Esercitazione di Martedì 28 Ottobre (Rischio-Rendimento) Esercizio n 1, Calcolo dei pesi all interno di un portafoglio costituito da 2 titoli

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazione di Martedì 28 Ottobre (Rischio-Rendimento) Esercizio n 1, Calcolo dei pesi all interno di un portafoglio costituito da 2 titoli"

Transcript

1 Esercitazione di Martedì 28 Ottobre (Rischio-Rendimento) Esercizio n 1, Calcolo dei pesi all interno di un portafoglio costituito da 2 titoli Un portafoglio è costituito dal titolo A e dal titolo B. Il rendimento del portafoglio è pari a 8,88%, mentre i rendimenti del titolo A e del titolo B sono pari rispettivamente a 9,6% e a 7,8%. Qual è il peso del titolo A all interno del portafoglio considerato? Qual è il peso del titolo B? Se gli scarti quadratici medi del titolo A e del titolo B sono pari rispettivamente a 11,47% e a 7,72% e se l indice di correlazione tra i due titoli è pari a 45,32%, qual è il valore della covarianza tra i due titoli? Calcolate, infine, la varianza del portafoglio considerato. E(R) = Xa *9,6% + (1- Xa)*7,8% = 8,88% con Xa + Xb = 1 Xa = 60%, Xb = (1-Xa) = 40% Cov(a,b) = rho(a,b)*sigmaa*sigmab = 0,4532*0,1147*0,0772 = 0, Varianza(R) = 0,6^2*0,1147^2 + 0,4^2*0,0772^2 + 2*0,004013*0,6*0,4 = 0, Esercizio n 2, Covarianza e indice di correlazione Due azioni hanno uno scarto quadratico medio rispettivamente del 10% e 30%. Un portafoglio costituito da quote uguali di questi due titoli ha uno scarto quadratico medio del 16%. a) Individuate il tipo di correlazione esistente tra le due azioni; b) Misurate il loro coefficiente di correlazione. a) Var(R)=x1^2 var1+x2^2 var2+2 Cov x1 x2=0,16^2=(16%^2)=0,0256 0,0256= 0,25*0,01+0,25*0,09+2 Cov 0,50 0,50 Cov=(0, ,025)/0,5= 0,0012 La Covarianza ha un valore molto piccolo, quasi prossimo allo zero e, quindi, si può supporre che i due titoli siano quasi indipendenti con una lieve correlazione positiva. b) Rho=COV/(sigma(1)*sigma(2))= 0,0012/0,10*0,30=0,04 Esercizio n 3, Correlazione negativa perfetta Le azioni A e B hanno una correlazione negativa perfetta. Definite XA come la percentuale investita nelle azioni A e come XB la percentuale investita nelle azioni B. Gli scarti quadratici medi di A e B sono rispettivamente 0,40 e 0,20. Se il portafoglio di A e B ha varianza nulla, qual è il valore di XA? Quale quello di XB? 1

2 Correlazione perfetta negativia: rho(a,b) = -1 Varianza (R) = 0 = (XA^2*sigmaA^2+XB^2*sigmaB^2-2*XA*XB*sigmaA*sigmaB = (XA*sigmaA-XB*sigmaB)^2 Da mettere a sistema (due equazioni per due incongnite) con XA+XB = 1 XA*sigmaA=XB*sigmaB XA*0,40=(1-XA)*0,20 XA*0,60=0,20 XA = 1/3 XB = 2/3 Esercizio n 4, Rendimento e scarto quadratico medio di un portafoglio costituito da tre titoli Calcolare lo scarto quadratico medio e il rendimento atteso del seguente portafoglio. Correlazione tra azioni (rho) Azione Quota % R % Sigma ,5 0, ,5 1 0, ,3 0,1 1 Per calcolare lo scarto quadratico medio del portafoglio, abbiamo bisogno di N=3 termini di varianza e di (N^2-N)= 6 termini di Covarianza. s(1)^2=400 s(2)^2=900 s(3)^2=1600 Cov(1,2)= rho(1,2)*s(1)*s(2)= 0,5*20*30= 300 Cov(1,3)= rho(1,3)*s(1)*s(3)= 0,3*20*40= 240 Cov(2,3)= rho(2,3)*s(2)*s(3)= 0,1*30*40= 120 Matrice Varianza Covarianza Azione 1 Azione 2 Azione 3 Azione Azione Azione

3 Var(R)=0,5^2*400+0,3^2*900+0,2^2* *0,5*0,3*300+2*0,5*0,2*240+2*0,3* 0,2*120= 397,4 s(r)=(var(r)^1/2)= 19,93 E(R)= 0,5*10%+0,3*15%+0,2*20% = 13,5% Esercizio n 5, Diversificazione La varianza media nei rendimenti annui di un titolo azionario è di 1500 circa, mentre la sua covarianza con gli altri titoli è di circa 400. Ricavate le conseguenze di questo fatto sullo scarto quadratico medio di: a) un portafoglio ben diversificato. Supponete quote uguali di tutte le azioni presenti in ciascun portafoglio. Con quote uguali di tutte le N azioni che compongono il portafoglio, abbiamo N caselle con la Varianza e (N^2-N) caselle con la Covarianza. Var(R)= N*(1/N^2)*Var.Media+(N^2-N)*(1/N^2)*Cov.Media Varianza=Cov.Media+(Var.Media-Cov.Media)/N=400+( )/N= /N a) Portafoglio ben diversificato sigma(p)=( /n)^1/2=20% poiché N tende all infinito. Il rischio sistematico è la Cov. Media di tutti i titoli. (Grafico del rischio sistematico. Sigma sulle y e N sulle x) Esercizio n 6, Security Market Line Supponiamo di tracciare la linea di mercato degli investimenti (Security Market Line, SML) per i tre titoli sotto elencati. Lo scarto quadratico medio di mercato equivale al 22%. Qual è l equazione della SML? Compilate le correlazioni e i beta mancanti nella tabella. Investimento E(R) Varianza (R) Correlazione Beta (i,m) 1 0,14 0,0400 0,8 2 0,10 0,1225 0, ,07 0,0000 Il terzo titolo ha un rendimento atteso del 7% e una varianza nulla, quindi il tasso privo di rischio è del 7%. La correlazione di questo investimento con il mercato risulta nulla, poiché il rendimento del titolo rimane invariato. Anche il beta è nullo. Il primo investimento ha un beta di 0,8 e un rendimento pari al 14%. Deve, quindi, soddisfare l equazione l equazione 14% = 7% + 0,8*(E(rm) 7%). Otteniamo E(rm) = 15,75%. 3

4 In base a tali cifre, l equazione della SML è: E(R) = rf+beta*(rm-rf) E(R) = 7% + beta*(15,75%-7%) = 7% + beta*8,75% Il secondo investimento ha un rendimento atteso del 10%, quindi il suo beta è dato dalla seguente equazione: 10%-7% = beta*8,75% ossia 0,343 Per il primo investimento, il beta è pari a 0,8. Dato che lo scarto quadratico medio del mercato è 0,22, la covarianza di questo investimento con il mercato è data dall equazione Beta1 = Cov (i,m) /var(rm) ossia 0,8 = Cov (1,m)/0,22^2 Cov (1,m) = 0,03872 Rho (1,m) = Cov (1,m)/sigma1*sigmaM= 0,03872/0,22*0,2= 0,88 Oppure Beta1=rho(1,m)*sigma1/sigmaM 0,8=rho(1,m)*0,2/0,22 rho(1,m)=0,88 Investimento E(R) Varianza (R) Correlazione Beta (i,m) 1 0,14 0,0400 0,88 0,8 2 0,10 0,1225 0,6 0, ,07 0, Esercizio n 7, Calcolo dei pesi e del beta di un portafoglio costituito da tre titoli Considerate un portafoglio P costituito da tre titoli aventi le seguenti caratteristiche: Titoli Beta Sigma A 1,4 35% B 0,9 30% C 0,7 22% 4

5 a) Se il peso desiderato del titolo C è pari al 10% determinare i restanti pesi affinchè il beta del portafoglio P sia uguale a quello di mercato. a) beta(p)=w(a)*beta(a)+w(b)*beta(b)+w(c)*beta(c)= 1 w(c)= 0,1 1= w(a)*1,4+w(b)*0,9+0,1*0,7 1,4*w(A)+0,9*w(B)= 0,93 w(b)=0,9-w(a) 1,4*w(A)+0,9*(0,9-w(A))= 0,93 w(a)= 0,24 w(b)= 0,66 w(c)= 0,1 5

FINANZA AZIENDALE AVANZATO

FINANZA AZIENDALE AVANZATO FINANZA AZIENDALE AVANZATO La diversificazione di portafoglio e il CAPM Lezione 3 e 4 1 Scopo della lezione Illustrare il modello logico-teorico più utilizzato nella pratica per stimare il rendimento equo

Dettagli

RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI. Docente: Prof. Massimo Mariani

RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI. Docente: Prof. Massimo Mariani RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI Docente: Prof. Massimo Mariani 1 SOMMARIO Il rendimento di un attività finanziaria: i parametri rilevanti Rendimento totale, periodale e medio Il market

Dettagli

rendimento PROGRAMMA 0. Introduzione 1. Valore. 2. Valutazione del rischio: Introduzione a rischio e rendimento; Teoria del portafoglio e CAPM;

rendimento PROGRAMMA 0. Introduzione 1. Valore. 2. Valutazione del rischio: Introduzione a rischio e rendimento; Teoria del portafoglio e CAPM; PROGRAMMA 0. Introduzione 1. Valore.. Valutazione del rischio: Introduzione a rischio e rendimento; Teoria del portafoglio e CAPM; Rischio e capital budgeting Introduzione a rischio e rendimento 3. Decisioni

Dettagli

Rischio e rendimento degli strumenti finanziari

Rischio e rendimento degli strumenti finanziari Finanza Aziendale Analisi e valutazioni per le decisioni aziendali Rischio e rendimento degli strumenti finanziari Capitolo 15 Indice degli argomenti 1. Analisi dei rendimenti delle principali attività

Dettagli

Finanza Aziendale. Lezione 12. Analisi del rischio

Finanza Aziendale. Lezione 12. Analisi del rischio Finanza Aziendale Lezione 12 Analisi del rischio Obiettivi i della lezione I rendimenti e la loro misurazione I rendimenti medi ed il loro rischio La misurazione del rischio e l effetto diversificazione

Dettagli

LEZIONE 4. Il Capital Asset Pricing Model. Professor Tullio Fumagalli Corso di Finanza Aziendale Università degli Studi di Bergamo.

LEZIONE 4. Il Capital Asset Pricing Model. Professor Tullio Fumagalli Corso di Finanza Aziendale Università degli Studi di Bergamo. LEZIONE 4 Il Capital Asset Pricing Model 1 Generalità 1 Generalità (1) Il Capital Asset Pricing Model è un modello di equilibrio dei mercati che consente di individuare una precisa relazione tra rendimento

Dettagli

Capitolo 7. Introduzione a rischio, rendimento e costo opportunità del capitale. Principi di finanza aziendale

Capitolo 7. Introduzione a rischio, rendimento e costo opportunità del capitale. Principi di finanza aziendale Principi di finanza aziendale Capitolo 7 IV Edizione Richard A. Brealey Stewart C. Myers Sandro Sandri Introduzione a rischio, rendimento e costo opportunità del capitale Copyright 003 - The McGraw-Hill

Dettagli

LA VALUTAZIONE DI PORTAFOGLIO. Giuseppe G. Santorsola 1

LA VALUTAZIONE DI PORTAFOGLIO. Giuseppe G. Santorsola 1 LA VALUTAZIONE DI PORTAFOGLIO Giuseppe G. Santorsola 1 Rendimento e rischio Rendimento e rischio di un singolo titolo Rendimento e rischio di un portafoglio Rendimento ex post Media aritmetica dei rendimenti

Dettagli

Le curve di indifferenza sulla frontiera di Markowitz

Le curve di indifferenza sulla frontiera di Markowitz UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA Corso di pianificazione finanziaria da Markowitz al teorema della separazione e al CAPM Le curve di indifferenza sulla frontiera di Markowitz Markowitz

Dettagli

Indice. Le curve di indifferenza sulla frontiera di Markowitz UNIVERSITA DI PARMA FACOLTA DI ECONOMIA

Indice. Le curve di indifferenza sulla frontiera di Markowitz UNIVERSITA DI PARMA FACOLTA DI ECONOMIA UNIVERSITA DI PARMA FACOLTA DI ECONOMIA Corso di pianificazione finanziaria A.a. 2003/2004 1 Indice La Capital Market Theory di Markowitz Il Teorema della separazione di Tobin e la Capital Market Line

Dettagli

Il criterio media-varianza e il modello CAPM

Il criterio media-varianza e il modello CAPM Il criterio media-varianza e il modello CAPM 1 Il criterio media-varianza Se α 1 è la quota della ricchezza destinata all acquisto del titolo 1 e α 2 èlaquota impiegata nell acquisto del titolo 2, il valore

Dettagli

5.4 Solo titoli rischiosi

5.4 Solo titoli rischiosi 56 Capitolo 5. Teoria matematica del portafoglio finanziario II: analisi media-varianza 5.4 Solo titoli rischiosi Suppongo che sul mercato siano presenti n titoli rischiosi i cui rendimenti aleatori sono

Dettagli

Il rischio di un portafoglio

Il rischio di un portafoglio Come si combinano in un portafoglio i rischi di 2 titoli? dipende dai pesi e dal valore delle covarianze covarianza a a ρ a b ρ a b ρ b b ρ coefficiente di correlazione = cov / ² p = a² ² + b² ² + 2 a

Dettagli

IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE.

IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE. IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE. Lezione 5 Castellanza, 17 Ottobre 2007 2 Summary Il costo del capitale La relazione rischio/rendimento

Dettagli

Separazione in due fondi Security Market Line CAPM

Separazione in due fondi Security Market Line CAPM Separazione in due fondi Security Market Line CAPM Eduardo Rossi Economia dei mercati monetari e finanziari A.A. 2002/2003 1 Separazione in due fondi Un vettore di rendimenti er può essere separato in

Dettagli

Il criterio media-varianza eilmodello CAPM. Enrico Saltari

Il criterio media-varianza eilmodello CAPM. Enrico Saltari Il criterio media-varianza eilmodello CAPM Enrico Saltari 1 Il criterio media-varianza Seα 1 èlaquotadellaricchezzadestinataall acquistodeltitolo1eα 2 èla quota impiegata nell acquisto del titolo 2, il

Dettagli

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1 23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari In uno schema uniperiodale e in un contesto di analisi media-varianza, si consideri un mercato

Dettagli

Il modello media-varianza con N titoli rischiosi. Una derivazione formale. Enrico Saltari

Il modello media-varianza con N titoli rischiosi. Una derivazione formale. Enrico Saltari Il modello media-varianza con N titoli rischiosi. Una derivazione formale Enrico Saltari La frontiera efficiente con N titoli rischiosi Nel caso esistano N titoli rischiosi, con N 2, il problema della

Dettagli

La domanda di moneta

La domanda di moneta Corso interfacoltà in Economia Politica economica e finanza Modulo in Teoria e politica monetaria La domanda di moneta (terza parte) Giovanni Di Bartolomeo gdibartolomeo@unite.it La teoria keynesiana (preferenza

Dettagli

Finanza Aziendale. Lezione 13. Introduzione al costo del capitale

Finanza Aziendale. Lezione 13. Introduzione al costo del capitale Finanza Aziendale Lezione 13 Introduzione al costo del capitale Scopo della lezione Applicare la teoria del CAPM alle scelte di finanza d azienda 2 Il rischio sistematico E originato dalle variabili macroeconomiche

Dettagli

Lezione n. 2 (a cura di Chiara Rossi)

Lezione n. 2 (a cura di Chiara Rossi) Lezione n. 2 (a cura di Chiara Rossi) QUANTILE Data una variabile casuale X, si definisce Quantile superiore x p : X P (X x p ) = p Quantile inferiore x p : X P (X x p ) = p p p=0.05 x p x p Graficamente,

Dettagli

Finanza Aziendale. Misura e valutazione del

Finanza Aziendale. Misura e valutazione del Teoria della Finanza Aziendale Misura e valutazione del rischio 7 1- Argomenti Il rischio Il rischio negli investimenti finanziari La misurazione del rischio Varianza e scarto quadratico medio Il rischio

Dettagli

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1 1 PORTAFOGLIO Portafoglio Markowitz (2 titoli) (rischiosi) due titoli rendimento/varianza ( μ 1, σ 1 ), ( μ 2, σ 2 ) Si suppone μ 1 > μ 2, σ 1 > σ 2 portafoglio con pesi w 1, w 2 w 1 = w, w 2 = 1- w 1

Dettagli

Il Capital asset pricing model è un modello di equilibrio dei mercati, individua una relazione tra rischio e rendimento, si fonda sulle seguenti

Il Capital asset pricing model è un modello di equilibrio dei mercati, individua una relazione tra rischio e rendimento, si fonda sulle seguenti Il Capital asset pricing model è un modello di equilibrio dei mercati, individua una relazione tra rischio e rendimento, si fonda sulle seguenti ipotesi: Gli investitori sono avversi al rischio; Gli investitori

Dettagli

Sommario. Prefazione XI PARTE I INTRODUZIONE 1. Capitolo 1 Arbitraggio e decisioni finanziarie 3

Sommario. Prefazione XI PARTE I INTRODUZIONE 1. Capitolo 1 Arbitraggio e decisioni finanziarie 3 Sommario Prefazione XI PARTE I INTRODUZIONE 1 Capitolo 1 Arbitraggio e decisioni finanziarie 3 1.1 Valutazione dei costi e benefici 4 Utilizzo dei prezzi di mercato per determinare valori monetari 4 Quando

Dettagli

RISCHIO E CAPITAL BUDGETING

RISCHIO E CAPITAL BUDGETING RISCHIO E CAPITAL BUDGETING Costo opportunità del capitale Molte aziende, una volta stimato il loro costo opportunità del capitale, lo utilizzano per scontare i flussi di cassa attesi dei nuovi progetti

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008 Nome Cognome Matricola Esercizio 1 (6 punti) Dato un debito di 20 000, lo si voglia rimborsare mediante il pagamento di 12 rate mensili posticipate

Dettagli

Corso di teoria del rischio finanziario La teoria del portafoglio

Corso di teoria del rischio finanziario La teoria del portafoglio Corso di teoria del rischio finanziario La teoria del portafoglio Anno Accademico 2014/2015 - Università degli Studi di Messina Prof. Massimiliano Ferrara Università "Mediterranea di Reggio Calabria -

Dettagli

Nella prima parte del corso l attenzione è venuta appuntandosi sui problemi inerenti la valutazione di investimenti aziendali e di strumenti

Nella prima parte del corso l attenzione è venuta appuntandosi sui problemi inerenti la valutazione di investimenti aziendali e di strumenti Nella prima parte del corso l attenzione è venuta appuntandosi sui problemi inerenti la valutazione di investimenti aziendali e di strumenti finanziari in un contesto di flussi finanziari certi, tuttavia

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

Test di ammissione al Corso di Laurea magistrale a numero programmato in: Finanza, Intermediari e Mercati - CLAMFIM (cod. 0901)

Test di ammissione al Corso di Laurea magistrale a numero programmato in: Finanza, Intermediari e Mercati - CLAMFIM (cod. 0901) Test di ammissione al Corso di Laurea magistrale a numero programmato in: Finanza, Intermediari e Mercati - CLAMFIM (cod. 0901) Classe: LM-16 (Finanza) Anno Accademico 2011/2012 1 1) Secondo qualsiasi

Dettagli

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

SOCIETA DI CONSULENZA IN FINANZA AZIENDALE E FORMAZIONE

SOCIETA DI CONSULENZA IN FINANZA AZIENDALE E FORMAZIONE SOCIETA DI CONSULENZA IN FINANZA AZIENDALE E FORMAZIONE Negli ultimi tre decenni, il Capital Asset Pricing model ha occupato un posto centrale e spesso controverso nella maggioranza degli strumenti di

Dettagli

Anno accademico 2005/06

Anno accademico 2005/06 1 Modelli Matematici per i Mercati Finanziari Anno accademico 005/06 Prof.ssa Rosella Giacometti Programma del corso A) Il rischio di mercato: A.1) Modelli per il mercato azionario La teoria del portafoglio

Dettagli

Capital budgeting. Luca Deidda. Uniss, CRENoS, DiSEA. Luca Deidda (Uniss, CRENoS, DiSEA) Lecture 19 1 / 1

Capital budgeting. Luca Deidda. Uniss, CRENoS, DiSEA. Luca Deidda (Uniss, CRENoS, DiSEA) Lecture 19 1 / 1 Capital budgeting Luca Deidda Uniss, CRENoS, DiSEA Luca Deidda (Uniss, CRENoS, DiSEA) Lecture 19 1 / 1 Introduzione Scaletta Introduzione Incertezza e costo del capitale Costo del capitale di rischio (equity

Dettagli

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 26 febbraio 2009. Cognome e Nome... C.d.L... Matricola n... Firma...

MATEMATICA FINANZIARIA Appello del 26 febbraio 2009. Cognome e Nome... C.d.L... Matricola n... Firma... MATEMATICA FINANZIARIA Appello del 26 febbraio 2009 Cognome e Nome... C.d.L.... Matricola n.... Firma... Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli Fornire le risposte

Dettagli

Lezione 5. Livello e composizione della ricchezza delle famiglie

Lezione 5. Livello e composizione della ricchezza delle famiglie Lezione 5. Livello e composizione della ricchezza delle famiglie Scelte finanziarie delle famiglie: a determinano i flussi di risparmio che alimentano lo stock di ricchezza; selezionano le attività patrimoniali

Dettagli

MATEMATICA FINANZIARIA Appello del 26 gennaio 2009. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

MATEMATICA FINANZIARIA Appello del 26 gennaio 2009. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli MATEMATICA FINANZIARIA Appello del 26 gennaio 2009 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Operazioni finanziarie. Asset allocation: come ottimizzare un portafoglio di attività finanziarie. di Amedeo De Luca (*)

Operazioni finanziarie. Asset allocation: come ottimizzare un portafoglio di attività finanziarie. di Amedeo De Luca (*) Operazioni Tecniche Asset allocation: come ottimizzare un portafoglio di attività di Amedeo De Luca (*) Attraverso una composizione del portafoglio di attività strategica e ben condotta i gestori finanziari

Dettagli

Modello di simulazione per un portafoglio diversificato

Modello di simulazione per un portafoglio diversificato Modello di simulazione per un portafoglio diversificato Giulio alomba Università olitecnica delle Marche Dipartimento di Economia giulio@dea.unian.it Maggio 2004 Indice 1 Introduzione 2 2 Il modello analitico

Dettagli

Strategie α nella costruzione di portafoglio. 03 Maggio 2012

Strategie α nella costruzione di portafoglio. 03 Maggio 2012 Strategie α nella costruzione di portafoglio 03 Maggio 2012 AGENDA La costruzione di portafoglio Le strategie alpha Il portafoglio con strategie alpha LA COSTRUZIONE DI UN PORTAFOGLIO FINANZIARIO Un portafoglio

Dettagli

Corso di Risk Management S

Corso di Risk Management S Corso di Risk Management S Marco Bee marco.bee@economia.unitn.it Dipartimento di Economia Università di Trento Anno Accademico 2007-2008 Struttura del corso Il corso può essere suddiviso come segue: 1.

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

Valutazione di investimenti e finanziamenti: Strumenti matematici

Valutazione di investimenti e finanziamenti: Strumenti matematici Valutazione di investimenti e finanziamenti: Strumenti matematici di Angelo Fiori Prima parte Premessa Di seguito si indicano gli strumenti matematici che ci vengono in aiuto per valutare sia progetti

Dettagli

1 Associazione tra variabili quantitative COVARIANZA E CORRELAZIONE

1 Associazione tra variabili quantitative COVARIANZA E CORRELAZIONE 1 Associazione tra variabili quantitative ASSOCIAZIONE FRA CARATTERI QUANTITATIVI: COVARIANZA E CORRELAZIONE 2 Associazione tra variabili quantitative Un esempio Prezzo medio per Nr. Albergo cliente (Euro)

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 24/11/2015

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 24/11/2015 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 24/11/2015 Valutazioni di operazioni finanziarie Esercizio 1. Un operazione finanziaria

Dettagli

TEST FINANZA OTTOBRE 2013

TEST FINANZA OTTOBRE 2013 TEST FINANZA OTTOBRE 03. Si consideri la funzione f ( ) ln( e ). Determinare l espressione corretta della derivata seconda f ( ). e f( ) ( e ) A B f( ) e f( ) ln ( e ) C D f( ). Dati i tre vettori (, 3,

Dettagli

Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera

Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera 1. Avete risparmiato 10 dollari che volete investire per un anno in azioni e/o buoni del tesoro

Dettagli

Quesiti livello Application

Quesiti livello Application 1 2 3 4 Se la correlazione tra due attività A e B è pari a 0 e le deviazioni standard pari rispettivamente al 4% e all 8%, per quali dei seguenti valori dei loro pesi il portafoglio costruito con tali

Dettagli

II Esercitazione di Matematica Finanziaria

II Esercitazione di Matematica Finanziaria II Esercitazione di Matematica Finanziaria Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 90 giorni, prezzo di acquisto (lordo) P = 98.50 euro e valore facciale

Dettagli

FINANZA AZIENDALE RISULTATI DEL 6/5/2009

FINANZA AZIENDALE RISULTATI DEL 6/5/2009 FINANZA AZIENDALE RISULTATI DEL 6/5/2009 Si ricorda agli studenti che: 1. se si intende rifiutare il voto si DEVE farlo presente al docente entro il 6/5/2009 via mail con il seguente oggetto RIFIUTO FINANZA

Dettagli

CAPIRE E GESTIRE I RISCHI FINANZIARI Interrelazioni rischio rendimento e misure RAPM

CAPIRE E GESTIRE I RISCHI FINANZIARI Interrelazioni rischio rendimento e misure RAPM CAPIRE E GESTIRE I RISCHI FINANZIARI Interrelazioni rischio rendimento e misure RAPM Prof. Marco Oriani Università Cattolica del Sacro Cuore di Milano 17 ottobre 2011 - Sala Convegni S.A.F. SCUOLA DI ALTA

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

Determinazione dei Prezzi Forward e dei Prezzi Futures

Determinazione dei Prezzi Forward e dei Prezzi Futures Determinazione dei Prezzi Forward e dei Prezzi Futures Lezione 6 5.1 Beni d Investimento e Beni di Consumo I beni d investimento (ad es., oro, argento) sono beni che vengono posseduti solo per fini d investimento

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

Facoltà di Scienze Politiche Corso di Economia Politica. Esercitazione di Microeconomia sui capitoli 7 e 8

Facoltà di Scienze Politiche Corso di Economia Politica. Esercitazione di Microeconomia sui capitoli 7 e 8 Facoltà di Scienze Politiche Corso di Economia Politica Esercitazione di Microeconomia sui capitoli 7 e 8 Domanda 1 Dite quale delle seguenti non è una caratteristica di un mercato perfettamente competitivo:

Dettagli

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE FLAVIO ANGELINI Sommario Queste note hanno lo scopo di indicare a studenti di Economia interessati alla finanza quantitativa i concetti essenziali

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Introduzione : analisi delle relazioni tra due caratteristiche osservate sulle stesse unità statistiche studio del comportamento di due caratteri

Dettagli

La valutazione delle aziende. 4a parte

La valutazione delle aziende. 4a parte La valutazione delle aziende 4a parte 95 Il WACC Il WACC non è né un costo, né un rendimento minimo: è la media ponderata di un costo e di un rendimento minimo. Considerare il WACC un costo può essere

Dettagli

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2.

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2. Analisi multivariata Statistica multivariata Quando il numero delle variabili rilevate sullo stesso soggetto aumentano, il problema diventa gestirle tutte e capirne le relazioni. Cercare di capire le relazioni

Dettagli

Alternativa Investimento iniziale euro Flusso di cassa anno1 euro

Alternativa Investimento iniziale euro Flusso di cassa anno1 euro Tecnica e Gestione degli Investimenti/Finanza Aziendale 5cfu Prova scritta del 19.02.16 (4 punti) Selezionare la strategia di investimento migliore con un budget di 2.000.000 di euro e 4 opportunità di

Dettagli

Capitolo 2 TEORIA DEL PORTAFOGLIO

Capitolo 2 TEORIA DEL PORTAFOGLIO Capitolo 2 TEORIA DEL PORTAFOGLIO La teoria del portafoglio si propone di studiare il modo ottimale di distribuire la ricchezza fra più titoli disponibili tenendo conto del rischio e del rendimento dei

Dettagli

= E(X t+k X t+k t ) 2 + 2E [( X t+k X t+k t + E

= E(X t+k X t+k t ) 2 + 2E [( X t+k X t+k t + E 1. Previsione per modelli ARM A Questo capitolo è dedicato alla teoria della previsione lineare per processi stocastici puramente non deterministici, cioè per processi che ammettono una rappresentazione

Dettagli

Elementi di Psicometria

Elementi di Psicometria Elementi di Psicometria 12-Correlazione vers. 1.1 (27 novembre 2012) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca 2011-2012 G. Rossi (Dip. Psicologia)

Dettagli

La ricerca di extrarendimenti nella gestione del patrimonio: i fondi di strategia

La ricerca di extrarendimenti nella gestione del patrimonio: i fondi di strategia La ricerca di extrarendimenti nella gestione del patrimonio: i fondi di strategia Indice Premessa Introduzione Capitolo 1: I primi sviluppi della teoria di portafoglio 1.1 La teoria del portafoglio di

Dettagli

Non esiste un investimento perfetto in assoluto, esiste invece un investimento ottimale per ognuno di noi.

Non esiste un investimento perfetto in assoluto, esiste invece un investimento ottimale per ognuno di noi. ANALISI DEGLI INVESTIMENTI Non esiste un investimento perfetto in assoluto, esiste invece un investimento ottimale per ognuno di noi. Come un comodo abito ogni investimento deve essere fatto su misura.

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2012-2013 Indice 1 Mercati finanziari 2 Arbitraggio 3 Conseguenze del non-arbitraggio

Dettagli

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Scelte in condizioni di rischio e incertezza

Scelte in condizioni di rischio e incertezza CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni

Dettagli

Il concetto di correlazione

Il concetto di correlazione SESTA UNITA Il concetto di correlazione Fino a questo momento ci siamo interessati alle varie statistiche che ci consentono di descrivere la distribuzione dei punteggi di una data variabile e di collegare

Dettagli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli MATEMATICA FINANZIARIA Appello del 13 06 2008 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

SELEZIONE DI UN PORTAFOGLIO EFFICIENTE DI ATTIVITÀ MOBILIARI E IMMOBILIARI

SELEZIONE DI UN PORTAFOGLIO EFFICIENTE DI ATTIVITÀ MOBILIARI E IMMOBILIARI UNIVERSITA' DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE Corso di laurea in Statistica, Economia e Finanza TESI DI LAUREA SELEZIONE DI UN PORTAFOGLIO EFFICIENTE DI ATTIVITÀ MOBILIARI E IMMOBILIARI

Dettagli

Statistica (Prof. Capitanio) Slide n. 1. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Statistica (Prof. Capitanio) Slide n. 1. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Statistica (Prof. Capitanio) Slide n. 1 Materiale di supporto per le lezioni. Non sostituisce il libro di testo MEDIA GEOMETRICA M g = x g = n n x i i=1 1 PROPRIETA 1) Identità di prodotto ( ) n n M =

Dettagli

II sessione d esame per il conseguimento del Diploma uropean Financial Services D FS Venerdì 12 giugno 2009

II sessione d esame per il conseguimento del Diploma uropean Financial Services D FS Venerdì 12 giugno 2009 DEFS01 II sessione d esame per il conseguimento del Diploma uropean Financial Services D FS Venerdì 12 giugno 2009 Prova D FS 1 KNOWLEDGE 1 Il rischio specifico di un titolo azionario: 1. è quantificabile

Dettagli

1a 1b 2a 2b 3 4 5 6 6 5 4 3

1a 1b 2a 2b 3 4 5 6 6 5 4 3 MATEMATICA FINANZIARIA A e B - Prova scritta del 30 maggio 2000 1. (11 pti) Un tale deve pagare un debito di ammontare D. L ammortamento viene strutturato su 3 anni valutando gli interessi coi tassi variabili

Dettagli

5 Risparmio e investimento nel lungo periodo

5 Risparmio e investimento nel lungo periodo 5 Risparmio e investimento nel lungo periodo 5.1 Il ruolo del mercato finanziario Il ruolo macroeconomico del sistema finanziario è quello di far affluire i fondi risparmiati ai soggetti che li spendono.

Dettagli

1. Richiami di Statistica. Stefano Di Colli

1. Richiami di Statistica. Stefano Di Colli 1. Richiami di Statistica Metodi Statistici per il Credito e la Finanza Stefano Di Colli Dati: Fonti e Tipi I dati sperimentali sono provenienti da un contesto delimitato, definito per rispettare le caratteristiche

Dettagli

ESERCIZI DI RIEPILOGO 2. 7 jj(addi

ESERCIZI DI RIEPILOGO 2. 7 jj(addi ESERCIZI DI RIEPILOGO 2 ESERCIZIO 1 Da un comune mazzo di 52 carte francesi (13 carte per ognuno dei quattro semi: picche, cuori, fiori e quadri) viene estratta casualmente una carta. Definiti gli eventi:

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

Vincenzo Ciancio Armando Ciancio. Metodi matematici per le applicazioni finanaziarie

Vincenzo Ciancio Armando Ciancio. Metodi matematici per le applicazioni finanaziarie A01 73 Vincenzo Ciancio Armando Ciancio Metodi matematici per le applicazioni finanaziarie Copyright MMV ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133

Dettagli

MODULO 1 UNITA DIDATTICA 2

MODULO 1 UNITA DIDATTICA 2 MODULO 1 Investimento e rischio di investimento UNITA DIDATTICA 2 Nozioni di base per la valutazione degli investimenti Elementi di distribuzione dei rendimenti e Analisi Rendimento - Rischio per il portafoglio

Dettagli

AEX. Statistica dei mercati monetari e finanziari. k 2. Order book. Giovanni De Luca A.A. 2007/2008

AEX. Statistica dei mercati monetari e finanziari. k 2. Order book. Giovanni De Luca A.A. 2007/2008 Giovanni De Luca Statistica dei mercati monetari e finanziari A.A. 2007/2008 10 8 6 4 2 0 0.05 0 200 400 600 0 10 20 30 0.5 SP500 15 vs 0.4 0.3 0.2 k 2 Σ ρk i=1 AEX 0.15 0.1 0.05 0 20 25 Order book Statistica

Dettagli

FINANZA AZIENDALE RISULTATI ESAME DEL 30/1/2006

FINANZA AZIENDALE RISULTATI ESAME DEL 30/1/2006 FINANZA AZIENDALE RISULTATI ESAME DEL 30/1/2006 NORME PER LA VERBALIZZAZIONE GLI STUDENTI CON VOTAZIONE MAGGIORE DI 18/30 CHE INTENDONO RIFIUTARE IL VOTO DEVONO PRESENTARSI IN DATA 15/5/2006 DURANTE LA

Dettagli

LA STIMA DEL COST OF EQUITY (Ke) Valutazione d impresa aprile 2012 dott. Lanfranco Lodi

LA STIMA DEL COST OF EQUITY (Ke) Valutazione d impresa aprile 2012 dott. Lanfranco Lodi LA STIMA DEL COST OF EQUITY (Ke) 0 CAPM: si fonda sul presupposto che investitori realizzino diversificazione di portafoglio remunerazione solo del rischio non diversificabile R i =K el* = R f + β i x

Dettagli

Appunti di Statistica Descrittiva

Appunti di Statistica Descrittiva Appunti di Statistica Descrittiva 30 dicembre 009 1 La tabella a doppia entrata Per studiare dei fenomeni con caratteristiche statistiche si utilizza l espediente della tabella a doppia entrata Per esempio

Dettagli

Premessa. Esercitazione. Calcolo del reddito nel Conto del reddito. Calcolo del reddito nel Conto del capitale e nel Conto del reddito

Premessa. Esercitazione. Calcolo del reddito nel Conto del reddito. Calcolo del reddito nel Conto del capitale e nel Conto del reddito Sul calcolo del reddito di fine periodo: riflessioni di base 1 INDICE: Premessa Esercitazione Calcolo del reddito nel Conto del capitale Calcolo del reddito nel Conto del reddito Calcolo del reddito nel

Dettagli

Tecniche di stima del costo e delle altre forme di finanziamento

Tecniche di stima del costo e delle altre forme di finanziamento Finanza Aziendale Analisi e valutazioni per le decisioni aziendali Tecniche di stima del costo e delle altre forme di finanziamento Capitolo 17 Indice degli argomenti 1. Rischio operativo e finanziario

Dettagli

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE STATISTICA DESCRITTIVA SCHEDA N. : REGRESSIONE LINEARE Nella Scheda precedente abbiamo visto che il coefficiente di correlazione fra due variabili quantitative X e Y fornisce informazioni sull esistenza

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

SECONDA PARTE La teoria delle scelte di portafoglio

SECONDA PARTE La teoria delle scelte di portafoglio SECONDA PARTE La teoria delle scelte di portafoglio Incertezza e domanda speculativa di moneta in Keynes Letture consigliate per la Seconda Parte Bodie Z., Kane A. e Marcus A.J. Investments, McGraw-Hill,

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

Il modello binomiale ad un periodo

Il modello binomiale ad un periodo Opzioni Un opzione dà al suo possessore il diritto (ma non l obbligo) di fare qualcosa. Un opzione call (put) europea su un azione che non paga dividendi dà al possessore il diritto di comprare (vendere)

Dettagli

Valutazione di investimenti e finanziamenti Strumenti matematici e utilizzo di Microsoft excel

Valutazione di investimenti e finanziamenti Strumenti matematici e utilizzo di Microsoft excel Valutazione di investimenti e finanziamenti Strumenti matematici e utilizzo di Microsoft excel Prima parte... 2 Premessa... 2 Valore attuale di una rendita... 3 Sintassi per l utilizzo delle formule in

Dettagli

La scelta di portafoglio

La scelta di portafoglio La scelta di portafoglio 1 La scelta di portafoglio La scelta di portafoglio: il modo in cui un individuo decide di allocare la propria ricchezza tra più titoli Il mercato dei titoli è un istituzione che

Dettagli

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette.

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette. . Sia dato un poliedro. (a) Un vettore x R n è un vertice di P se soddisfa alla seguenti condizioni: x P e comunque presi due punti distinti x, x 2 P tali che x x e x x 2 si ha x = ( β)x + βx 2 con β [0,

Dettagli