Rendite (2) (con rendite perpetue)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Rendite (2) (con rendite perpetue)"

Transcript

1 Rendite (2) (con rendite perpetue) Esercizio n. Un ziend industrile viene vlutt ttulizzndo i redditi futuri dell gestione l tsso del 9% con inflzione null. I redditi prospettici vengono stimnti nell misur seguente: Per i primi 0 nni pri ll nno; dll l 20 nno pri ll nno; in seguito pri ll nno. Clcolre il vlore stimto dell società. Svolgimento (vedi nche foglio Excel) Il sentiero temporle di tutt l operzione si può schemtizzre come segue: dove: 0 nni 0 nni nni successivi R R2 R3 0 2 ) L prim rendit è posticipt immedit di rt nnule R = e di durt 0 nni, il cui vlore ttule l tempo 0 è dto d: V () R 0 0,09 = = ,76577=770.8,92 2) L second rendit, rispetto l tempo 0, è differit di 0 nni, posticipt, di rt R 2 = e di durt 0 nni, di vlore ttule: ( ) ( ) -0 V 2 = R = ,09 6,76577=27.088, ,09 3) L terz rt, vist dl tempo 0, è differit di 20 nni e perpetu, posticipt di rt R 3 = di vlore ttule: ( ) ( ) -20 V 3 = R 0 = ,09 =78.30,89 0,09 0,09 Il vlore stimto dell ziend è : V V ( ) V ( ) V ( ) = = ,6

2 Esercizio n.2 Due rendite sono così strutturte:. l prim prevede il pgmento di rte frzionte qudrimestrli per un durt di 7 nni; 2. l second il versmento di importi nnui pri l.000 per un nlog durt. Clcolre qule rt frziont rende equivlenti le due lterntive utilizzndo il tsso del 2,5% nnuo. Svolgimento (vedi nche foglio Excel) L prim rendit present rte frzionte qudrimestrli ossi pgte 3 vote ll nno per un totle di 3 x 7 = 2 rte. Un volt stbilito il tsso qudrimestrle : 3 3 ( i) ( ) i* = + = + 0,25 = % il vlore ttule di tle rt viene clcolto con l formul: () 2 i* 2 0,0 V = R = R = R, 0296 L second rendit h vlore ttule: V ( ) 7 0,25 2 =.000 =.000, 923 =.92,30 Affinché le due rte sino equivlenti occorre impostre l equzione: ossi: V ( ) = V ( 2) R, 0296 =.92,30 d cui: R = 320,3 che rppresent l rt qudrimestrle cerct.

3 Esercizio n.3 Clcolre il credito posseduto d un commercinte presso un bnc che corrisponde il tsso nnuo del 3,5% spendo che dopo 5 prelievi nnui posticipti di.000 esso si riduce d un quinto. Clcolre poi qunto si dovrebbe ritirre posticiptmente ogni 3 mesi per esurire il credito in 20 nni. Svolgimento (vedi nche foglio Excel) Esminimo l situzione finnziri l 5 nno: Il montnte dell serie di prelievi mmont : M p = Rs =.000 9, = 9.295, ,035 Il montnte, tle dt, del cpitle inizile è: ( ) 5 5,035 MC = C + i = C Per determinre C occorre, quindi risolvere l equzione: d cui: M p MC = C 5 C = 3.078,72 Per rispondere ll second domnd occorre trovre il tsso trimestrle equivlente, ossi: t ( i) ( ) / i* = + = + 0, 035 = 0,86% Ed ottenere l rt corrispondente osservndo che nel cso in esme il vlore ttule è dto dl cpitle ed il periodo è x 20 = 80 trimestri, ossi: d cui: V = C = R 80 0,86% C R = = 227,0 80 0,86%

4 Esercizio n. ( rt vribile) Un operzione finnziri prevede flussi bimestrli posticipti che vrino in progressione ritmetic di primo termine 250 ed ultimo termie 00 e durt un nno. Clcolre il montnte di tle operzione finnziri l tsso nnule del 2%. Riclcolre il vlore nel cso in cui le rte sino in progressione geometric. Svolgimento (vedi nche foglio Excel) Nel cso di rte in progressione ritmetic si h: ( ) Rn = R + n d e quindi, nel cso in esme, vendosi in un nno 6 bimestri si h: R6 = R+ 5d con R = R= 250, R 6 = 00. L rgione dell progressione ritmetic è dt d: Il tsso bimestrle è: ( ) ν* = + 0, 09 = 98,3% R6 R d = = = i* = ( + i) = 0,09 =,9% con tsso bimestrle di sconto Il vlore ttule di un rendit posticipt con rte in progressione ritmetic è dto d: d n V = R + * ( nν * ni ni* ) i * ovvero, essendo: n= 6, = 5, ,09 Il vlore ttule dell rendit l periodo inizile è dto d: V =.86,92 Volendo clcolre il montnte dell rendit fine nno si h: ( ) ( ) M = V + i =.86,92 + 0,2 = 2.03,95 Nel cso di rte in progressione geometric si h: q V R ( qν ) 6 R R * = = =, 09856, = ν * =.790, 6 R R qν * con un montnte : ( ) M = V + 0,2 = 2.005,5

5 Esercizio n.5 ( un problem pensionistico) Un lvortore derisce l seguente pino di risprmio: versmento per 5 nni consecutivi di un rt nticipt costnte in un deposito ll 8%; prelievo, prtire dll inizio del quinto nno e per otto nni successivi, di Clcolre l mmontre dell rt che occorre versre per i primi 5 nni. Svolgimento (vedi nche foglio Excel) L operzione è determint dll seguente formul: 2 8 k 5 i 5 i k= 5 k= k R Pυ = 0 R υ P υ = 0 ossi υ P R υ P = 0 R = 5 i 8 i 8 5 i i

Regime di interesse semplice

Regime di interesse semplice Formule d usre : I = interesse ; C = cpitle; S = sconto ; K = somm d scontre V = vlore ttule ; i = tsso di interesse unitrio it i() t = it () 1 ; s () t = ( 2) 1 + it I() t = Cit ( 3 ) ; M = C( 1 + it)

Dettagli

Regime di sconto commerciale. S = sconto ; K = somma da scontare ; s = tasso di sconto unitario V a = valore attuale ; I = interesse ; C = capitale

Regime di sconto commerciale. S = sconto ; K = somma da scontare ; s = tasso di sconto unitario V a = valore attuale ; I = interesse ; C = capitale Regime di sconto commercile Formule d usre : S = sconto ; K = somm d scontre ; s = tsso di sconto unitrio V = vlore ttule ; I = interesse ; C = cpitle s t = st i t st = st S t Kst V K st () () ; () ( )

Dettagli

PIANI DI AMMORTAMENTO

PIANI DI AMMORTAMENTO ESERCITAZIONE MATEMATICA FINANZIARIA 09//203 PIANI DI AMMORTAMENTO Pino di mmortmento Itlino Esercizio 2 ESERCIZIO Si clcoli il pino di mmortmento quot cpitle costnte e rt semestrle reltivo d un prestito

Dettagli

RAGIONERIA GENERALE ED APPLICATA SIMULAZIONE PRIMA PROVA INTERMEDIA A

RAGIONERIA GENERALE ED APPLICATA SIMULAZIONE PRIMA PROVA INTERMEDIA A RGIONERI GENERLE ED PPLICT SIMULZIONE PRIM PROV INTERMEDI COGNOME: NOME: N MTRICOL: L presente prov const di?? quesiti - Il tempo disposizione è di?? minuti ) Utilizzndo il solo Libro Giornle si proced

Dettagli

STUDIO COMMERCIALE TRIBUTARIO TOMASSETTI & PARTNERS Corso Trieste 88 00198 Roma Tel. 06/8848666 (RA) Fax 068844588 info@mt-partners.

STUDIO COMMERCIALE TRIBUTARIO TOMASSETTI & PARTNERS Corso Trieste 88 00198 Roma Tel. 06/8848666 (RA) Fax 068844588 info@mt-partners. CIRCOLARE INFORMATIVA NR. 14 del 30/11/2012 ARGOMENTO: IMPOSTA SOSTITUIVA TFR 2013 Scde il prossimo 16 dicembre il termine per pgre l impost sostitutiv sul TFR. Tle impost rppresent l nticipo di tsse dovute

Dettagli

FOGLIO COMPARATIVO SULLE TIPOLOGIE DI MUTUO IPOTECARIO / FONDIARIO PER L ACQUISTO DELL ABITAZIONE PRINCIPALE

FOGLIO COMPARATIVO SULLE TIPOLOGIE DI MUTUO IPOTECARIO / FONDIARIO PER L ACQUISTO DELL ABITAZIONE PRINCIPALE FOGLIO COMPARATIVO SULLE TIPOLOGIE DI MUTUO IPOTECARIO / FONDIARIO PER L ACQUISTO DELL ABITAZIONE PRINCIPALE (disposizioni di trsprenz i sensi dell rt. 2 comm 5 D.L. 29.11.2008 n. 185) Per tutte le condizioni

Dettagli

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Ai gentili Clienti Loro sedi Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Al termine di ciscun periodo d impost, dopo ver effettuto le scritture di ssestmento e rettific,

Dettagli

Applicazione n. 1 Scritture di assestamento, di epilogo, di determinazione del risultato economico, di chiusura e di riapertura

Applicazione n. 1 Scritture di assestamento, di epilogo, di determinazione del risultato economico, di chiusura e di riapertura Università degli Studi di Bri Aldo Moro Diprtimento di Scienze Economiche e Metodi Mtemtici Insegnmento di Rgioneri Applict (.. 2014-2015) Corso di Lure in Economi e Commercio Appliczione n. 1 Scritture

Dettagli

Scritture di assestamento

Scritture di assestamento Scritture di ssestmento AMMORTAMENTI CONTO ECONOMICO STATO PATRIMONIALE Impinti 200.000 «Si mmortizzino gli impinti per un vlore del 15%» clcolo quot : 200.000 * 20 / 100 = 40.000 impinti Scritture in

Dettagli

ESERCITAZIONE - I finanziamenti ottenuti

ESERCITAZIONE - I finanziamenti ottenuti ESERCITAZIONE - I finnzimenti ottenuti Presentre le scritture del 2015 e del 2016 reltive ll ziend EMME (IN CASO DI VALUTAZIONE DEL MUTUO AL COSTO AMMORTIZZATO) spendo che: - 1.1.15: ottenuto prestito

Dettagli

FOGLIO COMPARATIVO SULLE TIPOLOGIE DI MUTUO IPOTECARIO / FONDIARIO PER L ACQUISTO DELL ABITAZIONE PRINCIPALE

FOGLIO COMPARATIVO SULLE TIPOLOGIE DI MUTUO IPOTECARIO / FONDIARIO PER L ACQUISTO DELL ABITAZIONE PRINCIPALE FOGLIO COMPARATIVO SULLE TIPOLOGIE DI MUTUO IPOTECARIO / FONDIARIO PER L ACQUISTO DELL ABITAZIONE PRINCIPALE (sposizioni trsprenz i sensi dell rt. 2 comm 5 D.L. 29.11.2008 n. 185) Per tutte le conzioni

Dettagli

La costituzione d azienda

La costituzione d azienda L costituzione d ziend Esercizio1 In dt 15/01/X si costituisce, per volontà dei soci Alf e Bet, l Eridice S.p.A. Il cpitle socile, costituito d 40.000 zioni ordinrie d 10 euro nominli ciscun, viene sottoscritto

Dettagli

DEBITI VERSO BANCHE 1 PREMESSA 2 CONTENUTO DELLA VOCE. Passivo SP D.4. Prassi Documento OIC n. 12; Documento OIC n. 19 2.

DEBITI VERSO BANCHE 1 PREMESSA 2 CONTENUTO DELLA VOCE. Passivo SP D.4. Prassi Documento OIC n. 12; Documento OIC n. 19 2. Cp. 49 - Debiti verso bnche 49 DEBITI VERSO BANCHE Pssivo SP D.4 Prssi Documento OIC n. 12; Documento OIC n. 19 1 PREMESSA I debiti verso bnche ricomprendono tutti quei debiti in cui l controprte è un

Dettagli

Da 9.500,01 a 15.000,00 > 15.000,01 9.500,00 COSTO PASTO 1,15 2,30 3,45 4,60

Da 9.500,01 a 15.000,00 > 15.000,01 9.500,00 COSTO PASTO 1,15 2,30 3,45 4,60 Per l Anno Scolstico 2015/2016 l Deliber di Giunt Comunle n.25 del 16.04.2015 d oggetto: Determinzione dei criteri e ppliczione delle triffe dei servizi comunli introitti dl Comune nno 2015. Ricognizione

Dettagli

La costituzione d azienda

La costituzione d azienda L costituzione d ziend Esercizio1 In dt 15/01/X si costituisce, per volontà dei soci Alf e Bet, l Eridice S.p.A. Il cpitle socile, costituito d 40.000 zioni ordinrie d 10 euro nominli ciscun, viene sottoscritto

Dettagli

LE RETTIFICHE DI STORNO

LE RETTIFICHE DI STORNO Cpitolo 11 LE RETTIFICHE DI STORNO cur di Alfredo Vignò Le scritture di rettific di fine esercizio Sono composte l termine del periodo mministrtivo per inserire nel sistem vlori stimti e congetturti di

Dettagli

Ordinanza concernente la legge sul credito al consumo

Ordinanza concernente la legge sul credito al consumo Ordinnz concernente l legge sul credito l consumo (OLCC) 221.214.11 del 6 novemre 2002 (Stto 1 mrzo 2006) Il Consiglio federle svizzero, visti gli rticoli 14, 23 cpoverso 3 e 40 cpoverso 3 dell legge federle

Dettagli

(segue): Le scritture di assestamento

(segue): Le scritture di assestamento Esercitzione Le scritture di ssestmento 1 Testo esercizio: In sede di ssestmento l 31/12/t si rilevno (sul libro giornle e libro mstro) le seguenti operzioni: 1. Accntont indennità di fine rpporto per

Dettagli

CONTABILITÀ D IMPRESA (A.A.2017/18) - ESERCITAZIONE n. 3 - I finanziamenti ottenuti (VALUTAZIONE al VN)

CONTABILITÀ D IMPRESA (A.A.2017/18) - ESERCITAZIONE n. 3 - I finanziamenti ottenuti (VALUTAZIONE al VN) CONTABILITÀ D IMPRESA (A.A.2017/18) - ESERCITAZIONE n. 3 - I finnzimenti ottenuti (VALUTAZIONE l VN) Presentre le scritture del 2015 e del 2016 reltive ll ziend EMME (in cso di vlutzione l Vlore nominle)

Dettagli

Esercitazioni del corso di Ragioneria generale ed applicata Corso 50-99

Esercitazioni del corso di Ragioneria generale ed applicata Corso 50-99 Esercitzioni del corso di Rgioneri generle ed pplict Corso 50-99 SOLUZIONE N 1 ESERCITAZIONE N 2 (SOLUZIONI) Si registri nel Libro Giornle il seguente ftto di gestione: il signor Rossi costituisce un Ditt

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

UNIVERSITÀ DEGLI STUDI DI ROMA SAPIENZA ANNO ACCADEMICO 2014/2015 CORSO DI LAUREA IN SCIENZE AZIENDALI PROF.SSA DANIELA COLUCCIA CANALE E-M

UNIVERSITÀ DEGLI STUDI DI ROMA SAPIENZA ANNO ACCADEMICO 2014/2015 CORSO DI LAUREA IN SCIENZE AZIENDALI PROF.SSA DANIELA COLUCCIA CANALE E-M LE FONTI DI FINANZIAMENTO UNIVERSITÀ DEGLI STUDI DI ROMA SAPIENZA ANNO ACCADEMICO 2014/2015 Le fonti di finnzimento in un società comprendono: ) il cpitle socile b) il cpitle di credito c) l utofinnzimento

Dettagli

1. Indicare se le seguenti affermazioni sono VERE o FALSE VERO FALSO

1. Indicare se le seguenti affermazioni sono VERE o FALSE VERO FALSO 1. Indicre se le seguenti ffermzioni sono VERE o FALSE VERO FALSO Nel codice civile non sono presenti principi contbili. Per correttezz tecnic come clusol generle di formzione del bilncio si intende conoscenz

Dettagli

LEASING FINANZIARIO 27/10/2013

LEASING FINANZIARIO 27/10/2013 LEASING FINANZIARIO LEASING Con il contrtto di un ziend concede d un ltr un bene strumentle verso il corrispettivo di un certo numero di cnoni periodici. Corso di rgioneri generle ed pplict Prof. Polo

Dettagli

ESERCIZI RELATIVI AL CAP. 8 GLI INVESTIMENTI E I DISINVESTIMENTI IN TITOLI E PARTECIPAZIONI a cura di Daniela Corbetta

ESERCIZI RELATIVI AL CAP. 8 GLI INVESTIMENTI E I DISINVESTIMENTI IN TITOLI E PARTECIPAZIONI a cura di Daniela Corbetta ESERCIZI RELATIVI AL CAP. 8 GLI INVESTIMENTI E I DISINVESTIMENTI IN TITOLI E PARTECIPAZIONI cur di Dniel Corbett P.S.: l fine di trttre in modo esustivo l rgomento, si precis che nei seguenti esercizi

Dettagli

La chiusura dei conti e la determinazione del risultato d esercizio

La chiusura dei conti e la determinazione del risultato d esercizio L chiusur dei conti e l determinzione del risultto d esercizio Esercizio Al 31/12/X il bilncio di verific dell società Alf è il seguente: Dre Avere Bnc 0 Clienti 400 Mcchinri 300 Cpitle socile 0 Fornitori

Dettagli

Modulo 6. La raccolta bancaria e il rapporto di conto corrente. Unità didattiche che compongono il modulo. Tempo necessario

Modulo 6. La raccolta bancaria e il rapporto di conto corrente. Unità didattiche che compongono il modulo. Tempo necessario 58 Modulo 6 L rccolt bncri e il rpporto di conto corrente I destintri del Modulo sono gli studenti del quinto nno che, dopo ver nlizzto e ppreso le crtteristiche fondmentli dell ttività delle ziende di

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Tassi di cambio, prezzi e

Tassi di cambio, prezzi e Tssi di cmbio, prezzi e tssi di interesse 2009 1 Introduzione L relzione tr l ndmento del livello generle dei prezzi e i tssi di cmbio: l Prità dei Poteri di Acquisto Le relzione tr i tssi di cmbio e i

Dettagli

Esercitazione Dicembre 2014

Esercitazione Dicembre 2014 Esercitzione 10 17 Dicembre 2014 Esercizio 1 Un economi chius è crtterizzt di seguenti dti: A = 400 M = 250 γ = 1.5 (moltiplictore dell politic fiscle) β = 0.8 moltiplictore dell politic monetri z = 0.25

Dettagli

LE OPERAZIONI DI INVESTIMENTO E DI DISINVESTIMENTO IN TITOLI E PARTECIPAZIONI

LE OPERAZIONI DI INVESTIMENTO E DI DISINVESTIMENTO IN TITOLI E PARTECIPAZIONI Cpitolo 8 LE OPERAZIONI DI INVESTIMENTO E DI DISINVESTIMENTO IN TITOLI E PARTECIPAZIONI cur di Alfredo Vignò Titoli e Prtecipzioni Sono strumenti finnziri che rppresentno impieghi rispettivmente in quote

Dettagli

ESERCIZI RELATIVI AL CAP. 9 LE OPERAZIONI DI ACQUISIZIONE, REMUNERAZIONE E RIMBORSO DEI DEBITI DI FINANZIAMENTO

ESERCIZI RELATIVI AL CAP. 9 LE OPERAZIONI DI ACQUISIZIONE, REMUNERAZIONE E RIMBORSO DEI DEBITI DI FINANZIAMENTO 1 ESERCIZI RELATIVI AL CAP. 9 LE OPERAZIONI DI ACQUISIZIONE, REMUNERAZIONE E RIMBORSO DEI DEBITI DI FINANZIAMENTO cur di Murizio Pini Esercizi reltivi l pr. 9.6 (I mutui pssivi). ESERCIZIO 9.6/1 (1) In

Dettagli

Esercitazione - TESTO

Esercitazione - TESTO Esercitzione - TESTO Si effettui l registrzione contbile delle operzioni di gestione sotto riportte. Al termine delle operzioni si provved redigere il bilncio determinndo il reddito del periodo. 1) 15/01/2014

Dettagli

Esercizi sulle curve in forma parametrica

Esercizi sulle curve in forma parametrica Esercizi sulle curve in form prmetric Esercizio. L Elic Cilindric. Dt l curv di equzioni prmetriche: xt cos t yt sin t t 0 T ] > 0 b IR zt bt trovre: versore tngente normle binormle vettore curvtur rggio

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

BANDO PUBBLICO PER IL SOSTEGNO AL REDDITO PER PERSONE E/O FAMIGLIE IN SITUAZIONE DI CRISI PER LA PERDITA DEL LAVORO - 2015

BANDO PUBBLICO PER IL SOSTEGNO AL REDDITO PER PERSONE E/O FAMIGLIE IN SITUAZIONE DI CRISI PER LA PERDITA DEL LAVORO - 2015 BANDO PUBBLICO PER IL SOSTEGNO AL REDDITO PER PERSONE E/O FAMIGLIE IN SITUAZIONE DI CRISI PER LA PERDITA DEL LAVORO - 2015 Art. 1 - FINALITA E OGGETTO Il presente ndo disciplin le modlità per l'ssegnzione

Dettagli

CORSO DI RAGIONERIA A.A. 2013/2014

CORSO DI RAGIONERIA A.A. 2013/2014 CORSO DI RAGIONERIA A.A. 2013/2014 MODULO A LEZIONE N. 10 LE SCRITTURE CONTABILI Il lesing IL CONTRATTO DI LEASING Il lesing è un contrtto tipico (non previsto dl Codice Civile) per mezzo del qule l ziend

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

In secondo luogo, dovremo registrare il pagamento del maxicanone iniziale. IVA sul maxicanone: x 20% = Canoni leasing IVA nostro credito

In secondo luogo, dovremo registrare il pagamento del maxicanone iniziale. IVA sul maxicanone: x 20% = Canoni leasing IVA nostro credito Esercitzione Lesing (B) Metodo Ptrimonile A) In dt /2006 si stipul un contrtto di lesing per l'cquisizione di un mcchinrio di produzione lle seguenti condizioni: costo complessivo 23.100 (+ IVA 20%) d

Dettagli

Le verifiche finali e le scritture di assestamento

Le verifiche finali e le scritture di assestamento Numero 60/2012 Pgin 1 di 8 Le verifiche finli e le scritture di ssestmento Numero : 60/2012 Gruppo : Oggetto : Norme e prssi : Scric l guid complet sulle scritture di chiusur e il pssggio del bilncio d

Dettagli

SPESE LEGALI A CARICO DELLA PARTE SOCCOMBENTE

SPESE LEGALI A CARICO DELLA PARTE SOCCOMBENTE SOMMARIO SCHEMA DI SINTESI PAGAMENTO DELLE SPESE LEGALI A CURA DELLA PARTE VINCITRICE E SUCCESSIVO RIMBORSO DAL SOCCOMBENTE DISTRAZIONE DELLE SPESE DIRET- TAMENTE ALLA PARTE SOCCOM- BENTE SPESE LEGALI

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

UNIVERSITÀ DEGLI STUDI DI ROMA SAPIENZA ANNO ACCADEMICO 2015/2016 CORSO DI LAUREA IN SCIENZE AZIENDALI PROF.SSA DANIELA COLUCCIA CANALE E-M

UNIVERSITÀ DEGLI STUDI DI ROMA SAPIENZA ANNO ACCADEMICO 2015/2016 CORSO DI LAUREA IN SCIENZE AZIENDALI PROF.SSA DANIELA COLUCCIA CANALE E-M UNIVERSITÀ DEGLI STUDI DI ROMA SAPIENZA ANNO ACCADEMICO 2015/2016 CORSO DI LAUREA IN SCIENZE AZIENDALI PROF.SSA DANIELA COLUCCIA CANALE E-M CORSO DI ECONOMIA AZIENDALE (9 CFU) ESERCITAZIONI DI CONTABILITÀ

Dettagli

. Elementicostitutividell,azienda o Classificazione delle aziende o I rapporti con l'ambiente r Globalizzazione dei mercati.

. Elementicostitutividell,azienda o Classificazione delle aziende o I rapporti con l'ambiente r Globalizzazione dei mercati. progrmm di Economi Aziendle Svolto nell clsse 3.M dell,l.l.s.s. Rmcc_plgoni Dl prof. Crmelo Origlio nell,/s 2OLS 16 L'ziend come sistem di trsformzione finlizzto:. Elementicostitutividell,ziend o Clssificzione

Dettagli

Variabile casuale uniforme (o rettangolare)

Variabile casuale uniforme (o rettangolare) Vribile csule uniforme (o rettngolre) Le crtteristic principle è che le sue relizzzioni sono equiprobbili Si pplic nelle situzioni in cui il fenomeno: Assume vlori in un intervllo limitto [,b] L probbilità

Dettagli

Applicazione n. 1 Scritture di assestamento, di epilogo, di determinazione del risultato economico e di chiusura

Applicazione n. 1 Scritture di assestamento, di epilogo, di determinazione del risultato economico e di chiusura Università degli Studi di Bri Aldo Moro Diprtimento di Scienze Economiche e Metodi Mtemtici Insegnmento di Rgioneri Applict (.. 2013-2014) Corso di Lure in Economi e Commercio Appliczione n. 1 Scritture

Dettagli

La metodologia di calcolo del costo medio ponderato del capitale (WACC) degli operatori di rete mobile

La metodologia di calcolo del costo medio ponderato del capitale (WACC) degli operatori di rete mobile Allegto C ll Deliber n. 509/10/CONS L metodologi di clcolo del costo medio ponderto del cpitle (WACC) degli opertori di rete mobile 1. Introduzione 1. In bse ll rt. 50 del Codice delle Comuniczioni, l

Dettagli

Il TFR nel Bilancio 2007 * Piero Pisoni, Fabrizio Bava, Donatella Busso e Alain Devalle **

Il TFR nel Bilancio 2007 * Piero Pisoni, Fabrizio Bava, Donatella Busso e Alain Devalle ** I temi MAP (Liber consultzione) Il TFR nel Bilncio 2007 * Piero Pisoni, Fbrizio Bv, Dontell Busso e Alin Devlle ** 1. Premess Il TFR è stto riformto con il D.Lgs. 05/12/2005, n. 252, concernente l disciplin

Dettagli

RAGIONERIA GENERALE 10 CFU Simulazione

RAGIONERIA GENERALE 10 CFU Simulazione Prof. Stefno Coronell Cognome: Nome: Mtricol: Aul: Documento identità (tipo e numero; bst nche il solo libretto universitrio) Rilscito d: Firm Rilscito il: Segnre con un X l unic rispost corrett (rispost

Dettagli

Ordinanza concernente la legge sul credito al consumo

Ordinanza concernente la legge sul credito al consumo Ordinnz concernente l legge sul credito l consumo (OLCC) 221.214.11 del 6 novemre (Stto 1 luglio 2016) Il Consiglio federle svizzero, visti gli rticoli 14, 23 cpoverso 3 e 40 cpoverso 3 dell legge federle

Dettagli

Borse di studio per i figli studenti e provvidenze a favore dei Dipendenti studenti. Ambito: Tutti

Borse di studio per i figli studenti e provvidenze a favore dei Dipendenti studenti. Ambito: Tutti Circolre n. 36 del 16 settembre 2014 Oggetto: Borse di studio per i figli studenti e provvidenze fvore dei Dipendenti studenti Serie: PERSONALE Argomento: Società interesste: Ambito: CONDIZIONI CONTRATTUALI

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI 1 se 0, per ogni R ; Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >0: Sono definite: se >0: Non sono definite: Csi prticolri: Le proprietà delle

Dettagli

Fisco & Contabilità La guida pratica contabile

Fisco & Contabilità La guida pratica contabile Fisco & Contbilità L guid prtic contbile N. 21 04.06.2014 Rtei e risconti Ctegori: Bilncio e contbilità Sottoctegori: Registrzioni contbili Con riferimento lle scritture di ssestmento ssume prticolre importnz

Dettagli

UNIVERSITÀ DEGLI STUDI DI ROMA SAPIENZA ANNO ACCADEMICO 2014/2015 CORSO DI LAUREA IN SCIENZE AZIENDALI PROF.SSA DANIELA COLUCCIA CANALE E-M

UNIVERSITÀ DEGLI STUDI DI ROMA SAPIENZA ANNO ACCADEMICO 2014/2015 CORSO DI LAUREA IN SCIENZE AZIENDALI PROF.SSA DANIELA COLUCCIA CANALE E-M UNIVERSITÀ DEGLI STUDI DI ROMA SAPIENZA ANNO ACCADEMICO 2014/2015 CORSO DI LAUREA IN SCIENZE AZIENDALI PROF.SSA DANIELA COLUCCIA CANALE E-M CORSO DI ECONOMIA AZIENDALE (9 CFU) ESERCITAZIONI DI CONTABILITÀ

Dettagli

UNIVERSITÀ DEGLI STUDI DI ROMA SAPIENZA ANNO ACCADEMICO 2015/2016 CORSO DI LAUREA IN SCIENZE AZIENDALI PROF.SSA DANIELA COLUCCIA CANALE E-M

UNIVERSITÀ DEGLI STUDI DI ROMA SAPIENZA ANNO ACCADEMICO 2015/2016 CORSO DI LAUREA IN SCIENZE AZIENDALI PROF.SSA DANIELA COLUCCIA CANALE E-M LE FONTI DI FINANZIAMENTO UNIVERSITÀ DEGLI STUDI DI ROMA SAPIENZA ANNO ACCADEMICO 2015/2016 Le fonti di finnzimento in un società comprendono: ) il cpitle socile b) il cpitle di credito c) l utofinnzimento

Dettagli

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto 7 I costi dell impres 7.1. Per l combinzione di equilibrio dei due input, si ved il grfico successivo. L pendenz dell line di isocosto e` pri ll opposto del rpporto tr i prezzi dei fttori: -10 = 2 = -5.

Dettagli

UNIVERSITÀ DEGLI STUDI DI ROMA SAPIENZA ANNO ACCADEMICO 2016/2017 CORSO DI LAUREA IN SCIENZE AZIENDALI PROF.SSA DANIELA COLUCCIA CANALE E-M

UNIVERSITÀ DEGLI STUDI DI ROMA SAPIENZA ANNO ACCADEMICO 2016/2017 CORSO DI LAUREA IN SCIENZE AZIENDALI PROF.SSA DANIELA COLUCCIA CANALE E-M LE FONTI DI FINANZIAMENTO UNIVERSITÀ DEGLI STUDI DI ROMA SAPIENZA ANNO ACCADEMICO 2016/2017 CORSO DI LAUREA IN SCIENZE AZIENDALI PROF.SSA DANIELA COLUCCIA CANALE E-M Le fonti di finnzimento in un società

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari :

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari : Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >, per ogni R se, per tutti e soli gli R se

Dettagli

AMMORTAMENTO PERDITE ESERCIZIO

AMMORTAMENTO PERDITE ESERCIZIO AMMORTAMENTO PERDITE ESERCIZIO PERDITA D ESERCIZIO OLTRE 1/3 C.S. L società Alf sp C.S. 500.000,00 nell nno 200x rilev un perdit di 410.000,00. L ssemble dei soci deliber l riduzione del cpitle socile

Dettagli

Fornitori 1.000,00 200,00. Crediti per contributi a Altri ricavi e proventi 400,00. Banca c/c a Crediti per contributi 400,00

Fornitori 1.000,00 200,00. Crediti per contributi a Altri ricavi e proventi 400,00. Banca c/c a Crediti per contributi 400,00 CONTRIBUTI I contributi, in bse ll loro motivzione e destinzione possono suddividersi in: - contributi in conto esercizio - seguono il principio di competenz; - contributi in conto impinti - seguono il

Dettagli

Transazioni al di fuori della normale gestione. Emissione del Prestito Obbligazionario 02/11/2010. Analisi della trasparenza Giovanni Andrea Toselli

Transazioni al di fuori della normale gestione. Emissione del Prestito Obbligazionario 02/11/2010. Analisi della trasparenza Giovanni Andrea Toselli Università degli studi di Pvi Fcoltà di Economi.. 2010-20112011 Sezione 26 Anlisi dell trsprenz Giovnni Andre Toselli 1 Sezione 26 Trnszioni l di fuori dell normle gestione Operzioni sull struttur finnziri

Dettagli

Elementi grafici per Matematica

Elementi grafici per Matematica Elementi grfici per Mtemtic Sommrio: Sistemi di coordinte crtesine... Grfici di funzioni... 4. Definizione... 4. Esempi... 5.3 Verificre iniettività e suriettività dl grfico... 8.4 L rett... 9.5 Esempi

Dettagli

RIChIestA di BORsA di studio UNIVeRsItà O IstItUtI equipollenti

RIChIestA di BORsA di studio UNIVeRsItà O IstItUtI equipollenti prot. Istituto di Previdenz e Assistenz RIChIestA di BORsA di studio UNIVeRsItà O IstItUtI equipollenti SpzIo RISeRVTo ll Ip Cndidto punteggio esito Il sottoscritto (iscritto ll Ip) residente in vi /pizz

Dettagli

Esercitazione - TESTO

Esercitazione - TESTO Esercitzione - TESTO Si effettui l registrzione contbile delle operzioni di gestione sotto riportte indicndo l ntur dei vri conti utilizzti. Al termine delle operzioni si provved redigere il bilncio (determinndo

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

Regime dell interesse composto.

Regime dell interesse composto. Regime dell ineresse composo Formule d usre : M = monne ; I = ineresse ; C = cpile ; r = fore di cpilizzzione K = somm d sconre ; s = sso di scono unirio ; i = sso di ineresse unirio V = vlore ule ; ν

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

Anno 2013 N. RF292. La Nuova Redazione Fiscale

Anno 2013 N. RF292. La Nuova Redazione Fiscale Anno 2013 N. RF292 www.redzionefiscle.it ODCEC VASTO L Nuov Redzione Fiscle Pg. 1 / 6 OGGETTO IMPOSTA SOSTITUTIVA SUL TFR - VERSAMENTO ENTRO IL 16/12 RIFERIMENTI D.LGS. N. 252/2005; CM 70/2007; CIRCOLARI

Dettagli

RAGIONERIA GENERALE 10 CFU Simulazione

RAGIONERIA GENERALE 10 CFU Simulazione Prof. Stefno Coronell Cognome: Nome: Mtricol: Aul: Documento identità (tipo e numero; bst nche il solo libretto universitrio) Rilscito d: Firm Rilscito il: Segnre con un X l unic rispost corrett (rispost

Dettagli

Esercitazione Operazioni di acquisto e vendita con IVA

Esercitazione Operazioni di acquisto e vendita con IVA Esercitzione Operzioni di cquisto e vendit con IVA Esercizio 1 In dt 1 febbrio X l società Bic S.p.A. stipul un contrtto nnuo di ssicurzione su un utoveicolo che prevede il pgmento nticipto di un premio

Dettagli

10. Completare la seguente tabella, in cui sono riportate le produzioni assolute e relative di tre colture altamente diffuse in Italia.

10. Completare la seguente tabella, in cui sono riportate le produzioni assolute e relative di tre colture altamente diffuse in Italia. ESERCIZI DI BASE 1. I soci proprietri di un piccol compgni gricol sono tre: i signori A, B, C. Mentre i signori A e C hnno l stess quot di prtecipzione ll ziend, il signor B h solo il 50% dell quot degli

Dettagli

TABELLA RIASSUNTIVA Descrizione Trattamento civilistico Trattamento fiscale

TABELLA RIASSUNTIVA Descrizione Trattamento civilistico Trattamento fiscale OPERAZIONI IN VALUTA ATTIVITA E PASSIVITA IN VALUTA Codice civile. Art. 2425-bis.2: I ricvi e i proventi, i costi e gli oneri reltivi d operzioni in vlut devono essere determinti in bse l cmbio corrente

Dettagli

FOGLIO INFORMATIVO SERVIZIO DI ACQUISIZIONE PAGAMENTI CON CARTA INFORMAZIONI SULL ACQUIRER

FOGLIO INFORMATIVO SERVIZIO DI ACQUISIZIONE PAGAMENTI CON CARTA INFORMAZIONI SULL ACQUIRER FOGLIO INFORMATIVO SERVIZIO DI ACQUISIZIONE PAGAMENTI CON CARTA INFORMAZIONI SULL ACQUIRER Foglio Informtivo 2_27/06/2013 ICCREA BANCA S.p.A. - Istituto Centrle del Credito Coopertivo Sede legle e mministrtiv:

Dettagli

Allegato C alla Delibera n. 254/11/CONS. Il calcolo del costo medio ponderato del capitale. 1. Introduzione

Allegato C alla Delibera n. 254/11/CONS. Il calcolo del costo medio ponderato del capitale. 1. Introduzione Allegto C ll Deliber n. 254/11/CONS Il clcolo del costo medio ponderto del cpitle 1. Introduzione 1. L Autorità pplic l metodologi definit dll llegto A ll deliber n. 60/11/CONS per il clcolo del costo

Dettagli

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è:

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è: 1) In un equzione differenzile del tipo y (t)= y(t), con > 0, il tempo di rddoppio, cioè il tempo T tle che y(t+t)=y(t) è: A) T = B) 1 T = log e C) 1 T = log e ** D) 1 T = E) T = log e ) L equzione differenzile

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

m kg M. 2.5 kg

m kg M. 2.5 kg 4.1 Due blocchi di mss m = 720 g e M = 2.5 kg sono posti uno sull'ltro e sono in moto sopr un pino orizzontle, scbro. L mssim forz che può essere pplict sul blocco superiore ffinchè i blocchi si muovno

Dettagli

CENTRO DI RESPONSABILITA' "A"

CENTRO DI RESPONSABILITA' A PREENTIO FINANZIARIO GESTIONALE PLURIENNALE ES. 2015 2016 2017 CONSORZIO DI BONIFICA 4 CALTANISSETTA Residui ttivi presunti ll fine dell'nno in dell'nno in per l'nno 2015 Previsioni di css per l'nno 2015

Dettagli

Page 1/6

Page 1/6 Edizione di sbto 14 novembre 2015 CONTABILITÀ L rilevzione dell impost sostitutiv sul trttmento di fine rpporto di Vivin Grippo Scde il prossimo 16 dicembre il termine per il versmento dell cconto dell

Dettagli

5) 18/07 - Si vendono prodotti per 130.000 + IVA. Il pagamento avviene tramite rilascio di cambiali, al netto dell anticipo già ricevuto.

5) 18/07 - Si vendono prodotti per 130.000 + IVA. Il pagamento avviene tramite rilascio di cambiali, al netto dell anticipo già ricevuto. ESERCITAZIONE 4 In dt 09/05 è stt costituit, di signori Fbio Best e Gino Zpp, l società in nome collettivo, Fbio Best & C. s.n.c.. Il cpitle socile è di 100.000 e viene sottoscritto in ugul misur di soci,

Dettagli

L accertamento di un entrata corrente di natura patrimoniale

L accertamento di un entrata corrente di natura patrimoniale ........ Rilevzioni contbili: vecchi e nuov contbilità confronto. L ccertmento di un entrt corrente di ntur ptrimonile curdimurobellesi Dirigente Comune di Vicenz - Publicist... Premess Il cso L rubric

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

FOGLIO INFORMATIVO SERVIZIO DI ACQUISIZIONE PAGAMENTI CON CARTA INFORMAZIONI SULL ACQUIRER

FOGLIO INFORMATIVO SERVIZIO DI ACQUISIZIONE PAGAMENTI CON CARTA INFORMAZIONI SULL ACQUIRER FOGLIO INFORMATIVO SERVIZIO DI ACQUISIZIONE PAGAMENTI CON CARTA INFORMAZIONI SULL ACQUIRER Foglio Informtivo n. 3_18/12/2013 ICCREA BANCA S.p.A. - Istituto Centrle del Credito Coopertivo Sede legle e mministrtiv:

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

RIChIestA di BORsA di studio UNIVeRsItà O IstItUtI equipollenti

RIChIestA di BORsA di studio UNIVeRsItà O IstItUtI equipollenti prot. Istituto di Previdenz e Assistenz RIChIestA di BORsA di studio UNIVeRsItà O IstItUtI equipollenti SpzIo RISeRVTo ll Ip Cndidto punteggio esito Il sottoscritto (iscritto ll Ip) nto/ il residente in

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

All'Inpdap - sede di. Prov.

All'Inpdap - sede di. Prov. io chiedo PROTOCOLLO INPDAP All'Inpdp - sede di Cod. 02010101 Io sottoscritto/ Acquisizione di ftti o stti del richiedente ttrverso l esibizione del suo documento di riconoscimento. (Art.45 del Testo Unico

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Matematica Finanziaria 20 dicembre 2000

Matematica Finanziaria 20 dicembre 2000 Mtemti Finnziri 0 diembre 000 TEST di Mtemti Finnziri. FILA A Cognome Nome Mtriol Rispondere lle sei domnde sbrrndo l sell he si ritiene orrett. Un sol rispost è orrett. Nel so si intend nnullre un rispost

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Teori in sintesi ESPONENZIALI Potenze con esponente rele Esponenzili e ritmi L potenz è definit: se, per ogni R se, per tutti e soli gli R se, per tutti e soli gli Z. Sono definite: 7 7. Non sono definite:.

Dettagli

ASSENZE PER ASSISTENZA PORTATORI DI HANDICAP

ASSENZE PER ASSISTENZA PORTATORI DI HANDICAP NORMATIVA ASSENZE PER ASSISTENZA PORTATORI DI HANDICAP A cur di Libero Tssell d Scuol&Scuol del 21/10/2003 Riferimenti normtivi: rt. 21 e 33 5.2.1992 n. 104 e successive modifiche ed integrzioni, Dlgs.

Dettagli

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico Second prov mturit 06 soluzione secondo problem di mtemtic scientifico Skuol.net June, 06 Primo Problem Le tre funzioni proposte sono f () ( ) k f () 6 + 9k + f () cos( π k ). Punto Affinche l funzione

Dettagli

FOGLIO INFORMATIVO SERVIZIO DI ACQUISIZIONE PAGAMENTI CON CARTA INFORMAZIONI SULL ACQUIRER

FOGLIO INFORMATIVO SERVIZIO DI ACQUISIZIONE PAGAMENTI CON CARTA INFORMAZIONI SULL ACQUIRER FOGLIO INFORMATIVO SERVIZIO DI ACQUISIZIONE PAGAMENTI CON CARTA INFORMAZIONI SULL ACQUIRER Foglio Informtivo n. 4_01/08/2014 ICCREA BANCA S.p.A. - Istituto Centrle del Credito Coopertivo Sede legle e mministrtiv:

Dettagli

MATEMATICA FINANZIARIA CAP. 14 20

MATEMATICA FINANZIARIA CAP. 14 20 MTEMTIC FINNZIRI CP. 42 pputi di estimo INTERESSE SEMPLICE Iteesse semplice I C M C ( ) = fzioe di o [] C M G F M M G L S O N D Motte semplice di te costti 2 3 M R R R... R [2] 2 2 2 2 Poiché l fomul è

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli