Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale"

Transcript

1 Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale di Francesco Maria Milizia Model Checking vuol dire cercare di stabilire se una formula è vera in un modello L idea di base è applicare i meccanismi del Model Checking per generare piani Scopo ultimo di questo approccio è trovare efficientemente piani in domini non deterministici Concetti fondamentali Modello semantico del domino di interesse Proprietà del dominio rappresentate come formule logiche Determinare tramite Model Checking che il dominio soddisfi le proprietà desiderate Rappresentazione del dominio Una Kripke Structure K è una quadrupla <W,W 0,T,L> dove: W è un insieme finito di stati W 0 è un insieme di stati iniziali T W W indica una relazione totale di transizione tra stati L : W 2 P èuna funzione che assegna ad ogni stato un insieme di proposizioni atomiche e P èl insieme di tutte le proposizioni. Rappresentazione delle proprietà Le proprietà di un dominio possono valere o no, a seconda del momento preso in esame Diventa necessario l uso di una logica adatta: Computation Tree Logic Model Checking vuol dire quindi stabilire se una formula CTL p è vera in K Problemi di Pianificazione Un dominio non deterministico di pianificazione D è descritto da una quadrupla <F,S,A,R> dove: F è un insieme finito di fluenti S 2 F è un insieme finito di stati A è un insieme finito di azioni R S A S è una relazione di transizione Si noti che R è una relazione e non una funzione 1

2 Problemi e Kripke Structures Un problema di pianificazione è descritto con una tripla <D,I,G> dove D è il dominio di interesse I S è l insieme degli stati iniziali G S è l insieme degli stati finali SI utilizzano le Kripke Structure per rappresentare i domini dei problemi F=P S=W A={a} R={(s,a,s ): (s,s ) T} I=W 0 Esempio 2 Shakera Kripke Structure W={1,2,3,4,5} W 0 ={1} T={(1,2),(1,3),(2,4),(3,4),(5,4)} L(1) {vuoto}, L(2) {vodka}, L(3) {succo}, L(4) {vodka, succo}, L(5) {screwdriver} Dominio di pianificazione F ={vodka, succo, shakerato} S ={{ vodka, succo, shakerato}, {vodka, succo, shakerato}, { vodka, succo, shakerato}, {vodka, succo, shakerato}, {vodka, succo, shakerato} } A ={VersaVodka, VersaSucco, Shakera} R ={({ vodka, succo, shakerato}, VersaVodka, {vodka, succo, shakerato}), ({ vodka, succo, shakerato}, VersaSucco, { vodka, succo, shakerato}), ({vodka, succo, shakerato}, VersaSucco, {vodka, succo, shakerato}), ({ vodka, succo, shakerato}, VersaVodka, {vodka, succo, shakerato}), ({vodka, succo, shakerato},shakera, {vodka, succo, shakerato})} Semplice algoritmo 1. function PLAN(P) 2. CurrentStates := ; 3. NextStates := G; 4. Plan := ; 5. while (NextStates CurrentStates) do 6. If I NextStates 7. then return Plan; 8. OneStepPlan := OneStepPlan(NextStates,D); 9. Plan := Plan PruneStates(OneStepPlan,NextStates); 10. CurrentStates := NextStates; 11. NextStates := NextStates ProjectActions(OneStepPlan); 12. return fail; Correttezza Completezza Ottimalità Caratteristiche di PLAN In contesti non deterministici genera piani deboli 2

3 Estensione non deterministica Tipi di piani shakera Shakera Piani classici : sequenze di azioni Piani quasi-classici : coppie stato-azione Piani robusti : garantiscono sempre il raggiungimento del Goal Piani deboli : in domini non deterministici non garantiscono il raggiungimento del Goal Rappresentazione Simbolica Stati, transizioni e piani vengono rappresentati con formule logiche Ad ogni fluente in F associamo una variabile booleana x i. Ogni sottoinsieme di S è rappresentato da un vettore X. Ad ogni azione in A associamo una variabile booleana a i. Ad ogni transizione in R associamo una formula R(X, a i, X ). Proprietà della rappresentazione Simbolica Stati e transizioni rappresentati in modo molto compatto Il numero di variabili in una formula non dipende dal numero di stati o dalle transizioni che rappresenta Può essere implementata con OBDD Implementazione basata su OBDD Ordered Binary Decision Diagrams Le formule logiche vengono rappresentate tramite Grafi Orientati Aciclici Ogni nodo corrisponde ad una variabile. Ogni nodo n ha due archi uscenti, low(n) e high(n), che corrispondono alle assegnazioni della variabile. Ogni OBDD ha uno o due nodi foglia etichettati con 1 o 0 (verità o falsità) Costruzione di un OBDD Con i nodi e gli archi descritti viene costruito un albero binario che rappresenti la formula logica (l albero è equivalente alla tabella di verità della formula) Ogni percorso dalla radice ad una foglia deve vedere le variabili nello stesso ordine Si applicano finché è possibile tre regole di trasformazione 3

4 Eliminazione dei nodi foglia duplicati Viene mantenuto solo un nodo foglia per ogni valore (0 o 1). Tutti gli archi che puntavano alle foglie vengono indirizzati a questi. Eliminazione dei nodi duplicati Se due nodi u e v rappresentano la stessa variabile e low(u)=low(v) e high(u)=high(v), allora vengono fusi in un unico nodo Eliminazione dei test ridondanti Se un nodo n ha low(n)=high(n) allora n viene eliminato e tutti gli archi entranti vengono indirizzati a low(n) La procedura di costruzione può essere effettuata in modalità bottom-up in tempo lineare nella dimensione dell albero iniziale Uso degli OBDD Ogni formula nella rappresentazione simbolica (stati e transizioni) viene trasformata in un OBDD. Operatori quali l unione e l intersezione possono essere implementati direttamente sugli OBDD in modo molto efficiente Gli OBDD mantengono tutte le proprietà della rappresentazione simbolica Esplosione degli stati In domini complessi il numero di stati (e quindi dei nodi) può essere troppo grosso Il numero dei nodi dipende fortemente dall ordinamento delle variabili Nasce la necessità di trovare algoritmi di ordinamento che minimizzino il numero di nodi per un OBDD Esempio : comparatore a n bit n=2 (a 1 b 1 ) (a 2 b 2 ) Albero iniziale (BDT) Esempio : comparatore a n bit n=2 a 1 < < a n < b 1 < < b n a 1 < b 1 < < a n < b n Ordinamento di un OBDD Sono state sviluppate diverse euristiche per trovare un buon ordinamento delle variabili (quando esiste) per un OBDD Intuizione: un ordinamento dove le variabili strettamente collegate sono vicine dà risultati migliori Rappresentazione della formula tramite circuiti combinatori e visita in ampiezza del circuito Ordinamento dinamico (Algoritmo di Sifting) 4

5 Ordinamento dinamico Nella pianificazione tramite Model Checking l ordinamento dinamico è quello che si presta meglio poiché le descrizioni degli stati, o gli insiemi degli stati raggiungbili o altre proprietà del dominio possono cambiare durante la computazione. Estensioni dell algoritmo di Sifting: Block Restricted Sifting, Sample Sifting 5

Problemi di soddisfacimento di vincoli. Formulazione di problemi CSP. Colorazione di una mappa. Altri problemi

Problemi di soddisfacimento di vincoli. Formulazione di problemi CSP. Colorazione di una mappa. Altri problemi Problemi di soddisfacimento di vincoli Maria Simi a.a. 2014/2015 Problemi di soddisfacimento di vincoli (CSP) Sono problemi con una struttura particolare, per cui conviene pensare ad algoritmi specializzati

Dettagli

Indice. 4 CTL 37 4.1 Introduzione... 37

Indice. 4 CTL 37 4.1 Introduzione... 37 Indice 1 Introduzione 3 1.1 Verifica di sistemi......................... 3 1.2 Metodi formali.......................... 4 1.2.1 Simulazione........................ 4 1.2.2 Testing..........................

Dettagli

Ambienti più realistici. Ricerca online. Azioni non deterministiche L aspirapolvere imprevedibile. Soluzioni più complesse. Alberi di ricerca AND-OR

Ambienti più realistici. Ricerca online. Azioni non deterministiche L aspirapolvere imprevedibile. Soluzioni più complesse. Alberi di ricerca AND-OR Ambienti più realistici Ricerca online Maria Simi a.a. 2011/2012 Gli agenti risolutori di problemi classici assumono: Ambienti completamente osservabili e deterministici il piano generato può essere generato

Dettagli

Università degli Studi di Napoli Federico II. Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica

Università degli Studi di Napoli Federico II. Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Università degli Studi di Napoli Federico II Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Anno Accademico 2009/2010 Appunti di Calcolabilità e Complessità Lezione 9: Introduzione alle logiche

Dettagli

Ragionamento Automatico Model checking. Lezione 12 Ragionamento Automatico Carlucci Aiello, 2004/05Lezione 12 0. Sommario. Formulazione del problema

Ragionamento Automatico Model checking. Lezione 12 Ragionamento Automatico Carlucci Aiello, 2004/05Lezione 12 0. Sommario. Formulazione del problema Sommario Ragionamento Automatico Model checking Capitolo 3 paragrafo 6 del libro di M. Huth e M. Ryan: Logic in Computer Science: Modelling and reasoning about systems (Second Edition) Cambridge University

Dettagli

Intelligenza Artificiale. Metodi di ricerca

Intelligenza Artificiale. Metodi di ricerca Intelligenza Artificiale Metodi di ricerca Marco Piastra Metodi di ricerca - 1 Ricerca nello spazio degli stati (disegno di J.C. Latombe) I nodi rappresentano uno stato Gli archi (orientati) una transizione

Dettagli

STRUTTURE NON LINEARI

STRUTTURE NON LINEARI PR1 Lezione 13: STRUTTURE NON LINEARI Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi Per la realizzazione della presentazione è stato utilizzato in parte materiale didattico prodotto da Oronzo

Dettagli

Ricorsione in SQL-99. Introduzione. Idea di base

Ricorsione in SQL-99. Introduzione. Idea di base Ricorsione in SQL-99 Introduzione In SQL2 non è possibile definire interrogazioni che facciano uso della ricorsione Esempio Voli(lineaAerea, da, a, parte, arriva) non è possibile esprimere l interrogazione

Dettagli

Intelligenza Artificiale

Intelligenza Artificiale Intelligenza Artificiale Esercizi e Domande di Esame Tecniche di Ricerca e Pianificazione Esercizi Griglia Si consideri un ambiente costituito da una griglia n n in cui si muove un agente che può spostarsi

Dettagli

Testing: basato su analisi dinamica del codice. Metodi Formali: basato su analisi statica del codice.

Testing: basato su analisi dinamica del codice. Metodi Formali: basato su analisi statica del codice. Convalida: attività volta ad assicurare che il SW sia conforme ai requisiti dell utente. Verifica: attività volta ad assicurare che il SW sia conforme alle specifiche dell analista. Goal: determinare malfunzionamenti/anomalie/errori

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

Algoritmi e strutture dati. Codici di Huffman

Algoritmi e strutture dati. Codici di Huffman Algoritmi e strutture dati Codici di Huffman Memorizzazione dei dati Quando un file viene memorizzato, esso va memorizzato in qualche formato binario Modo più semplice: memorizzare il codice ASCII per

Dettagli

Semantica dei programmi. La semantica dei programmi è la caratterizzazione matematica dei possibili comportamenti di un programma.

Semantica dei programmi. La semantica dei programmi è la caratterizzazione matematica dei possibili comportamenti di un programma. Semantica dei programmi La semantica dei programmi è la caratterizzazione matematica dei possibili comportamenti di un programma. Semantica operazionale: associa ad ogni programma la sequenza delle sue

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

FONDAMENTI DI INTELLIGENZA ARTIFICIALE (8 CFU)

FONDAMENTI DI INTELLIGENZA ARTIFICIALE (8 CFU) FONDAMENTI DI INTELLIGENZA ARTIFICIALE (8 CFU) 13 Febbraio 2015 Tempo a disposizione: 2 h Risultato: 32/32 punti Esercizio 1 (punti 6) Si esprimano in logica dei predicati del I ordine le seguenti frasi:

Dettagli

La programmazione con vincoli in breve. La programmazione con vincoli in breve

La programmazione con vincoli in breve. La programmazione con vincoli in breve Obbiettivi Introdurre la nozione di equivalenza di CSP. Dare una introduzione intuitiva dei metodi generali per la programmazione con vincoli. Introdurre il framework di base per la programmazione con

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona

Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona e e Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario e ed implementazione in Java Visita di un grafo e e Concetti di base Struttura

Dettagli

INFORMATICA GENERALE Prof. Alberto Postiglione Dipartimento Scienze della Comunicazione Università degli Studi di Salerno

INFORMATICA GENERALE Prof. Alberto Postiglione Dipartimento Scienze della Comunicazione Università degli Studi di Salerno INFORMATICA GENERALE Prof. Alberto Postiglione Dipartimento Scienze della Comunicazione Università degli Studi di Salerno UD 3.1b: Costrutti di un Algoritmo Dispense 1.2 I Costrutti di base 13 apr 2010

Dettagli

Il Metodo Branch and Bound

Il Metodo Branch and Bound Il Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 4 Novembre 2014 Ricerca Operativa 2 Laurea Magistrale in Ingegneria Gestionale

Dettagli

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni.

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. Albero semantico Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. A differenza dell albero sintattico (che analizza la formula da un punto di vista puramente

Dettagli

Idee guida. Finite State Machine (1) Un automa a stati finiti è definito da una 5- pla: FSM = , dove: Finite State Machine (2)

Idee guida. Finite State Machine (1) Un automa a stati finiti è definito da una 5- pla: FSM = <Q,,, q0, F>, dove: Finite State Machine (2) Idee guida ASM = FSM con stati generalizzati Le ASM rappresentano la forma matematica di Macchine Astratte che estendono la nozione di Finite State Machine Ground Model (descrizioni formali) Raffinamenti

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Progetto e analisi di algoritmi

Progetto e analisi di algoritmi Progetto e analisi di algoritmi Roberto Cordone DTI - Università degli Studi di Milano Polo Didattico e di Ricerca di Crema Tel. 0373 / 898089 E-mail: cordone@dti.unimi.it Ricevimento: su appuntamento

Dettagli

Automi. Sono così esempi di automi una lavatrice, un distributore automatico di bibite, un interruttore, una calcolatrice tascabile,...

Automi. Sono così esempi di automi una lavatrice, un distributore automatico di bibite, un interruttore, una calcolatrice tascabile,... Automi Con il termine automa 1 s intende un qualunque dispositivo o un suo modello, un qualunque oggetto, che esegue da se stesso un particolare compito, sulla base degli stimoli od ordini ricevuti detti

Dettagli

FONDAMENTI DI INTELLIGENZA ARTIFICIALE 1 parte (6 CFU) 12 Luglio 2012 Tempo a disposizione: 2 h Risultato: 32/32 punti

FONDAMENTI DI INTELLIGENZA ARTIFICIALE 1 parte (6 CFU) 12 Luglio 2012 Tempo a disposizione: 2 h Risultato: 32/32 punti FONDAMENTI DI INTELLIGENZA ARTIFICIALE 1 parte (6 CFU) 12 Luglio 2012 Tempo a disposizione: 2 h Risultato: 32/32 punti Esercizio 1 (7 punti) Si formalizzi in logica dei predicati del primo ordine la seguente

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

Esercizi Capitolo 6 - Alberi binari di ricerca

Esercizi Capitolo 6 - Alberi binari di ricerca Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 23 settembre 200 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile

Dettagli

Tipologie di macchine di Turing

Tipologie di macchine di Turing Tipologie di macchine di Turing - Macchina di Turing standard - Macchina di Turing con un nastro illimitato in una sola direzione - Macchina di Turing multinastro - Macchina di Turing non deterministica

Dettagli

Esercizi di Metodi e Modelli per l Ingegneria del Software

Esercizi di Metodi e Modelli per l Ingegneria del Software Esercizi di Metodi e Modelli per l Ingegneria del Software May 26, 2010 NOTA: Quanto segue sono esempi di esercizi che non devono essere considerati esaustivi: altri esercizi sono ovviamente possibili

Dettagli

Alberi binari di ricerca

Alberi binari di ricerca Alberi binari di ricerca Definizione Visita dell albero inorder Ricerca Ricerca minimo, massimo e successore. Inserimento ed eliminazione di un nodo Problema del bilanciamento dell albero Albero binario

Dettagli

Intelligenza Artificiale. Lezione 23. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 0

Intelligenza Artificiale. Lezione 23. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 0 Intelligenza Artificiale Lezione 23 Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 0 Azioni e cambiamento Il calcolo delle situazioni Pianificazione Deduttiva (Capitolo 11 delle dispense, 7.6

Dettagli

Ricerca non informata in uno spazio di stati

Ricerca non informata in uno spazio di stati Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A5_2 V2.4 Ricerca non informata in uno spazio di stati Il contenuto del documento è liberamente utilizzabile dagli

Dettagli

2) Codici univocamente decifrabili e codici a prefisso.

2) Codici univocamente decifrabili e codici a prefisso. Argomenti della Lezione ) Codici di sorgente 2) Codici univocamente decifrabili e codici a prefisso. 3) Disuguaglianza di Kraft 4) Primo Teorema di Shannon 5) Codifica di Huffman Codifica di sorgente Il

Dettagli

Lezione 8. La macchina universale

Lezione 8. La macchina universale Lezione 8 Algoritmi La macchina universale Un elaboratore o computer è una macchina digitale, elettronica, automatica capace di effettuare trasformazioni o elaborazioni su i dati digitale= l informazione

Dettagli

Test del Software. Definizione SCOPO LIMITI DEL TEST

Test del Software. Definizione SCOPO LIMITI DEL TEST Definizione! Verifica dinamica del comportamento del software rispetto a quello atteso, utilizzando un insieme finito di casi di test, appropriatamente selezionati nel dominio di tutti i casi possibili

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica

Dettagli

Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente.

Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente. Ricorsione Funzioni ricorsive Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente. Un esempio di funzione ricorsiva

Dettagli

Intelligenza Artificiale. Lezione 14. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 14 0

Intelligenza Artificiale. Lezione 14. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 14 0 Intelligenza Artificiale Lezione 14 Intelligenza Artificiale Daniele Nardi, 2003 Lezione 14 0 Sommario Russell & Norvig Capitolo 4, Paragrafi 3 4 IDA* SMA* Ricerca Hill-climbing Simulated annealing Intelligenza

Dettagli

Laboratorio di architettura degli elaboratori Progetto finale AA 2005/2006

Laboratorio di architettura degli elaboratori Progetto finale AA 2005/2006 Laboratorio di architettura degli elaboratori Progetto finale AA 2005/2006 Esercizio 1 - Heapsort Si consideri la seguente struttura dati, chiamata heap. Essa è un albero binario semi-completo (ossia un

Dettagli

Sintesi di Reti Sequenziali Sincrone

Sintesi di Reti Sequenziali Sincrone LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 9 Prof. Rosario Cerbone rosario.cerbone@uniparthenope.it a.a. 2007-2008 http://digilander.libero.it/rosario.cerbone Sintesi di Reti Sequenziali Sincrone

Dettagli

Intelligenza Artificiale Ing. Tiziano Papini

Intelligenza Artificiale Ing. Tiziano Papini Intelligenza Artificiale Ing. Tiziano Papini Email: papinit@dii.unisi.it Web: http://www.dii.unisi.it/~papinit Constraint Satisfaction metodi costruttivi Intelligenza Artificiale - CSP Tiziano Papini -

Dettagli

Introduzione ai problemi NP-completi

Introduzione ai problemi NP-completi Corso di Algoritmi e Strutture Dati Introduzione ai problemi NP-completi Nuova versione del capitolo 13 delle dispense (basata sui modelli non deterministici) Anno accademico 2007/2008 Corso di laurea

Dettagli

Dimensionamento dei lotti di produzione: il caso con variabilità nota

Dimensionamento dei lotti di produzione: il caso con variabilità nota Dimensionamento dei lotti di produzione: il caso con variabilità nota A. Agnetis In questi appunti studieremo alcuni modelli per il problema del lot sizing, vale a dire il problema di programmare la dimensione

Dettagli

b i 1,1,1 1,1,1 0,1,2 0,3,4

b i 1,1,1 1,1,1 0,1,2 0,3,4 V o Appello // RICERCA OPERATIVA - Corso A (a.a. 9/) Nome Cognome: Corso di Laurea: L C6 LS LM Matricola: ) Si consideri il problema di flusso di costo minimo in figura. Si verifichi se il flusso ammissibile

Dettagli

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Giuditta Franco Corso di Laurea in Bioinformatica - AA 2012/2013 Uno dei più grossi risultati nell informatica degli

Dettagli

CPM - PERT CPM - PERT. Rappresentazione di un progetto. Gestione di un progetto. Critical Path Method Project Evaluation and Review Technique

CPM - PERT CPM - PERT. Rappresentazione di un progetto. Gestione di un progetto. Critical Path Method Project Evaluation and Review Technique CPM - PERT CPM - PERT CPM e PERT sono metodologie per la gestione di progetti composti da più attività in cui esistano relazioni di precedenza. Critical Path Method Project Evaluation and Review Technique

Dettagli

Esercizio su MT. Svolgimento

Esercizio su MT. Svolgimento Esercizio su MT Definire una macchina di Turing deterministica M a nastro singolo e i concetti di configurazione e di transizione. Sintetizzare una macchina di Turing trasduttore che trasformi un numero

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

Tipologie di pianificatori. Pianificazione. Partial Order Planning. E compiti diversi. Pianificazione gerarchica. Approcci integrati

Tipologie di pianificatori. Pianificazione. Partial Order Planning. E compiti diversi. Pianificazione gerarchica. Approcci integrati Tipologie di pianificatori Pianificazione Intelligenza Artificiale e Agenti II modulo Pianificazione a ordinamento parziale (POP) (HTN) pianificazione logica (SatPlan) Pianificazione come ricerca su grafi

Dettagli

Corso di Laurea in INFORMATICA

Corso di Laurea in INFORMATICA Corso di Laurea in INFORMATICA Algoritmi e Strutture Dati MODULO 2. Algebre di dati Dati e rappresentazioni, requisiti delle astrazioni di dati, costrutti. Astrazioni di dati e dati primitivi. Specifica

Dettagli

Sorgenti autorevoli in ambienti hyperlinkati.

Sorgenti autorevoli in ambienti hyperlinkati. Sorgenti autorevoli in ambienti hyperlinkati. La qualità di un metodo di ricerca richiede la valutazione umana dovuta alla soggettività inerente alla nozione di rilevanza. I motori di ricerca correnti,

Dettagli

Sommario. 1 Realizzazione del STG. Introduzione. 1 traduzione delle specifiche informali in specifiche formali (STG o

Sommario. 1 Realizzazione del STG. Introduzione. 1 traduzione delle specifiche informali in specifiche formali (STG o Sommario Sintesi di macchine a stati finiti 1 Realizzazione del ST M. avalli 2 utoma minimo di SM completamente specificate 6th June 2007 3 Ottimizzazione di SM non completamente specificate Sommario ()

Dettagli

Logica del primo ordine

Logica del primo ordine Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A7_4 V1.3 Logica del primo ordine Il contenuto del documento è liberamente utilizzabile dagli studenti, per studio

Dettagli

FONDAMENTI di INFORMATICA L. Mezzalira

FONDAMENTI di INFORMATICA L. Mezzalira FONDAMENTI di INFORMATICA L. Mezzalira Possibili domande 1 --- Caratteristiche delle macchine tipiche dell informatica Componenti hardware del modello funzionale di sistema informatico Componenti software

Dettagli

Calcolatori: Algebra Booleana e Reti Logiche

Calcolatori: Algebra Booleana e Reti Logiche Calcolatori: Algebra Booleana e Reti Logiche 1 Algebra Booleana e Variabili Logiche I fondamenti dell Algebra Booleana (o Algebra di Boole) furono delineati dal matematico George Boole, in un lavoro pubblicato

Dettagli

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie TEORIA RELAZIONALE: INTRODUZIONE 1 Tre metodi per produrre uno schema relazionale: a) Partire da un buon schema a oggetti e tradurlo b) Costruire direttamente le relazioni e poi correggere quelle che presentano

Dettagli

INFORMATICA 1 L. Mezzalira

INFORMATICA 1 L. Mezzalira INFORMATICA 1 L. Mezzalira Possibili domande 1 --- Caratteristiche delle macchine tipiche dell informatica Componenti hardware del modello funzionale di sistema informatico Componenti software del modello

Dettagli

Tecniche Reticolari. Problema: determinare l istante di inizio di ogni attività in modo che la durata complessiva del progetto sia minima

Tecniche Reticolari. Problema: determinare l istante di inizio di ogni attività in modo che la durata complessiva del progetto sia minima Project Management Tecniche Reticolari Metodologie per risolvere problemi di pianificazione di progetti Progetto insieme di attività A i di durata d i, (=,...,n) insieme di relazioni di precedenza tra

Dettagli

Rappresentazione della conoscenza. Lezione 11. Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0

Rappresentazione della conoscenza. Lezione 11. Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0 Rappresentazione della conoscenza Lezione 11 Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0 Sommario Pianificazione Deduttiva nel calcolo delle situazioni (Reiter 3.3) Teoria del calcolo

Dettagli

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Esercizi II parte Esercizio 1 Discutere la correttezza di ciascuna delle seguenti affermazioni. Dimostrare formalmente la validità

Dettagli

(anno accademico 2008-09)

(anno accademico 2008-09) Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato

Dettagli

Breve introduzione al Calcolo Evoluzionistico

Breve introduzione al Calcolo Evoluzionistico Breve introduzione al Calcolo Evoluzionistico Stefano Cagnoni Dipartimento di Ingegneria dell Informazione, Università di Parma cagnoni@ce.unipr.it 1 Introduzione Il mondo fisico ed i fenomeni naturali

Dettagli

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Appello dell 8 Febbraio 2005 Esercizio 1 (ASD) 1. Dire quale delle seguenti affermazioni è vera giustificando la risposta. (a) lg

Dettagli

Algebra booleana e circuiti logici. a cura di: Salvatore Orlando

Algebra booleana e circuiti logici. a cura di: Salvatore Orlando lgebra booleana e circuiti logici a cura di: Salvatore Orlando rch. Elab. - S. Orlando lgebra & Circuiti Elettronici I calcolatori operano con segnali elettrici con valori di potenziale discreti sono considerati

Dettagli

Alberto Montresor Università di Trento

Alberto Montresor Università di Trento !! Algoritmi e Strutture Dati! Capitolo 3 - Tipi di dato e strutture di dati!!! Alberto Montresor Università di Trento!! This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike

Dettagli

Richiami di informatica e programmazione

Richiami di informatica e programmazione Richiami di informatica e programmazione Il calcolatore E una macchina usata per Analizzare Elaborare Collezionare precisamente e velocemente una grande quantità di informazioni. Non è creativo Occorre

Dettagli

Macchine sequenziali

Macchine sequenziali Corso di Calcolatori Elettronici I A.A. 2010-2011 Macchine sequenziali Lezione 14 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Automa a Stati Finiti (ASF) E una prima astrazione di

Dettagli

Alcuni Preliminari. Prodotto Cartesiano

Alcuni Preliminari. Prodotto Cartesiano Alcuni Preliminari Prodotto Cartesiano Dati due insiemi A e B, si definisce il loro prodotto cartesiano A x B come l insieme di tutte le coppie ordinate (a,b) con a! A e b! B. Es: dati A= {a,b,c} e B={,2,3}

Dettagli

Il File System. Il file system

Il File System. Il file system Il File System Il file system Parte di SO che fornisce i meccanismi di accesso e memorizzazione delle informazioni (programmi e dati) allocate in memoria di massa Realizza i concetti astratti di file:

Dettagli

Algebra Booleana ed Espressioni Booleane

Algebra Booleana ed Espressioni Booleane Algebra Booleana ed Espressioni Booleane Che cosa è un Algebra? Dato un insieme E di elementi (qualsiasi, non necessariamente numerico) ed una o più operazioni definite sugli elementi appartenenti a tale

Dettagli

Altri metodi di indicizzazione

Altri metodi di indicizzazione Organizzazione a indici su più livelli Altri metodi di indicizzazione Al crescere della dimensione del file l organizzazione sequenziale a indice diventa inefficiente: in lettura a causa del crescere del

Dettagli

Il file system. meccanismi di accesso e memorizzazione delle informazioni (programmi e dati) allocate. in memoria di massa

Il file system. meccanismi di accesso e memorizzazione delle informazioni (programmi e dati) allocate. in memoria di massa Il File System 1 Il file system E quella componente del SO che fornisce i meccanismi di accesso e memorizzazione delle informazioni (programmi e dati) allocate in memoria di massa Realizza i concetti astratti

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Teoria dei Giochi. Teoria dei Giochi

Teoria dei Giochi. Teoria dei Giochi Teoria dei Giochi E uno strumento decisionale, utile per operare previsioni sul risultato quando un decisore deve operare in concorrenza con altri decisori. L ipotesi principale su cui si basa la TdG è

Dettagli

I Problemi e la loro Soluzione. Il Concetto Intuitivo di Calcolatore. Risoluzione di un Problema. Esempio

I Problemi e la loro Soluzione. Il Concetto Intuitivo di Calcolatore. Risoluzione di un Problema. Esempio Il Concetto Intuitivo di Calcolatore Fondamenti di Informatica A Ingegneria Gestionale Università degli Studi di Brescia Docente: Prof. Alfonso Gerevini I Problemi e la loro Soluzione Problema: classe

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

MRP. Pianificazione della produzione. Distinta base Bill Of Materials (BOM) MPS vs. MRP. Materials Requirements Planning (MRP)

MRP. Pianificazione della produzione. Distinta base Bill Of Materials (BOM) MPS vs. MRP. Materials Requirements Planning (MRP) MRP Pianificazione della produzione Materials Requirements Planning (MRP) 15/11/2002 16.58 Con l MRP si decide la tempificazione delle disponibilità dei materiali, delle risorse e delle lavorazioni. MRP

Dettagli

Facoltà di Farmacia - Corso di Informatica

Facoltà di Farmacia - Corso di Informatica Basi di dati Riferimenti: Curtin cap. 8 Versione: 13/03/2007 1 Basi di dati (Database, DB) Una delle applicazioni informatiche più utilizzate, ma meno conosciute dai non informatici Avete già interagito

Dettagli

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010 elementi di teoria dei grafi anno acc. 2009/2010 Grafi semplici Un grafo semplice G è una coppia ordinata (V(G), L(G)), ove V(G) è un insieme finito e non vuoto di elementi detti vertici o nodi di G, mentre

Dettagli

Metodi basati sugli autovettori per il Web Information Retrieval

Metodi basati sugli autovettori per il Web Information Retrieval Metodi basati sugli autovettori per il Web Information Retrieval HITS, PageRank e il metodo delle potenze LSI e SVD LSI è diventato famoso per la sua abilità nel permettere di manipolare i termini (all

Dettagli

AUTOMI A STATI FINITI. G. Ciaschetti

AUTOMI A STATI FINITI. G. Ciaschetti AUTOMI A STATI FINITI G. Ciaschetti CONTENUTI Definizione di sistema Classificazione dei sistemi Definizione di modello Algebra degli schemi a blocchi Sistemi sequenziali Automi a stati finiti Macchina

Dettagli

Le Mappe di Karnaugh.

Le Mappe di Karnaugh. Le Mappe di Karnaugh. Introduzione Le mappe di Karnaugh rappresentano un metodo grafico-sistematico per la semplificazione di qualsiasi funzione booleana. Questo metodo si basa su poche regole e se applicate

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 19/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Fondamenti di Informatica II

Fondamenti di Informatica II Fondamenti di Informatica II Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Introduzione, A.A. 2009/2010 1/8

Dettagli

Appunti di Algoritmi e Strutture Dati. Grafi. Gianfranco Gallizia

Appunti di Algoritmi e Strutture Dati. Grafi. Gianfranco Gallizia Appunti di Algoritmi e Strutture Dati Grafi Gianfranco Gallizia 12 Dicembre 2004 2 Indice 1 Grafi 5 1.1 Definizione.............................. 5 1.2 Implementazione........................... 5 1.2.1

Dettagli

Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012

Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Concetti importanti da (ri)vedere Programmazione imperativa Strutture di

Dettagli

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense Linguaggio del calcolatore Circuiti e reti combinatorie ppendice + dispense Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e nche per esprimere concetti complessi

Dettagli

Combinazione di procedure di decisione nella verifica formale di software

Combinazione di procedure di decisione nella verifica formale di software Combinazione di procedure di decisione nella verifica formale di software Lorenzo Platania Tesi presentata per il conseguimento del titolo di Dottore in Ingegneria Informatica Relatore Correlatore Chiar.

Dettagli

Le Macchine di Turing

Le Macchine di Turing Le Macchine di Turing Come è fatta una MdT? Una MdT è definita da: un nastro una testina uno stato interno un programma uno stato iniziale Il nastro Il nastro è infinito suddiviso in celle In una cella

Dettagli

Sintesi di reti logiche multilivello. Sommario. Motivazioni. Sommario. M. Favalli

Sintesi di reti logiche multilivello. Sommario. Motivazioni. Sommario. M. Favalli Sommario Sintesi di reti logiche multilivello M. Favalli Engineering Department in Ferrara 1 2 3 Aspetti tecnologici Sommario Analisi e sintesi dei circuiti digitali 1 / Motivazioni Analisi e sintesi dei

Dettagli

Management Sanitario. Modulo di Ricerca Operativa

Management Sanitario. Modulo di Ricerca Operativa Management Sanitario per il corso di Laurea Magistrale SCIENZE RIABILITATIVE DELLE PROFESSIONI SANITARIE Modulo di Ricerca Operativa Prof. Laura Palagi http://www.dis.uniroma1.it/ palagi Dipartimento di

Dettagli

Introduzione alla verifica automatica

Introduzione alla verifica automatica Sistemi digitali Introduzione alla verifica automatica Utilizzati in quasi tutte le attività umane Complessità elevata semplici sistemi hanno milioni di linee di codice Tempi di realizzazione sempre più

Dettagli

Elementi di Informatica

Elementi di Informatica Università degli Studi di Udine Facoltà di Ingegneria CORSO DI LAUREA IN SCIENZE dell ARCHITETTURA Elementi di Informatica Algoritmi, e Programmi D. Gubiani 29 marzo 2010 D. Gubiani Algoritmi, e Programmi

Dettagli

Capitolo II Le reti elettriche

Capitolo II Le reti elettriche Capitolo II Le reti elettriche Fino ad ora abbiamo immaginato di disporre di due soli bipoli da collegare attraverso i loro morsetti; supponiamo ora, invece, di disporre di l bipoli e di collegarli tra

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

Elementi di Architettura e Sistemi Operativi. problema punti massimi i tuoi punti problema 1 6 problema 2 7 problema 3 7 problema 4 10 totale 30

Elementi di Architettura e Sistemi Operativi. problema punti massimi i tuoi punti problema 1 6 problema 2 7 problema 3 7 problema 4 10 totale 30 Elementi di Architettura e Sistemi Operativi Bioinformatica - Tiziano Villa 22 Giugno 2012 Nome e Cognome: Matricola: Posta elettronica: problema punti massimi i tuoi punti problema 1 6 problema 2 7 problema

Dettagli

Reti sequenziali sincrone

Reti sequenziali sincrone Reti sequenziali sincrone Un approccio strutturato (7.1-7.3, 7.5-7.6) Modelli di reti sincrone Analisi di reti sincrone Descrizioni e sintesi di reti sequenziali sincrone Sintesi con flip-flop D, DE, T

Dettagli