Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 21 Novembre Logaritmi e Proprietà

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 21 Novembre Logaritmi e Proprietà"

Transcript

1 Esercitazioni di Matematica Generale A.A. 016/017 Pietro Pastore Lezione del 1 Novembre 016 Logaritmi e Proprietà Quando scriviamo log a b = c che leggiamo logaritmo in base a di b uguale a c, c è l esponente che bisogna dare alla base a per ottenere b. Quindi il logaritmo non è altro che un esponente. In particolare quello che è necessario dare alla base a per avere l argomento b. Vediamo alcuni esempi immediati Quanto vale il log 8? Dobbiamo chiederci: Qual è l esponente da dare a per avere 8? La risposta è 3. Quanto vale il log 4 16? Stiamo cercando l esponente da dare a 4 per ottenere 16. Chiaramente questo è. Quindi la relazione che lega a, b e c nella definizione data in precedenza è a c = b. È importante osservare che la base a deve essere necessariamente un numero positivo e diverso da 1 (proprio come accade per la funzione esponenziale). In simboli quindi a > 0 a 1 l argomento b deve essere positivo (lo si vede dal fatto che esso deve coincidere con a c con a positivo). Quindi b > 0. 1

2 Due basi che vengono comunemente usate sono le seguenti base 10 e si usa indicare il logaritmo in base 10 di un numero b con log b ossia evitando di scrivere la base. base e, il numero di Nepero il cui valore approssimato è, 71..., e si usa indicare il logaritmo in base e di un numero b con ln b che è noto anche come logaritmo naturale di b. Esercizi vari 1. log Il valore è 4, perché 3 4 = 81. log 1. Il risultato è 0, perché 0 = 1 3. log Il valore è 1 perché 5 1 = log 9 3. Il valore è 1 perché 9 1 = 9 = 3 5. log 1/ b = 3. Dalla relazione tra base, argomento e risultato segue subito che 6. log /3 b =. b = ( ) 3 1 = 1 8 Come prima si ha b = ( ) = 3 ( ) 3 = 9 4

3 7. log 5 b = 0. b = 5 0 = 1 8. log 5 b = 1. b = 5 1 = 5 = 5 9. log a 9 =. Si ha che a = 9 a = ±3 per quanto detto in precedenza a = 3 non è accettabile perché la base deve essere positiva e diversa da 1. L unica soluzione perciò è a = log a 1 8 = 3. Otteniamo a 3 = a 3 = 1 8 a 3 = 8 a = 3 8 = 11. log a 6 = 1. a 1 = 6 a = 6 a = 6 = 36. Valgono le seguenti proprietà per x, y > 0 1. Somma di due logaritmi nella stessa base log a x + log a y = log a (xy) Esempi: log 7 + log 3 = log (7 3) = log 1 log 5 30 = log 5 ( 3 5) = log 5 + log log 5 5 = log 5 + log Differenza di due logaritmi nella stessa base ) log a x log a y = log a ( x y Esempi: 3

4 ( ) 34 log 3 34 log 3 17 = log 3 = log log 7 5 = log 7 49 log 7 5 = log Logaritmo di una potenza log a x n = n log a x Esempi: log 4 49 = log 4 (7 ) = log 4 7 log 5 3 = log 5 (3 ) = log Cambio di base (nella formula cambiamo da base a a base d) log a x = log d x log d a Esempio: Calcolare, utilizzando la calcolatrice scientifica, il log 5. Usando la formula del cambio di base possiamo passare alla base 10 e quindi scrivere log 5 = log 5 log = ma possiamo anche cambiare nella base e e quindi calcolare log 5 = ln 5 ln = Equazioni Logaritmiche Risolvere le seguenti equazioni 1. log 5 (x + ) =. Osservando che possiamo scrivere = log 5 5 l equazione diventa log 5 (x + ) = log 5 5 4

5 e quindi i due termini saranno uguali se vale che x + = 5 x = 3. Osserviamo che in tal caso è inutile determinare le condizioni di esistenza visto che dall equazione che andiamo a risolvere segue in automatico che l argomento del logaritmo è positivo.. log (x + 10) = log (x + x). Determiniamo le condizioni di esistenza imponendo la positività degli argomenti x + 10 > 0 x + x > 0 Dalla prima disequazione si ottiene x > 10 che è sempre verificata in R. Per quanto riguarda la seconda disequazione, passiamo all equazione associata x x 1 = 0 + x = 0 x(x + 1) = 0 x = 1 quindi il grafico della parabola è 1 0 e la soluzione della seconda disequazione risulta essere x < 1 x > 0. Perciò dal grafico del sistema 1 0 Dis. A Dis. B 5

6 deduciamo che le condizioni di esistenza dell equazione sono date da x < 1 x > 0. Risolviamo ora l equazione log (x + 10) = log (x + x) x + 10 = x + x x = 10 che risulta accettabile perché verifica le condizioni precedenti. 3. log (x 1) log (x + ) = log 5. Determiniamo le condizioni di esistenza x 1 > 0 x > 1 x + > 0 x > e dal seguente grafico 1 Dis. A Dis. B si ricava che l equazione ha significato per i valori di x > 1. Risolviamo adesso l equazione e notiamo che possiamo usare una delle proprietà viste in precedenza log (x 1) log (x + ) = log 5 log (x 1) = log (x + ) + log 5 log (x 1) = log (5(x + )) x 1 = 5x + 10 x 5x = x = 11 4x = 11 x = 11 4 che non possiamo accettare perché non verifica la condizione di esistenza trovata in precedenza. Perciò l equazione non ammette soluzioni. 6

7 log (x + x 6) = log (x + 4x + 4). Determiniamo le condizioni di esistenza x + x 6 > 0 x + 4x + 4 > 0 Essendo disequazioni di secondo grado, passiamo in entrambi i casi alle equazioni associate e troviamo x + x 6 = 0 = 1 4(1)( 6) = = 5 x 1/ = 1 ± 5 = 1 ± 5 x 1 = x = 3 x + 4x + 4 = 0 = 4 4(1)(4) = = 0 x 1 = x = 4 = Dai seguenti grafici delle due parabole 3 (a) Prima disequazione (b) Seconda disequazione si deduce il grafico del sistema 3 Dis. A Dis. B e quindi le condizioni di esistenza risultano essere x < 3 x >. 7

8 Risolviamo l equazione considerando che 1 = log e quindi 1 + log (x + x 6) = log (x + 4x + 4) log + log (x + x 6) = log (x + 4x + 4) log ((x + x 6)) = log (x + 4x + 4) x + x 1 = x + 4x + 4 x x 16 = 0 = ( ) 4(1)( 16) = = 68 = 17 x 1/ = ( ) ± 17 = ± 17 x 1 = = x = 1 17 = Le soluzioni trovate sono entrambe accettabili perché verificano le condizioni di esistenza. 5. log 3 x + log 3 x 3 = 0. L unica condizione di esistenza è x > 0. Usiamo una variabile ausiliaria e chiamiamo y = log 3 x. l equazione e risolviamola. Riscriviamo y + y 3 = 0 = 4(1)( 3) = = 16 y 1/ = ± 16 = ± 4 y 1 = 1 y = 3 Ritornando alla x si ricava che log 3 x = 1 log 3 x = 3 x = 3 1 x = 3 x = 3 3 x = 1 7 e tali soluzioni risultano entrambe accettabili perché verificano x > 0. Ulteriori esercizi consigliati 1. log (x 1) = 1. 1 log 4 (3 x) = log 4 (13x + 7) log 4 (x + 1) 3. log x + 1 3(1 log x) = log x 1 log x 3 8

9 4. log x 3 log x = 0 Disequazioni Logaritmiche Risolvere le seguenti disequazioni 1. log 3 (x + 1) > 0. Prima di tutto troviamo le condizioni di esistenza e quindi richiediamo la positività dell argomento del logaritmo x + 1 > 0 x > 1. Poi osserviamo che 0 = log 3 1 e quindi possiamo riscrivere la disequazione log 3 (x + 1) > log 3 1. Siccome la base è maggiore di 1 il logaritmo è una funzione crescente (ad argomento maggiore corrisponde valore maggiore) e quindi nella disequazione che abbiamo appena scritto il maggiore sarà verificato se il primo argomento è maggiore del secondo, cioè x + 1 > 1 x > 0 x > 0. Non resta altro che andare a trovare cosa ha in comune la soluzione trovata con la condizione di esistenza ottenuta in precedenza. Graficamente si ottiene 1 0 Sol. C.E. e quindi la soluzione è data da x > 0.. log 3/4 (1 x ) 0. Troviamo le condizioni di esistenza risolvendo 1 x > 0. Passiamo all equazione associata e si ottiene 1 x = 0 x = 1 x 1/ = ±1 e quindi la parabola è la seguente 9

10 1 1 e allora i valori della x per i quali l argomento del logaritmo è positivo sono 1 < x < 1. Risolviamo la disequazione, osservando che 0 = log 3/4 1 e quindi possiamo scrivere log 3/4 (1 x ) log 3/4 1. Siccome la base del logaritmo in questo caso è compresa tra 0 e 1 bisogna ricordare che per tali valori della base il logaritmo è una funzione decrescente (ad argomento maggiore corrisponde valore minore) e quindi nella disequazione il primo membro sarà maggiore o uguale al secondo quando il suo argomento è minore o uguale a quello del secondo. In simboli si ha log 3/4 (1 x ) log 3/4 1 1 x 1 x 0 x 0 x R. Ora ricordiamoci delle condizioni di esistenza e andiamo a fare il seguente grafico 1 1 Sol. C.E. 10

11 da cui si deduce che la soluzione della disequazione è 1 < x < log x log (x + 5) + log (x 1) log 3. Condizioni di esistenza (positività degli argomenti) x > 0 x > 0 x + 5 > 0 x > 5 x 1 > 0 x > 1. Facendo il grafico del sistema Dis A Dis B Dis C si ottiene che gli argomenti sono tutti positivi se x > 1. Possiamo risolvere la disequazione utilizzando le proprietà dei logaritmi log x log (x + 5) + log (x 1) log 3 log x + log (x 1) log 3 + log (x + 5) log (x(x 1)) log (3(x + 5)) x x 6x + 15 x 7x Passiamo all equazione associata x 7x 15 = 0 = ( 7) 4()( 15) = = 169 x 1/ = ( 7) ± 169 () = 7 ± 13 4 x 1 = 5 x = 6 4 = 3 e quindi la parabola ha il seguente andamento 11

12 3 5 e le soluzioni della disequazione sono x 3 x 5. seguente grafico Vediamo dal Sol. C.E. che la soluzione, tenendo conto delle condizioni di esistenza, è x 5. Osserviamo che negli esercizi in cui comparivano somme algebriche di logaritmi, ci siamo sempre ricondotti a somme, trasportando da un membro all altro i logaritmi nel caso essi avevano il segno davanti. In questo modo abbiamo sempre usato la proprietà della somma di logaritmi con la stessa base, evitando di scrivere frazioni e quindi di risolvere equazioni e disequazioni frazionarie. Ulteriori esercizi consigliati 1. log 5 (x 1) 1. log 1/3 (1 + 3x) > 3 3. log (x + 6 x ) > log x + log (4 x) 4. log 1/4 x 1 4 < 0 5. (log x + 1)(1 log x) 0 1

EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO

EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO EQUAZIONI CON VALORE AOLUTO DIEQUAZIONI CON VALORE AOLUTO Prima di tutto: che cosa è il valore assoluto di un numero? Il valore assoluto è quella legge che ad un numero (positivo o negativo) associa sempre

Dettagli

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando i

Dettagli

Esercizi sulla conversione tra unità di misura

Esercizi sulla conversione tra unità di misura Esercizi sulla conversione tra unità di misura Autore: Enrico Campanelli Prima stesura: Settembre 2013 Ultima revisione: Settembre 2013 Per segnalare errori o per osservazioni e suggerimenti di qualsiasi

Dettagli

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio ITCS Erasmo da Rotterdam Anno Scolastico 014/015 CLASSE 4^ M Costruzioni, ambiente e territorio INDICAZIONI PER IL LAVORO ESTIVO DI MATEMATICA e COMPLEMENTI di MATEMATICA GLI STUDENTI CON IL DEBITO FORMATIVO

Dettagli

Risolvere lo stesso problema ipotizzando che le scarpe siano vendute a 40 il paio e che gli scarponi siano venduti a 90 il paio.

Risolvere lo stesso problema ipotizzando che le scarpe siano vendute a 40 il paio e che gli scarponi siano venduti a 90 il paio. Problema 1 Un'industria calzaturiera produce scarpe da tennis che vende a 40 il paio e scarponi da trekking che vende a 50 il paio. Ogni paio di scarpe richiede 6 minuti di lavorazione a macchina e 5 minuti

Dettagli

V esercitazione di Matematica Finanziaria

V esercitazione di Matematica Finanziaria V esercitazione di Matematica Finanziaria Esercizio 1. Dato un debito S=6 000 euro, valutato secondo una legge di capitalizzazione esponenziale al tasso di interesse annuo i=4%, si calcola l importo della

Dettagli

Lezione 3: Il problema del consumatore: Il

Lezione 3: Il problema del consumatore: Il Corso di Economica Politica prof. Stefano Papa Lezione 3: Il problema del consumatore: Il vincolo di bilancio Facoltà di Economia Università di Roma La Sapienza Il problema del consumatore 2 Applichiamo

Dettagli

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A Scopo centrale, sia della teoria statistica che della economica, è proprio quello di esprimere ed analizzare le relazioni, esistenti tra le variabili statistiche ed economiche, che, in linguaggio matematico,

Dettagli

CAPITOLO 2. Rette e piani. y = 3x+1 y x+z = 0

CAPITOLO 2. Rette e piani. y = 3x+1 y x+z = 0 CAPITOLO Rette e piani Esercizio.1. Determinare l equazione parametrica e Cartesiana della retta del piano (a) Passante per i punti A(1,) e B( 1,). (b) Passante per il punto C(,) e parallela al vettore

Dettagli

PROBLEMI DI SCELTA dipendenti da due variabili d azione

PROBLEMI DI SCELTA dipendenti da due variabili d azione prof. Guida PROBLEMI DI SCELTA dipendenti da due variabili d azione in un problema di programmazione lineare, si ricorda che la funzione obiettivo z=f(x,y)=ax+by+c assume il suo valore massimo (o minimo)

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

METODI DI CONVERSIONE FRA MISURE

METODI DI CONVERSIONE FRA MISURE METODI DI CONVERSIONE FRA MISURE Un problema molto frequente e delicato da risolvere è la conversione tra misure, già in parte introdotto a proposito delle conversioni tra multipli e sottomultipli delle

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

Riconoscere e formalizzare le dipendenze funzionali

Riconoscere e formalizzare le dipendenze funzionali Riconoscere e formalizzare le dipendenze funzionali Giorgio Ghelli 25 ottobre 2007 1 Riconoscere e formalizzare le dipendenze funzionali Non sempre è facile indiduare le dipendenze funzionali espresse

Dettagli

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI 2.13 ASINTOTI 44 Un "asintoto", per una funzione y = f( ), è una retta alla quale il grafico della funzione "si avvicina indefinitamente", "si avvicina di tanto quanto noi vogliamo", nel senso precisato

Dettagli

Massimi e minimi vincolati in R 2 - Esercizi svolti

Massimi e minimi vincolati in R 2 - Esercizi svolti Massimi e minimi vincolati in R 2 - Esercizi svolti Esercizio 1. Determinare i massimi e minimi assoluti della funzione f(x, y) = 2x + 3y vincolati alla curva di equazione x 4 + y 4 = 1. Esercizio 2. Determinare

Dettagli

Protocollo dei saperi imprescindibili Ordine di scuola: professionale

Protocollo dei saperi imprescindibili Ordine di scuola: professionale Protocollo dei saperi imprescindibili Ordine di scuola: professionale DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima servizi commerciali Utilizzare le tecniche e le procedure

Dettagli

Esercitazione n. 1 del 05/04/2016 Docente: Bruno Gobbi

Esercitazione n. 1 del 05/04/2016 Docente: Bruno Gobbi Esercitazione n. 1 del 05/04/2016 Docente: Bruno Gobbi CALCOLO COMBINATORIO DISPOSIZIONI PERMUTAZIONI COMBINAZIONI Probabilità Esercitazione n. 1 Pagina 1 1) In quanti modi 8 persone possono sedersi su

Dettagli

ˆp(1 ˆp) n 1 +n 2 totale di successi considerando i due gruppi come fossero uno solo e si costruisce z come segue ˆp 1 ˆp 2. n 1

ˆp(1 ˆp) n 1 +n 2 totale di successi considerando i due gruppi come fossero uno solo e si costruisce z come segue ˆp 1 ˆp 2. n 1 . Verifica di ipotesi: parte seconda.. Verifica di ipotesi per due campioni. Quando abbiamo due insiemi di dati possiamo chiederci, a seconda della loro natura, se i campioni sono simili oppure no. Ci

Dettagli

Università degli studi di Foggia SSIS D.M.85 2005 Laboratorio di didattica della matematica finanziaria Classe 17/A

Università degli studi di Foggia SSIS D.M.85 2005 Laboratorio di didattica della matematica finanziaria Classe 17/A Università degli studi di Foggia SSIS D.M.85 2005 Laboratorio di didattica della matematica finanziaria Classe 17/A Appunti sull utilizzo di Excel per la soluzione di problemi di matematica finanziaria.

Dettagli

FUNZIONI CONTINUE - ESERCIZI SVOLTI

FUNZIONI CONTINUE - ESERCIZI SVOLTI FUNZIONI CONTINUE - ESERCIZI SVOLTI 1) Verificare che x è continua in x 0 per ogni x 0 0 ) Verificare che 1 x 1 x 0 è continua in x 0 per ogni x 0 0 3) Disegnare il grafico e studiare i punti di discontinuità

Dettagli

ESERCITAZIONE 3 : PERCENTUALI

ESERCITAZIONE 3 : PERCENTUALI ESERCITAZIONE 3 : PERCENTUALI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Lunedi 14-17 Dipartimento di Matematica, piano terra, studio 114 22 Ottobre 2013 Esercizio 1 Nel 2006,

Dettagli

Lezione 3: Il problema del consumatore:

Lezione 3: Il problema del consumatore: Corso di Economica Politica prof. S.Papa Lezione 3: Il problema del consumatore: scelta ottimale Facoltà di Economia Università di Roma La Sapienza Lucidi liberamente tratti dai lucidi del prof. Rodano

Dettagli

Liceo Carducci Volterra - Classe 3 a B Scientifico - Prof. Francesco Daddi - 29 novembre 2010. d) la velocità con cui giunge a terra.

Liceo Carducci Volterra - Classe 3 a B Scientifico - Prof. Francesco Daddi - 29 novembre 2010. d) la velocità con cui giunge a terra. Liceo Carducci Volterra - Classe 3 a B Scientifico - Prof. Francesco Daddi - 9 novembre 010 Esercizi sul moto di caduta libera Esercizio 1. Una pallina da tennis viene lasciata cadere dal punto più alto

Dettagli

Funzione logaritmo con. funzione inversa della funzione di

Funzione logaritmo con. funzione inversa della funzione di FUNZIONE LOGARITMO a è la base della funzione logaritmo ed è una costante positiva fissata e diversa da 1 x è l argomento della funzione logaritmo e varia nel dominio Funzione logaritmo con funzione inversa

Dettagli

Navigazione Tattica. L intercettazione

Navigazione Tattica. L intercettazione Navigazione Tattica I problemi di navigazione tattica si distinguono in: Intercettazione, che riguarda lo studio delle procedure atte a raggiungere nel minor tempo possibile un aeromobile o un qualsiasi

Dettagli

Esercitazioni di Reti Logiche. Lezione 1 Rappresentazione dell'informazione. Zeynep KIZILTAN zkiziltan@deis.unibo.it

Esercitazioni di Reti Logiche. Lezione 1 Rappresentazione dell'informazione. Zeynep KIZILTAN zkiziltan@deis.unibo.it Esercitazioni di Reti Logiche Lezione 1 Rappresentazione dell'informazione Zeynep KIZILTAN zkiziltan@deis.unibo.it Introduzione Zeynep KIZILTAN Si pronuncia Z come la S di Rose altrimenti, si legge come

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

Matematica con il foglio di calcolo

Matematica con il foglio di calcolo Matematica con il foglio di calcolo Sottotitolo: Classe: V primaria Argomento: Numeri e operazioni Autore: Guido Gottardi, Alberto Battaini Introduzione: l uso del foglio di calcolo offre l opportunità

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenziali e logaritmi Corso di accompagnamento in matematica Lezione 4 Sommario 1 La funzione esponenziale Proprietà Grafico 2 La funzione logaritmo Grafico Proprietà 3 Equazioni / disequazioni esponenziali

Dettagli

Come gestire il Money Management nelle Opzioni Binarie

Come gestire il Money Management nelle Opzioni Binarie Come gestire il Money Management nelle Opzioni Binarie 1) La prima regola per guadagnare consiste nel non perdere denaro. Chi è in grado di non perdere il capitale di partenza è sicuramente in grado di

Dettagli

Metodi di Distanza. G.Allegrucci riproduzione vietata

Metodi di Distanza. G.Allegrucci riproduzione vietata Metodi di Distanza La misura più semplice della distanza tra due sequenze nucleotidiche è contare il numero di siti nucleotidici che differiscono tra le due sequenze Quando confrontiamo siti omologhi in

Dettagli

Esercizi sulle funzioni classi IV e V (indirizzo afm)

Esercizi sulle funzioni classi IV e V (indirizzo afm) (questi esercizi sono stati scelti da una dispensa del dipartimento di Matematica Applicata dell università di Venezia e adattati al programma che abbiamo svolto fino ad ora) Esercizi sulle funzioni classi

Dettagli

differiticerti.notebook November 25, 2010 nov 6 17.29 nov 6 17.36 nov 6 18.55 Problemi con effetti differiti

differiticerti.notebook November 25, 2010 nov 6 17.29 nov 6 17.36 nov 6 18.55 Problemi con effetti differiti Problemi con effetti differiti sono quelli per i quali tra il momento di sostentamento dei costi ed il momento di realizzo dei ricavi intercorre un certo lasso di tempo. Nei casi in cui il vantaggio è

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA DIPARTIMENTO DI INGEGNERIA IDRAULICA, MARITTIMA E GEOTECNICA

UNIVERSITA DEGLI STUDI DI PADOVA DIPARTIMENTO DI INGEGNERIA IDRAULICA, MARITTIMA E GEOTECNICA UNIVERSITA DEGLI STUDI DI PADOVA DIPARTIMENTO DI INGEGNERIA IDRAULICA, MARITTIMA E GEOTECNICA CORSO DI COSTRUZIONI IDRAULICHE A.A. 00-0 PROF. LUIGI DA DEPPO ING. NADIA URSINO ESERCITAZIONE N : Progetto

Dettagli

Calibrazione di modelli matematici

Calibrazione di modelli matematici Capitolo 4 Calibrazione di modelli matematici Supponiamo che siano disponibili conteggi o stime di una data popolazione in stagioni successive. Ad esempio, consideriamo i dati per la quantità di piante

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO A INDIRIZZO SPERIMENTALE (PNI)

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO A INDIRIZZO SPERIMENTALE (PNI) ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO A INDIRIZZO SPERIMENTALE (PNI) Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. Problema

Dettagli

1 Esercizi di Riepilogo sui piani di ammortamento

1 Esercizi di Riepilogo sui piani di ammortamento 1 Esercizi di Riepilogo sui piani di ammortamento 1. Un individuo riceve, al tempo t 0, in prestito la somma di euro S 60.000 da restituire con quattro rate semestrali posticipate R 1 ; R ; R 3 ; R 4.

Dettagli

OFFERTA DI LAVORO. p * C = M + w * L

OFFERTA DI LAVORO. p * C = M + w * L 1 OFFERTA DI LAVORO Supponiamo che il consumatore abbia inizialmente un reddito monetario M, sia che lavori o no: potrebbe trattarsi di un reddito da investimenti, di donazioni familiari, o altro. Definiamo

Dettagli

7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari

7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari 7 Esercizi e complementi di Elettrotecnica per allievi non elettrici Circuiti elementari Gli esercizi proposti in questa sezione hanno lo scopo di introdurre l allievo ad alcune tecniche, semplici e fondamentali,

Dettagli

Allenamento di matematica Simulazione di San Valentino Brescia - 12 febbraio 2016 Soluzioni commentate

Allenamento di matematica Simulazione di San Valentino Brescia - 12 febbraio 2016 Soluzioni commentate Allenamento di matematica Simulazione di San Valentino Brescia - febbraio 06 Soluzioni commentate. La lotteria di San Valentino. La probabilità di uscita di un multiplo di vale 8 probabilità richiesta

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y INTRODUZIONE Osserviamo, in primo luogo, che le funzioni logaritmiche sono della forma y = log a () con a costante positiva diversa da (il caso a = è banale per cui non sarà oggetto del nostro studio).

Dettagli

11) convenzioni sulla rappresentazione grafica delle soluzioni

11) convenzioni sulla rappresentazione grafica delle soluzioni 2 PARAGRAFI TRATTATI 1)La funzione esponenziale 2) grafici della funzione esponenziale 3) proprietá delle potenze 4) i logaritmi 5) grafici della funzione logaritmica 6) principali proprietá dei logaritmi

Dettagli

Lezione 2. Sommario. Il sistema binario. La differenza Analogico/Digitale Il sistema binario

Lezione 2. Sommario. Il sistema binario. La differenza Analogico/Digitale Il sistema binario Lezione 2 Il sistema binario Sommario La differenza Analogico/Digitale Il sistema binario 1 La conoscenza del mondo Per poter parlare (ed elaborare) degli oggetti (nella visione scientifica) si deve poter

Dettagli

Problemi di scelta ESEMPI

Problemi di scelta ESEMPI ESEMPI Risolvere i seguenti problemi 1. Una ditta deve effettuare delle spedizioni di un certo tipo di merce. Ha la possibilità di scegliere una o l altra delle due tariffe seguenti: a) 2.500 lire al quintale

Dettagli

Programmazione per competenze del corso Matematica, Quinto anno 2015-16

Programmazione per competenze del corso Matematica, Quinto anno 2015-16 Programmazione per competenze del corso Matematica, Quinto anno 2015-16 Competenze di aree Traguardi per lo sviluppo dellle competenze Abilità Conoscenze Individuare le principali proprietà di una - Individuare

Dettagli

VBA è un linguaggio di scripting derivato da Visual Basic, da cui prende il nome. Come ogni linguaggio ha le sue regole.

VBA è un linguaggio di scripting derivato da Visual Basic, da cui prende il nome. Come ogni linguaggio ha le sue regole. Excel VBA VBA Visual Basic for Application VBA è un linguaggio di scripting derivato da Visual Basic, da cui prende il nome. Come ogni linguaggio ha le sue regole. 2 Prima di iniziare. Che cos è una variabile?

Dettagli

GEOMETRIA ANALITICA. (*) ax+by+c=0 con a,b,c numeri reali che è detta equazione generale della retta.

GEOMETRIA ANALITICA. (*) ax+by+c=0 con a,b,c numeri reali che è detta equazione generale della retta. EQUAZIONE DELLA RETTA Teoria in sintesi GEOMETRIA ANALITICA Dati due punti A e B nel piano, essi individuano (univocamente) una retta. La retta è rappresentata da un equazione di primo grado in due variabili:

Dettagli

Liceo Classico Statale Dante Alighieri

Liceo Classico Statale Dante Alighieri Liceo Classico Statale Dante Alighieri via E. Q. Visconti, 13 - ROMA - PIANO ANNUALE DI LAVORO Anno scolastico 2015/16 Docente: Cristina Zeni Disciplina: MATEMATICA Classe: 4C Ore settimanali: 2 1. ANALISI

Dettagli

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI ISTITUTO PROFESSIONALE DI ENOGASTRONOMIA E OSPITALITA ALBERGHIERA CON I PERCORSI: ACCOGLIENZA TURISTICA, CUCINA, SALA-BAR ISTITUTO TECNICO PER IL TURISMO Sede Amministrativa:

Dettagli

Sistemi Web per il turismo - lezione 3 -

Sistemi Web per il turismo - lezione 3 - Sistemi Web per il turismo - lezione 3 - Software Si definisce software il complesso di comandi che fanno eseguire al computer delle operazioni. Il termine si contrappone ad hardware, che invece designa

Dettagli

PENSIONI MINIME E MAGGIORAZIONI 2013: ATTENZIONE AI REDDITI

PENSIONI MINIME E MAGGIORAZIONI 2013: ATTENZIONE AI REDDITI PENSIONI MINIME E MAGGIORAZIONI 2013: ATTENZIONE AI REDDITI Già da qualche anno sono stati cambiati i parametri con i quali i pensionati possono ottenere le prestazioni pensionistiche legate al reddito.

Dettagli

Macroeconomia. Equilibrio in Economia Aperta. Esercitazione del 27.04.2016 (+ soluzioni) (a cura della dott.ssa Gessica Vella)

Macroeconomia. Equilibrio in Economia Aperta. Esercitazione del 27.04.2016 (+ soluzioni) (a cura della dott.ssa Gessica Vella) Dipartimento di Economia, Statistica e Finanza Corso di Laurea in ECONOMIA Esercizio 1 Macroeconomia Equilibrio in Economia Aperta Esercitazione del 27.04.2016 (+ soluzioni) (a cura della dott.ssa Gessica

Dettagli

Diversamente dal caso precedente, che si concentrava sullo schema della trave appoggiata, affrontiamo ora il dimensionamento di una trave a sbalzo.

Diversamente dal caso precedente, che si concentrava sullo schema della trave appoggiata, affrontiamo ora il dimensionamento di una trave a sbalzo. Come nell esercitazione precedente cerchiamo di dimensionare una trave, per la quale sono state scelte 3 soluzioni tipologiche: legno, acciaio e cemento armato. Diversamente dal caso precedente, che si

Dettagli

0.1 Esercizi calcolo combinatorio

0.1 Esercizi calcolo combinatorio 0.1 Esercizi calcolo combinatorio Esercizio 1. Sia T l insieme dei primi 100 numeri naturali. Calcolare: 1. Il numero di sottoinsiemi A di T che contengono esattamente 8 pari.. Il numero di coppie (A,

Dettagli

MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI. Anna TORRE

MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI. Anna TORRE MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI Anna TORRE Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy. E-mail: anna.torre@unipv.it 1 GIOCHI

Dettagli

Capitolo 5. Funzioni. Grafici.

Capitolo 5. Funzioni. Grafici. Capitolo 5 Funzioni. Grafici. Definizione: Una funzione f di una variabile reale,, è una corrispondenza che associa ad ogni numero reale appartenente ad un insieme D f R un unico numero reale, y R, denotato

Dettagli

Geometria Superiore Esercizi 1 (da consegnare entro... )

Geometria Superiore Esercizi 1 (da consegnare entro... ) Geometria Superiore Esercizi 1 (da consegnare entro... ) In questi esercizi analizziamo il concetto di paracompattezza per uno spazio topologico e vediamo come questo implichi l esistenza di partizioni

Dettagli

AREA LOGICO - MATEMATICA TEMA PARI E DISPARI

AREA LOGICO - MATEMATICA TEMA PARI E DISPARI ESTENSIONE DEL METODO BRIGHT START UNITA COGNITIVE DI RIFERIMENTO RELAZIONI QUANTITATIVE CONFRONTI CLASSE SECONDA A TEMPO PIENO- SCUOLA ELEMENTARE C. CAVOUR SANTENA AREA LOGICO - MATEMATICA TEMA PARI E

Dettagli

VALORE PIÙ CONVENIENTE DEL RENDIMENTO

VALORE PIÙ CONVENIENTE DEL RENDIMENTO VALORE PIÙ CONVENIENTE DEL RENDIENTO In una macchina elettrica ad un rendimento più elevato corrisponde un minor valore delle perdite e quindi un risparmio nelle spese di esercizio (in quanto minori risultano

Dettagli

Introduzione alle macchine a stati (non definitivo)

Introduzione alle macchine a stati (non definitivo) Introduzione alle macchine a stati (non definitivo) - Introduzione Il modo migliore per affrontare un problema di automazione industriale (anche non particolarmente complesso) consiste nel dividerlo in

Dettagli

Syllabus: argomenti di Matematica delle prove di valutazione

Syllabus: argomenti di Matematica delle prove di valutazione Syllabus: argomenti di Matematica delle prove di valutazione abcdef... ABC (senza calcolatrici, senza palmari, senza telefonini... ) Gli Argomenti A. Numeri frazioni e numeri decimali massimo comun divisore,

Dettagli

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4.0. Esponenziale. Nella prima sezione abbiamo definito le potenze con esponente reale. Vediamo ora in dettaglio le proprietà della funzione esponenziale a,

Dettagli

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA DEFINIZIONE: Dato un numero reale a che sia a > 0 e a si definisce funzione esponenziale f(x) = a x la relazione che ad ogni valore di x associa uno e un solo

Dettagli

FUNZIONI ESPONENZIALE E LOGARITMICA

FUNZIONI ESPONENZIALE E LOGARITMICA FUNZIONI ESPONENZIALE E LOGARITMICA Le potenze con esponente reale La potenza a x di un numero reale a è definita se a>0 per ogni x R se a=0 per tutti e soli i numeri reali positivi ( x R + ) se a

Dettagli

LA MOLE LA MOLE 2.A PRE-REQUISITI 2.3 FORMULE E COMPOSIZIONE 2.B PRE-TEST

LA MOLE LA MOLE 2.A PRE-REQUISITI 2.3 FORMULE E COMPOSIZIONE 2.B PRE-TEST LA MOLE 2.A PRE-REQUISITI 2.B PRE-TEST 2.C OBIETTIVI 2.1 QUANTO PESA UN ATOMO? 2.1.1 L IDEA DI MASSA RELATIVA 2.1.2 MASSA ATOMICA RELATIVA 2.2.4 ESERCIZI SVOLTI 2.3 FORMULE E COMPOSIZIONE 2.4 DETERMINAZIONE

Dettagli

1 Portofoglio autofinanziante

1 Portofoglio autofinanziante 1 Portofoglio autofinanziante Supponiamo che l evoluzione del titolo A 1 sia S 1 t) e l evoluzione del titolo A sia S t). Supponiamo che al tempo 0 io abbia una somma X0) che voglio investire parte in

Dettagli

ELEMENTI DI ANALISI SPETTRALE 1 I DUE DOMINI

ELEMENTI DI ANALISI SPETTRALE 1 I DUE DOMINI Lezioni di Fisica della Terra Solida, Università di Chieti, a.a. 999/. Docente A. De Santis ELEMENTI DI ANALISI SPETTRALE I DUE DOMINI È spesso utile pensare alle unzioni ed alle loro trasormate di Fourier

Dettagli

La disposizione estetica della lettera commerciale

La disposizione estetica della lettera commerciale La disposizione estetica della lettera commerciale Gli elementi costitutivi della lettera commerciale vengono disposti sul foglio secondo stili diversi: ogni a- zienda, infatti, caratterizza la sua immagine

Dettagli

Lezioni di Economia Aziendale classe prima Prof. Monica Masoch ESERCIZI SUL CALCOLO %

Lezioni di Economia Aziendale classe prima Prof. Monica Masoch ESERCIZI SUL CALCOLO % Lezioni di Economia Aziendale classe prima Prof. Monica Masoch ESERCIZI SUL CALCOLO % 1 U.D. 1 CALCOLI PERCENTUALI A PPLICATI A LLE A ZIENDE SVOLGIMENTO DEGLI ESERCIZI I passaggi per impostare e risolvere

Dettagli

Lezione 12 Argomenti

Lezione 12 Argomenti Lezione 12 Argomenti Costi di produzione: differenza tra costo economico e costo contabile I costi nel breve periodo Relazione di breve periodo tra funzione di produzione, produttività del lavoro e costi

Dettagli

Le funzioni elementari. Corsi di Laurea in Tecniche di Radiologia... A.A. 2010-2011 - Analisi Matematica - Le funzioni elementari - p.

Le funzioni elementari. Corsi di Laurea in Tecniche di Radiologia... A.A. 2010-2011 - Analisi Matematica - Le funzioni elementari - p. Le funzioni elementari Corsi di Laurea in Tecniche di Radiologia... A.A. 200-20 - Analisi Matematica - Le funzioni elementari - p. /43 Funzioni lineari e affini Potenze ad esponente naturale Confronto

Dettagli

Introduzione alla programmazione lineare. Mauro Pagliacci

Introduzione alla programmazione lineare. Mauro Pagliacci Introduzione alla programmazione lineare Mauro Pagliacci c Draft date 25 maggio 2010 Premessa In questo fascicolo sono riportati gli appunti dalle lezioni del corso di Elaborazioni automatica dei dati

Dettagli

ESAME DI STATO. SIMULAZIONE PROVA NAZIONALE Scuola Secondaria di I grado Classe Terza. Prova 3. Anno Scolastico 20. - 20. Classe:... Data:...

ESAME DI STATO. SIMULAZIONE PROVA NAZIONALE Scuola Secondaria di I grado Classe Terza. Prova 3. Anno Scolastico 20. - 20. Classe:... Data:... Prova Nazionale di Matematica: Simulazioni - a cura di M. Zarattini Prova ESAME DI STATO Anno Scolastico 0. - 0. SIMULAZIONE PROVA NAZIONALE Scuola Secondaria di I grado Classe Terza Classe:... Data:...

Dettagli

Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique.

Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti verticali Sia 0 punto di accumulazione per dom(f). La retta = 0 è

Dettagli

G1. Generalità sulle funzioni

G1. Generalità sulle funzioni G. Generalità sulle funzioni G. Notazioni utilizzate Dati due numeri detti estremi dell intervallo, l intervallo è l insieme dei numeri reali compresi tra essi. Per esempio con la notazione

Dettagli

Unità di misura di lunghezza usate in astronomia

Unità di misura di lunghezza usate in astronomia Unità di misura di lunghezza usate in astronomia In astronomia si usano unità di lunghezza un po diverse da quelle che abbiamo finora utilizzato; ciò è dovuto alle enormi distanze che separano gli oggetti

Dettagli

Che cosa sanno fare i bambini?

Che cosa sanno fare i bambini? Che cosa sanno fare i bambini? livello A1 cl. 3 a, 4 a, 5 a di Maria Frigo Siamo in classe con i nuovi alunni che non parlano ancora l italiano. Per conoscerli e per cominciare a fare scuola insieme è

Dettagli

Le funzioni elementari. La struttura di R. Sottrazione e divisione

Le funzioni elementari. La struttura di R. Sottrazione e divisione Le funzioni elementari La struttura di R La struttura di R è definita dalle operazioni Addizione e moltiplicazione. Proprietà: Commutativa Associativa Distributiva dell addizione rispetto alla moltiplicazione

Dettagli

Analisi. Calcolo Combinatorio. Ing. Ivano Coccorullo

Analisi. Calcolo Combinatorio. Ing. Ivano Coccorullo Analisi Ing. Ivano Coccorullo Prof. Ivano Coccorullo ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli possibili. Quando le situazioni diventano

Dettagli

DEPRESSIONE DEPRESSIONE

DEPRESSIONE DEPRESSIONE Ognuno Combatte Come una battaglia Contro tutto Contro tutti Ma non sempre Si riesce A combattere Questa battaglia Nel modo giusto E con il vigore giusto Spesso Ci si trova di fronte A qualcosa Che non

Dettagli

SEGNALE WIFI PRIETTATO A LUNGHE DISTANZE COSTRUIAMO L ANTENNA A BARATTOLO O CANTENNA

SEGNALE WIFI PRIETTATO A LUNGHE DISTANZE COSTRUIAMO L ANTENNA A BARATTOLO O CANTENNA SEGNALE WIFI PRIETTATO A LUNGHE DISTANZE COSTRUIAMO L ANTENNA A BARATTOLO O CANTENNA Opera a cura di Linus sotto Licenza - Introduzione La cosiddetta antenna a barattolo, nota anche come cantenna, è una

Dettagli

I Bistabili. Maurizio Palesi. Maurizio Palesi 1

I Bistabili. Maurizio Palesi. Maurizio Palesi 1 I Bistabili Maurizio Palesi Maurizio Palesi 1 Sistemi digitali Si possono distinguere due classi di sistemi digitali Sistemi combinatori Il valore delle uscite al generico istante t* dipende solo dal valore

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 00- P.Baldi Lista di esercizi. Corso di Laurea in Biotecnologie Esercizio Si sa che in una schedina del totocalcio i tre simboli, X, compaiono con

Dettagli

CAPITOLO V. DATABASE: Il modello relazionale

CAPITOLO V. DATABASE: Il modello relazionale CAPITOLO V DATABASE: Il modello relazionale Il modello relazionale offre una rappresentazione matematica dei dati basata sul concetto di relazione normalizzata. I principi del modello relazionale furono

Dettagli

Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio

Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo Calcolo Combinatorio Calcolo Combinatorio ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIDI DI MTEMTI U.M.I. UNIONE MTEMTI ITLIN MINISTERO DELL PULI ISTRUZIONE SUOL NORMLE SUPERIORE IGiochidirchimede--Soluzionibiennio 18 novembre 2009 Griglia delle risposte corrette Problema

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 16 febbraio 2016 - Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 16 febbraio 2016 - Soluzioni compito 1 ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 6 febbraio 206 - Soluzioni compito E Calcolare, usando i metodi della variabile complessa, il seguente integrale

Dettagli

Insegnare relatività. nel XXI secolo

Insegnare relatività. nel XXI secolo Insegnare relatività nel XXI secolo E s p a n s i o n e d e l l ' U n i v e r s o e l e g g e d i H u b b l e La legge di Hubble Studiando distanze e moto delle galassie si trova che quelle più vicine

Dettagli

Il primo principio della termodinamica

Il primo principio della termodinamica 1 Il primo principio della termodinamica Il primo principio della termodinamica Nelle lezioni precedenti abbiamo visto che per far innalzare la temperatura di un sistema vi sono due possibilità: fornendo

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elementi di matematica finanziaria 1. Percentuale Si dice percentuale di una somma di denaro o di un altra grandezza, una parte di questa, calcolata in base ad un tanto per cento, che si chiama tasso percentuale.

Dettagli

7 Disegni sperimentali ad un solo fattore. Giulio Vidotto Raffaele Cioffi

7 Disegni sperimentali ad un solo fattore. Giulio Vidotto Raffaele Cioffi 7 Disegni sperimentali ad un solo fattore Giulio Vidotto Raffaele Cioffi Indice: 7.1 Veri esperimenti 7.2 Fattori livelli condizioni e trattamenti 7.3 Alcuni disegni sperimentali da evitare 7.4 Elementi

Dettagli

Esercitazione # 6. a) Fissato il livello di significatività al 5% si tragga una conclusione circa l opportunità di avviare la campagna comparativa.

Esercitazione # 6. a) Fissato il livello di significatività al 5% si tragga una conclusione circa l opportunità di avviare la campagna comparativa. Statistica Matematica A Esercitazione # 6 DUE MEDIE CON VARIANZE NOTE: Esercizio # Le ditte A e B producono sfere luminose. Una volta attivata la reazione chimica che rende luminosa una di queste sfere,

Dettagli

NUMERI COMPLESSI. Test di autovalutazione

NUMERI COMPLESSI. Test di autovalutazione NUMERI COMPLESSI Test di autovalutazione 1. Se due numeri complessi z 1 e z 2 sono rappresentati nel piano di Gauss da due punti simmetrici rispetto all origine: (a) sono le radici quadrate di uno stesso

Dettagli

7 giorni 30 giorni 365 giorni

7 giorni 30 giorni 365 giorni Budini, torte, biscotti 7 coppie e un gruppo da tre Tutte le coppie calcolano esattamente i litri di latte necessari per le torte e per i budini. Per i biscotti (2,5 litri di latte al giorno) si hanno

Dettagli

Esercitazioni di statistica

Esercitazioni di statistica Esercitazioni di statistica Misure di associazione: Indipendenza assoluta e in media Stefania Spina Universitá di Napoli Federico II stefania.spina@unina.it 22 ottobre 2014 Stefania Spina Esercitazioni

Dettagli

Regola del partitore di tensione

Regola del partitore di tensione Regola del partitore di tensione Se conosciamo la tensione ai capi di una serie di resistenze e i valori delle resistenze stesse, è possibile calcolare la caduta di tensione ai capi di ciascuna R resistenza,

Dettagli

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei

Dettagli