo ome dto l umero d mprese opert el merto. D os dpede

Dettagli

Algebra» Appunti» Logaritmi

Algebra» Appunti» Logaritmi MATEMATICA & FISICA E DINTORNI Psqule Spiezi Algebr» Apputi» Logriti TEOREMA Sio e b ueri reli co R + {} e b R +. Esiste, ed è uico, u uero k R: k b Il uero k è detto rito di b i bse e viee idicto co l

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura Damca Modello damco ello spazo de gut: relazoe tra le coppe d attuazoe a gut ed l moto della struttura smulazoe del moto aals e progettazoe delle traettore progettazoe del sstema d cotrollo progetto de

Dettagli

Lezione 13. Anelli ed ideali.

Lezione 13. Anelli ed ideali. Lezoe 3 Prerequst: Aell e sottoaell. Sottogrupp. Rfermet a test: [FdG] Sezoe 5.2; [H] Sezoe 3.4; [PC] Sezoe 4.2 Aell ed deal. Rcordamo la seguete defzoe, data el corso d Algebra : Defzoe 3. S dce aello

Dettagli

Polinomi, disuguaglianze e induzione.

Polinomi, disuguaglianze e induzione. Allemeti Disid Mtemtic Geio 03 Poliomi, disuguglize e iduzioe. Qul è l mssim re di u rettgolo vete perimetro ugule 576? [Suggerimeto: utilizzre le medie e le loro disuguglize.] Svolgimeto. Predimo i cosiderzioe

Dettagli

Algoritmi e Strutture Dati. Alberi Binari di Ricerca

Algoritmi e Strutture Dati. Alberi Binari di Ricerca Algortm e Strutture Dat Alber Bar d Rcerca Alber bar d rcerca Motvazo gestoe e rcerche grosse quattà d dat lste, array e alber o soo adeguat perché effcet tempo O) o spazo Esemp: Matemeto d archv DataBase)

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI MATEMATICA FINANZIARIA Pro. Andre Berrd 999 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 PROGETTO ECONOMICO-FINANZIARIO Un progetto economco-nnzro è un

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria. Misura di una resistenza con il metodo VOLT-AMPEROMETRICO

Laboratorio di Fisica I: laurea in Ottica e Optometria. Misura di una resistenza con il metodo VOLT-AMPEROMETRICO Laboratoro d Fsca I: laurea Ottca e Optoetra Msura d ua ressteza co l etodo OLTMPEOMETICO descrzoe s sura ua ressteza utlzzado u voltetro e u llaperoetro sfruttado la relazoe : Per coduttor ohc è dpedete

Dettagli

Successioni e Logica. Preparazione Gara di Febbraio 2009. Gino Carignani

Successioni e Logica. Preparazione Gara di Febbraio 2009. Gino Carignani Successioi e Logic Preprzioe Gr di Febbrio 009 Gio Crigi Progressioe ritmetic è u successioe di umeri tli che l differez tr ciscu termie e il suo precedete si u costte d (rgioe) d α α d α d K ( α )d 3

Dettagli

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +...

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +... . serie umeriche Def. (serie). Dt u successioe ( ) (co R per ogi ), si chim serie di termie geerle l successioe (s ), dove s è l somm przile -esim defiit d () s = + 2 +... + = k. L serie coverge (semplicemete)

Dettagli

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra:

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra: Disequzioi Mrio Sdri DISEQUAZIONI Defiizioi U disequzioe è u disegugliz tr due espressioi che cotegoo icogite. Risolvere u disequzioe sigific trovre quell'isieme di vlori che, ttriuiti lle icogite, l redoo

Dettagli

RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO

RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO L stbilità di u sistem liere, ivrite ed prmetri cocetrti può vlutrsi co due criteri diversi che fo rispettivmete riferimeto ll rispost

Dettagli

2 Sistemi di equazioni lineari.

2 Sistemi di equazioni lineari. Sistemi di equzioi lieri. efiizioe. Si dice equzioe liere elle icogite equzioe dell form () + +...+ = o che (') i= i i = ove,,..., R si chimo coefficieti e R termie oto.,,..., ogi efiizioe. Si dice soluzioe

Dettagli

Interpolazione e Approssimazione ai minimi quadrati

Interpolazione e Approssimazione ai minimi quadrati Cludio Ettico (cludio.ettico@uiubri.it) Iterpolzioe e Approizioe i iii qudrti Iterpolzioe e iii qudrti Iterpolzioe e pproizioe i iii qudrti ) L pproizioe di fuzioi: iterpolzioe e igliore pproizioe. ) Eitez

Dettagli

LEGENDA SIMBOLI NELLA COLONNA DEI TRENI

LEGENDA SIMBOLI NELLA COLONNA DEI TRENI LEGEND SMBOL NELL COLONN DE TREN s To Busss z To Euost tl lt Vlotà Q To Euost tl T To Euost Cty ~Svzo ffttuto o pullm g tusmo N To Pdolo dll Sotà Cslpo B To EuoCty svzo tzol duo D To EuoNght svzo tzol

Dettagli

Aldo Montesano PRINCIPI DI ANALISI ECONOMICA CAP. 11 L ANALISI DELL'EQUILIBRIO GENERALE I

Aldo Montesano PRINCIPI DI ANALISI ECONOMICA CAP. 11 L ANALISI DELL'EQUILIBRIO GENERALE I Aldo Motesao PRINCIPI DI ANALISI ECONOMICA CAP. L ANALISI DELL'EQUILIBRIO GENERALE I L aals dell equlbro parzale, esaata el captolo precedete, è sa u utle troduzoe all aals dell equlbro geerale, sa uo

Dettagli

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3 MINIERO DELL'IRUZIONE,DELL'UNIERIÀ E DELLA RICERCA CUOLE IALIANE ALL EERO EAMI DI AO DI LICEO CIENIFICO essioe Ordiri s 00/005 ECONDA PROA CRIA em di Mtemtic Il cdidto risolv uo dei due problemi e quesiti

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

Lezione 24. Campi finiti.

Lezione 24. Campi finiti. Lezoe 4 Prerequst: Lezo 0,,, 3 Rfermet a test: [FdG] Sezoe 86; [H] Sezoe 79; [PC] Sezoe 63; Cam ft Nelle lezo recedet abbamo vsto dvers esem d cam ft: ess erao tutt del to oure [ x ]/( f ( x )), dove f

Dettagli

MATEMATICA FINANZIARIA CAP. 14 20

MATEMATICA FINANZIARIA CAP. 14 20 MTEMTIC FINNZIRI CP. 42 pputi di estimo INTERESSE SEMPLICE Iteesse semplice I C M C ( ) = fzioe di o [] C M G F M M G L S O N D Motte semplice di te costti 2 3 M R R R... R [2] 2 2 2 2 Poiché l fomul è

Dettagli

G HOLDING SRL Depliant Titanium Q 2016 TQ 2016

G HOLDING SRL Depliant Titanium Q 2016 TQ 2016 HOLDIN SRL t l p e D Q m u t T 6 1 20 TQ I Prodott: Ttum Q U rvoluzoe e Bocd tutt tl Ttum Q PANE, ACQUA E ZUCCHERO PANE, ZUCCHERO E TITANIUM Q Test esegut mbete rele, o costrttv 5 WWW.LHOLDIN.IT d protezoe

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Calcolo numerico 2. Analisi matriciale: le Fattorizzazioni UNIVERSITA DEGLI STUDI DI CAGLIARI FACOLTA DI INGEGNERIA

Calcolo numerico 2. Analisi matriciale: le Fattorizzazioni UNIVERSITA DEGLI STUDI DI CAGLIARI FACOLTA DI INGEGNERIA UNIVERSIT DEGI STUDI DI CGIRI FCT DI INGEGNERI Corso d ure Igeger Elettroc Clcolo umerco Prof. Guseppe Rodrguez ls mtrcle: le Fttorzzzo cur d: ur rcs 3794 Rt Perr 38796 o ccdemco 8/9 Idce Rsoluzoe d sstem

Dettagli

Elementi di Calcolo delle probabilità

Elementi di Calcolo delle probabilità Elemet d Clcolo delle probbltà PERCHÉ I TUDIA IL CALCOLO DELLE PROAILITÀ? Clcolo delle probbltà tto d certezz I cu s formo le decso Espermeto csule - prov U espermeto csule è u feomeo del modo rele per

Dettagli

NECESSITÀ DEI LOGARITMI

NECESSITÀ DEI LOGARITMI NECESSITÀ DEI LOGARITMI Nelle equzioi espoezili he imo risolto sior er sempre possiile ridursi equzioi i ui si vev l stess se, l equzioe divetv lgeri sempliemete uguglido gli espoeti. M o tutte le equzioi

Dettagli

Indipendenza in distribuzione

Indipendenza in distribuzione Marlea Pllat - Semar d Statstca (SVIC) "Lo studo delle relazo tra due caratter" Aals delle relazo tra due caratter Dpedeza dstrbuzoe s basa sul cofroto delle dstrbuzo codzoate Dpedeza meda s basa sul cofroto

Dettagli

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm Il lto d un ddo è pr. cm. Usndo le cfre sgnfctve per stmre l errore clcolre l volume del cuo. Supponendo che l devzone stndrd nell msur del lto s d mm clcolre l devzone stndrd che ssoct ll msur del volume.

Dettagli

B A N D O D I G A R A D A P P A L T O D I L A V O R I

B A N D O D I G A R A D A P P A L T O D I L A V O R I B A N D O D I G A R A D A P P A L T O D I L A V O R I S E Z I O N E I ) : A M M I N I ST R A Z I O N E A G G I U D I C A T R I C E I. 1 ) D e n o m i n a z i o ne, i n d ir i z z i e p u n t i d i c o

Dettagli

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE.

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE. L prol In figur è trccito il grfico di un prol con sse di simmetri verticle. Si vede suito dl grfico ce: l curv è simmetric rispetto l suo sse di simmetri il suo punto più in sso è il vertice il vertice

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali I etto Gndee scl: engono defnte dl loo loe numeco esemp: lunghe d un segmento, e d un fgu pn, tempetu d un copo, ecc. Gndee ettol engono defnte, olte che dl loo loe numeco, d un deone e d un eso esemp:

Dettagli

P O M P E. Per un impianto generico, il cui schema è rappresentato in figura, si adotta la seguente terminologia: H g è la PREVALENZA GEODETICA

P O M P E. Per un impianto generico, il cui schema è rappresentato in figura, si adotta la seguente terminologia: H g è la PREVALENZA GEODETICA O M E Sono cchine IDRULIE OERTRII. Loro coito è quello di trferire l eneri eccnic di cui dionono in eneri idrulic. Quete cchine cedono l fluido incoriiile che le ttrer eneri di reione e/o eneri cinetic.

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Fcoltà di Igegeri - Lure Triele i Igegeri Meccic Corso di Clcolo Numerico Dott.ss M.C. De Bois Uiversità degli Studi dell Bsilict, Potez Fcoltà di Igegeri Corso di Lure i Igegeri Meccic Ao Accdemico 004/05

Dettagli

Passo dopo passo verso l infinito La mosca oscillante Paderno Del Grappa, 29 Agosto 2012

Passo dopo passo verso l infinito La mosca oscillante Paderno Del Grappa, 29 Agosto 2012 Po dopo po ero l iiito L moc ocillte Pdero Del Grpp, 9 Agoto 0 Boetur Polillo Liceo Scietiico Frceco Seeri, Slero Uo gurdo d iieme Mtemtic Ricreti Didttic Ricerc Liee guid Il Queito come ote Alii e trtegi

Dettagli

10. L ARIA UMIDA. p =

10. L ARIA UMIDA. p = 0. L AIA UIDA 0. Preess Coe è gà stto ete trttto el sesto ctolo, l coorteto d u sste gssoso ce uò essere cosderto gs dele ee descrtto dell'equzoe d stto: (0.) cu 834,3 J/(kolK) è l costte uersle de gs

Dettagli

Laboratorio di FISICA 2. Misura della resistenza di un conduttore con il ponte di Wheatstone R + R R 3 + R4 E, (2) =, (3) i 2 V B = R 3 = V AC

Laboratorio di FISICA 2. Misura della resistenza di un conduttore con il ponte di Wheatstone R + R R 3 + R4 E, (2) =, (3) i 2 V B = R 3 = V AC Lortoro d FISICA Msur dell resstez d u coduttore co l pote d Whetstoe Il pote d Whetstoe è u crcuto dtto ll msur dell resstez d u coduttore per cofroto co ressteze ote. ello schem d Fgur l tter E lmet

Dettagli

1. Considerazioni generali

1. Considerazioni generali . osiderazioi geerali Il processaeto di ob su acchie parallele è iportate sia dal puto di vista teorico che pratico. Dal puto di vista teorico questo caso è ua geeralizzazioe dello schedulig su acchia

Dettagli

Successioni e serie. Ermanno Travaglino

Successioni e serie. Ermanno Travaglino Successioi e serie Ermo Trvglio U successioe è u sequez ordit di umeri o di ltre grdezze, e u serie è l somm dei termii di tle sequez. U successioe si rppreset co l'espressioe,,,, ell qule è u itero positivo,

Dettagli

Elementi di Statistica descrittiva Parte III

Elementi di Statistica descrittiva Parte III Elemet d Statstca descrttva Parte III Paaa Idce d asmmetra (/) Idce d forma che esprme l grado d asmmetra (skewess) d ua dstrbuzoe. Sao u, u,,u osservazo umerche. Chamamo dce d asmmetra l espressoe: c

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA COSIDERAZIOI PRELIMIARI SULLA STATISTICA La Statstca trae suo rsultat dall osservazoe de feome che c crcodao. Gl stess feome per essere oggetto d statstca devoo essere adeguatamete umeros modo tale che

Dettagli

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21 I ueri turli Cos soo i ueri turli? I ueri turli soo i ueri 0 1 4 5 6 7 8 9 10 11 1 L isiee dei ueri turli si idic co N. N { 0, 1,,, 4, 5, 6, 7, 8, 9, 10, 11, 1,..} Quli soo le crtteristiche di N? L isiee

Dettagli

Elementi di Matematica Finanziaria. Rendite e ammortamenti. Università Parthenope 1

Elementi di Matematica Finanziaria. Rendite e ammortamenti. Università Parthenope 1 Elemet d Matematca Fazara Redte e ammortamet Uverstà Partheope 1 S chama redta ua successoe d captal da rscuotere (o da pagare) a scadeze determate S chamao rate della redta sgol captal da rscuotere (o

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi)

CORSO DI STATISTICA I (Prof.ssa S. Terzi) CORSO DI STATISTICA I (Prof.ssa S. Terz) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI Eserctazoe 2 2.1 Da u dage svolta su u campoe d lavorator dpedet co doppo lavoro è stata rlevata la dstrbuzoe coguta del reddto

Dettagli

Modelli equivalenti del BJT

Modelli equivalenti del BJT Modll ulnt dl JT Pr lo studo dll pplczon crcutl dl JT, s è rso opportuno formulr d modll ulnt dl dsposto ch srssro rpprsntr n modo connnt l suo comportmnto ll ntrno d crcut. A scond dl tpo d pplczon (mplfczon

Dettagli

Controllo di gestione per non specialisti

Controllo di gestione per non specialisti stro stro Cotrollo d gsto pr o spclst MC TEM - Rproduo vtt 1/1 stro 06 - CONTROLLO DI GESTIONE PER NON SPECILISTI Obttv Il corso prtt prtcpt d cqusr l logch orgtv l tcch su cu s bs l cotrollo d gsto d

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

Trasmissione del calore con applicazioni

Trasmissione del calore con applicazioni Corsi di Lure i Igegeri Meccic Trsmissioe del clore co ppliczioi umeriche: iformtic pplict.. 4/5 Teori Prte II Ig. Nicol Forgioe Diprtimeto di Igegeri Civile E-mil: icol.forgioe@ig.uipi.it; tel. 5857 Sistemi

Dettagli

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1 SIMULAZIONE DI ESAME ESERCIZI Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero ESERCIZIO. Alcu autor hao studato se la depressoe possa essere assocata a dc serologc d process autommutar

Dettagli

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che:

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che: Eserctazoe VI: Il teorema d Chebyshev Eserczo La statura meda d u gruppo d dvdu è par a 73,78cm e la devazoe stadard a 3,6. Qual è la frequeza relatva delle persoe che hao ua statura superore o ferore

Dettagli

Propagazione di errori

Propagazione di errori Propagazoe d error Gl error e dat possoo essere amplfcat durate calcol. Rspetto alla propagazoe degl error s può dstguere: comportameto del problema - codzoameto del problema: vedere come le perturbazo

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

Appunti di Programmazione Lineare. a cura del Prof. Giuseppe Bruno

Appunti di Programmazione Lineare. a cura del Prof. Giuseppe Bruno Apput d Progrzoe Lere cur del Prof. Guseppe Bruo ozz gugo 05 Itroduzoe prole d ottzzzoe. - Sste e odell Qudo s ffrot u prole, l pr ecesstà è quello d defrlo opportuete. I prtc l pr cos d effetture è deltre

Dettagli

prese e spine industriali CEE

prese e spine industriali CEE prese e spne nustrl CEE I proott quest gl rppresentno un propost nnovtv e grne prego grze lle loro oltepl peulrtà: l ozone tre sste revettt onsente nzzre tep lggo, glornone l e: on s propone un nuov v

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli