3. Il calcolo a scuola (2): l uso della calcolatrice 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "3. Il calcolo a scuola (2): l uso della calcolatrice 1"

Transcript

1 Didttic 3. Il clcolo scuol (2): l uso dell clcoltrice 1 Ginfrnco Arrigo Clcoli con un sol operzione L prim cos d insegnre d un giovne llievo che voglimo educre ll uso corretto dei moderni mezzi di clcolo è che non si dovrebbe mi impostre un clcolo senz vere un ide, un previsione, un stim del risultto che si vuol rggiungere. È ben vero che i circuiti non sbglino (trnne in csi molto complessi nei quli i residui decimli possono dre origine degenerzioni inccettbili): m è ltrettnto vero che nche il più semplice clcolo, come per esempio (7 x 8) può diventre (7 x 88), (77 x 8), (7 x 85), (7 x 89) ecc. in seguito d errori di bttitur. Dit troppo grosse o unghie troppo lunghe e ffusolte sono premesse per questo genere di errori, come pure l stnchezz, l frett o l vist non perfett. Proponimo di usre soltnto clcoltrici coerenti con l sintssi del clcolo mtemtico: in questo modo l llievo pss senz trumi dlle scritture + b = c e + b c = d ll esecuzione 2 + b = c e + b c = d»; c (Nell descrizione simbolic, signific «introduzione del numero signific uscit del numero c sul disply dell clcoltrice.) 1. Il nuovo contributo sul clcolo numerico continu il discorso inizito sul numero 40, con l rticolo dl titolo «Il clcolo scuol: ovvero l inizio di un cmbimento epocle». 2. Negli esempi mi riferisco lle clcoltrici in uso nell nostr scuol.

2 Didttic Per eseguire l sottrzione ripetut ( b) c = d, o l divisione ripetut (:b):c = e, si può ddirittur procedere senz usre le prentesi: b c = d e L uso dei tsti «prentesi», però, è necessrio nei csi in cui si vogliono dre precedenze diverse d quelle dell sintssi mtemtic (vedi più vnti). 2. Clcoli con più operzioni Le difficoltà comincino qundo si susseguono sottrzioni e ddizioni, divisioni e moltipliczioni. Per eseguire il clcolo (b + c) = d si può procedere così: i) sfruttre il ftto che (b + c) = b c e procedere come prim; ii) usre i tsti prentesi: [( b + c )] = d iii) usre l memori: b + c = Min MR = ( ) precedenz; Un cso non così evidente è costituito dl clcolo : ( b c) = = d b c Si può procedere così: i) sfruttre il ftto che : (b c) = ( : b) : c e procedere come visto in ii) usre i tsti prentesi: [( b x c )] = d iii) usre il tsto 1/x: b x c = INV 1/x d

3 3. Il clcolo scuol (2): l uso dell clcoltrice 59 Per contro, l compresenz di ddizioni/sottrzioni con moltipliczioni/divisioni, nell ordine, non cre lcun difficoltà perché, per fortun, qusi tutte le clcoltrici in commercio riconoscono l gerrchi fr queste operzioni. Così, d esempio, il clcolo +b c = d si esegue molto semplicemente così: + b x c = d Disponendo invece di un clcoltrice che non riconosce l gerrchi fr le operzioni, si opererebbe così: b x c = + = d oppure, se l clcoltrice possiede i tsti prentesi: + [( b x c )] = d 3. Clcolo con le misure sessgesimli Per clcolre con misure sessgesimli (grdi/primi/secondi, ore/minuti/secondi) occorre conoscere il tsto o il suo inverso, ovvero l combinzione di tsti Il primo permette di introdurre un misur sessgesimle (nell ordine: grdi, primi, secondi; oppure: ore, minuti, secondi); l second trsform un numero decimle nell corrispondente form sessgesimle. Per eseguire il clcolo: 23 h 10 min 15 s 20 h 30 min = 2 h 40 min 15 s si procede così: Sul disply ppre l scritt: , d leggersi 2 h 40 min 15 s 4. L uso dei tsti funzione Per il clcolo delle immgini di un funzione predefinit, bst ricordre l ordine: prim si inserisce l rgomento, poi si preme il tsto dell funzione prescelt. Per clcolre l rdice qudrt di 1024, si procede così: Si noti che in questi csi, di solito, è superfluo usre il tsto =

4 Didttic 5. L uso dell modlità sttistic Le clcoltrici munite di funzioni sttistiche sono interessnti nche per llievi dell scuol medi, perché consentono di introdurre un insieme di vlori e restituiscono poi lcuni risultti utili, quli il numero di dti introdotti (indicto con n e che può essere usto nche come controllo), l medi (indict con x), lo scrto tipo (indicto con σ), l somm dei vlori introdotti (indict con x ) e l somm dei loro qudrti (indict con ). Prim di eseguire un clcolo sttistico occorre predisporre l clcoltrice nel «modo sttistico. Per introdurre i vlori, si procede così: prim si impost il numero, poi si preme il tsto M+, e vi di seguito. Qundo si è terminto, si premono i tsti corrispondenti i risultti desiderti. Introducimo i numeri: 4, 4, 5, 5, 6, 3, 3, M+ M+ M+ M+ 6 M+ M+ M+ M+ Interroghimo l clcoltrice e ottenimo: 2 n = 8, x= 33, x = 145, x = , σ x2 6. Errori comuni nell uso elementre dell clcoltrice tscbile 3 1 Clcolre: (b + c) d = r un sequenz - [( corrett: b + c )] x d = r l errore più frequente (8%: 61 su 761): dt. - b + c x d = che corrisponde ll espressione b+c d, ovvimente divers d quell 2 Clcolre: : (b c) = un sequenz corrett: b c = ( : b) : c = r : [( b x c )] = r 3. Rilevzioni ftte nell prov di fine ciclo per le qurte medie del Cnton Ticino (llievi quindicenni), mggio 1998.

5 3. Il clcolo scuol (2): l uso dell clcoltrice 61 l errore più frequente (15,6%: 119 su 761): : b x c = dt. che corrisponde ll espressione ( : b) c, ovvimente divers d quell 3 Clcolre: : (b + c) = un sequenz corrett: b+ c = r : [( b + c )] = r l errore più frequente (15,9%: 121 su 761): : b + c = che corrisponde ll espressione ( : b) + c = : b + c, ovvimente divers d quell dt. 7. Conclusione Come visto nell prim prte 4, il clcolo mentle offre possibilità di pprendimento tutti. È prgonbile un nuovo vsto territorio d scoprire: ci srà chi si ccontent delle zone pinegginti, chi riuscirà percorrere qulche collin e chi si cimenterà con i rilievi più mrcti. Un sufficiente preprzione nel clcolo mentle è nche condizione necessri per ffrontre il clcolo utomtico: è pericoloso e comunque sconsiglibile eseguire mcchin un clcolo se non si è ftt un stim nche grossoln del risultto. Per eseguire clcoli troppo difficili o ddirittur impossibili d fre mentlmente, si us l clcoltrice, il cui uso v ben curto ed esercitto. Di fronte un clcolo, non si deve subito premere tsti, m riflettere, nlizzre, prendere decisioni; solo qundo si h in mente l lgoritmo risolutivo si può inizire l prte esecutiv. Un domnd potrebbe emergere questo punto: «Come si può evitre che l presenz dell clcoltrice in clsse diventi un grosso elemento demotivnte per l pprendimento del clcolo mentle?» 4. Vedi sul numero 40, l rticolo dl titolo «Il clcolo scuol: ovvero l inizio di un cmbimento epocle».

6 Rispondo che è soprttutto un questione di mentlità e quindi di educzione. L insegnnte dev essere cosciente del ftto che il clcolo mentle rppresent: Didttic ) in certe occsioni, un mezzo di clcolo più comodo e veloce dell clcoltrice; b) l unico modo per stimre i risultti di un clcolo che si vuole eseguire mcchin; c) un formzione propedeutic fondmentle per l pprendimento del clcolo letterle. D ltr prte lo stesso insegnnte deve ccettre senz problemi che l mggior prte dei clcoli, soprttutto quelli di un cert complessità, si eseguno mcchin. Tuttvi, usre l clcoltrice non è così fcile come si crede e richiede un buon conoscenz delle proprietà bsilri e dell simbologi del clcolo numerico. È importnte fr nscere negli llievi il gusto per il clcolo (mentle o elettronico), il picere di scoprire «trucchi ingegnosi e personli», l bitudine considerre i numeri come oggetti mtemtici che rcchiudono preziosi segreti d scoprire, l cpcità di orgnizzre un clcolo di un cert complessità, l importnz di stimre il risultto. Tutto ciò può essere ottenuto se l insegnnte si premur di proporre ttività che concernono numeri di un cert complessità. Tutti snno che è bnle clcolre mcchin 54x6, m se occorresse clcolre con precisione (53,785x5,98), llor, dopo ver stimto che il risultto è vicino 324, possimo usre proposito il mezzo tecnologico. M, disponendo nche solo di un elementre clcoltrice tscbile, si possono finlmente ffrontre clcoli ben più complessi. Si scoprirnno ben presto nche i limiti dell clcoltrice non progrmmbile. Un esempio per tutti: il clcolo dell medi ritmetic di due numeri può essere ftto nche senz mcchin, così se i numeri fossero tre o quttro; m l medi di dieci o venti numeri non è più fcilmente clcolbile senz mcchin. Non è più possibile operre con un semplice clcoltrice se i numeri fossero cinqunt o cento (provte inserire nche solo un trentin di numeri nell clcoltrice: ben presto sorgono problemi che per l mggior prte degli llievi si rivelno insormontbili). Occorre quindi servirsi di un computer, per esempio usndo un foglio elettronico. Con quest mcchin ben più evolut è possibile introdurre funzioni di controllo e inoltre, medinte uno scnner e un progrmm OCR si può trsportre un elenco nche lunghissimo di dti dl supporto crtceo d un foglio elettronico, pronto per l elborzione. Come bbimo ppen visto, il clcolo numerico odierno poggi su tre supporti, tutti e tre importnti: il (nuovo) clcolo mentle, il clcolo medinte clcoltrice non progrmmbile, il clcolo medinte computer. D un punto di vist squisitmente eductivo, i nostri giorni si impone un prtic del clcolo scuol che si sviluppi rmoniosmente su tutti e tre e che stbilisc delle interzioni fr le diverse modlità. A un turist itlino che si trovsse dvnti un vetrin di Lugno e che vedesse esposto un rticolo interessnte per 59 frnchi e volesse spere subito più o meno qunte lire corrisponderebbero, gli suggeriremmo di trovre mentlmente i 5/4 di 60, cioè 75 e di considerre quindi che il prezzo in lire è circ Se lo stesso turist

7 3. Il clcolo scuol (2): l uso dell clcoltrice 63 volesse cmbire in lire 3578 frnchi e volesse vere un ide precis dell equivlente in vlut itlin che gli spett, gli suggeriremmo di servirsi di un clcoltrice non progrmmbile. All mico che si dilett giocndo in bors, che segue l evoluzione giornlier di precchi titoli e che volesse essere informto in ogni momento sullo stto del proprio vere, suggeriremmo di preprre, per esempio, un foglio elettronico. E gli lgoritmi medioevli del cosiddetto clcolo in colonn? Dimentichimoli pure, senz nostlgi né flsi timori.

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione ll lgebr E. Modic ersmo@glois.it Liceo Scientifico Sttle S. Cnnizzro Corso P.O.N. Modelli mtemtici e reltà A.S. 2010/2011 Premess Codificre e Decodificre Nell vit quotidin ci cpit spesso di

Dettagli

DESCRIZIONE PROGETTO. Free Software e Didattica

DESCRIZIONE PROGETTO. Free Software e Didattica Vi Lmrmor, 35 00010 Villnov di, Rom, 1. Tipologi progetto : Didttic curriculre Didttic extr-curriculre Accoglienz, orientmento, stge Formzione del personle Altro.. 2. Denominzione progetto Indicre Codice

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA Slvtore Loris Pelell Corso di Mtemtic RCS LIBRI EDUCATION SPA ISBN 88-45-084-3 004 RCS Libri S.p.A.- Milno Prim edizione: gennio 004 Ristmpe 004 005 006 3 4 5 Stmp: V. Bon, Torino Coordinmento editorile

Dettagli

Imparare: cosa, come, perché.

Imparare: cosa, come, perché. GIOCO n. 1 Imprre: cos, come, perché. L pprendimento scolstico non è solo questione di metodo di studio, m di numerose situzioni di tipo personle e di gruppo, oppure legte l contesto in cui pprendimo.

Dettagli

MATEMATIKA OLASZ NYELVEN

MATEMATIKA OLASZ NYELVEN Mtemtik olsz nyelven középszint 061 É RETTSÉGI VIZSGA 007. október 5. MATEMATIKA OLASZ NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Indiczioni

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI 1 se 0, per ogni R ; Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >0: Sono definite: se >0: Non sono definite: Csi prticolri: Le proprietà delle

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Anno 2. Potenze di un radicale e razionalizzazione

Anno 2. Potenze di un radicale e razionalizzazione Anno Potenze di un rdicle e rzionlizzzione Introduzione In quest lezione impreri utilizzre le ultime due tipologie di operzioni sui rdicli, cioè l potenz di un rdicle e l rdice di un rdicle. Successivmente

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Radicali. Definizioni Variazioni di radicali Operazioni Razionalizzazione Radicali doppi Potenze con esponente razionale Esercizi

Radicali. Definizioni Variazioni di radicali Operazioni Razionalizzazione Radicali doppi Potenze con esponente razionale Esercizi Rdicli Definizioni Vrizioni di rdicli Operzioni Rzionlizzzione Rdicli doppi Potenze con esponente rzionle Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni n L espressione è comunemente dett rdice

Dettagli

PRESENTAZIONE AL QUESTIONARIO DI AUTOVALUTAZIONE DELLA MEMORIA (Everyday Memory Questionnaire - EMQ)

PRESENTAZIONE AL QUESTIONARIO DI AUTOVALUTAZIONE DELLA MEMORIA (Everyday Memory Questionnaire - EMQ) PRESENTAZIONE AL QUESTIONARIO DI AUTOVALUTAZIONE DELLA MEMORIA (Everydy Memory Questionnire - EMQ) Drio Slmso e Giuseppin Viol CNR-Psicologi, Vile Mrx 15-00137 ROMA) L'EMQ (Sunderlnd et l., 1983) si propone

Dettagli

Desk CSS-KPMG Innovare la PA. Presentazione del progetto di ricerca Organization Review. Luciano Hinna

Desk CSS-KPMG Innovare la PA. Presentazione del progetto di ricerca Organization Review. Luciano Hinna Desk CSS-KPMG Innovre l PA Presentzione del progetto di ricerc Orgniztion Review Lucino Hinn Obiettivo del progetto Mettere punto un nuov metodologi, intes come strumento d consegnre lle pubbliche mministrzioni

Dettagli

4. L argomento oggetto indiretto 4.1. La funzione oggetto indiretto

4. L argomento oggetto indiretto 4.1. La funzione oggetto indiretto 4. L rgomento oggetto indiretto 4.1. L funzione oggetto indiretto Dopo ver visto i due rgomenti diretti soggetto e oggetto diretto, in quest unità ci occuperemo dell rgomento indiretto più frequente, l

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

PROGRAMMA SVOLTO A. S. 2014/ 2015

PROGRAMMA SVOLTO A. S. 2014/ 2015 A. S. 4/ Nome docente Borgn Giorgio Mteri insegnt Mtemtic Clsse Previsione numero ore di insegnmento IV G mnutenzione e ssistenz tecnic ore complessive di insegnmento settimne X 4 ore = ore Nome Ins. Tecn.

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio Scomposizione di un polinomio in fttori Scomporre in fttori primi un polinomio signific esprimerlo come il prodotto di due più polinomi non più scomponibili Ad esempio 9 = ( 3) fttore 1 ( + 3) fttore +

Dettagli

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per Funzioni di utilità (finlmente un po di geroglifici, dopo i grffiti) NB: non fte leggere queste pgine un mtemtico, ltrimenti mi msscr!. Definizione e proprietà Considerimo due eni e di interesse per un

Dettagli

Le successioni di Fibonacci

Le successioni di Fibonacci Orzio Muscto Diprtimento di Mtemtic e Informtic Università degli studi di Ctni Le successioni di Fiboncci Complementi l corso di Istituzioni di Mtemtiche, Corso di Lure Specilistic quinquennle in Architettur,

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I)

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I) Elettronic dei Sistemi Digitli Il test nei sistemi elettronici: gusti ctstrofici e modelli di gusto (prte I) Vlentino Lierli Diprtimento di Tecnologie dell Informzione Università di Milno, 26013 Crem e-mil:

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

UDA N 2 Scienze e Tecnologie Applicate: Indirizzo INFORMATICA

UDA N 2 Scienze e Tecnologie Applicate: Indirizzo INFORMATICA Sch ed di pro gettzion e d elle Un ità d i App rend imento nu mero 1 UDA N 1 Scienze e Tecnologie Applicte: Indirizzo INFORMATICA UdA N 1 Disciplin Riferimento Titolo The incredibile mchine! informtic

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari :

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari : Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >, per ogni R se, per tutti e soli gli R se

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è un scrittur in cui compiono operzioni tr numeri rppresentti, tutti o in prte, d lettere. Per clcolre il vlore numerico di

Dettagli

Elementi grafici per Matematica

Elementi grafici per Matematica Elementi grfici per Mtemtic Sommrio: Sistemi di coordinte crtesine... Grfici di funzioni... 4. Definizione... 4. Esempi... 5.3 Verificre iniettività e suriettività dl grfico... 8.4 L rett... 9.5 Esempi

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

UNITÀ DI APPRENDIMENTO II QUADRIMESTRE SCUOLE PRIMARIE CLASSI SECONDE

UNITÀ DI APPRENDIMENTO II QUADRIMESTRE SCUOLE PRIMARIE CLASSI SECONDE UNITÀ DI APPRENDIMENTO II QUADRIMESTRE SCUOLE PRIMARIE CLASSI SECONDE UNITA DI APPRENDIMENTO Denominzione Compito-prodotto Competenze mirte Comuni/cittdinnz IL TEMPO PASSA IL MONDO GIRA REALIZZAZIONE DI

Dettagli

COMUNICAZIONE PER VARIAZIONE BIVACCHI FISSI (Legge regionale 18 febbraio 2010, n. 8)

COMUNICAZIONE PER VARIAZIONE BIVACCHI FISSI (Legge regionale 18 febbraio 2010, n. 8) COMUNICAZIONE PER VARIAZIONE BIVACCHI FISSI (Legge regionle 18 febbrio 2010, n. 8) N Prot. VARIAZIONE...del (d compilrsi cur dell ufficio competente) Al Comune di.. Il/L sottoscritto/: Cognome Nome Dt

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è.... Per clcolre il vlore numerico di un espressione letterle isogn...... c. Non si possono ssegnre lle lettere che compiono

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

Anno 1. Numeri reali: proprietà e applicazioni di uso comune

Anno 1. Numeri reali: proprietà e applicazioni di uso comune Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile

Dettagli

Mancanze disciplinari Sanzioni disciplinari Organi competenti

Mancanze disciplinari Sanzioni disciplinari Organi competenti Allegto 1 - REGOLAMENTO DI DISCIPLINA PER LA SCUOLA PRIMARIA Prte integrnte dello stesso Regolmento Mncnze disciplinri Snzioni disciplinri Orgni competenti Il presente llegto costituisce un elenco esemplifictivo,

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto 7 I costi dell impres 7.1. Per l combinzione di equilibrio dei due input, si ved il grfico successivo. L pendenz dell line di isocosto e` pri ll opposto del rpporto tr i prezzi dei fttori: -10 = 2 = -5.

Dettagli

Copyright by Allestimenti Palladio snc

Copyright by Allestimenti Palladio snc Venegono Superiore,. VIA: All c..: Vi n L Vligi del CERTIFICATORE ENERGETICO (Kit di strumenti utile per le verifiche di dispersioni energetiche e dell involucro edilizio) Seleziont per voi presentimo

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

5. Funzioni elementari trascendenti

5. Funzioni elementari trascendenti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 5. Funzioni elementri trscendenti A. A. 2013-2014 1 FUNZIONI ESPONENZIALI Le più semplici funzioni esponenzili sono le funzioni f: R R definite

Dettagli

YOGURT. Dosi per. 150 più secondo il. fermenti. eccezionalee. il nostroo lavorare. intestino. forma. Alla fine

YOGURT. Dosi per. 150 più secondo il. fermenti. eccezionalee. il nostroo lavorare. intestino. forma. Alla fine YOGURT FATTO IN CASAA CON YOGURTIERA Lo yogurt ftto in cs è senz ltro un modoo sno per crere un limento eccezionlee per l nostr slute. Ricco di ltticii iut intestino fermenti il nostroo lvorre meglioo

Dettagli

Teoria in pillole: logaritmi

Teoria in pillole: logaritmi Teori in pillole: logritmi EQUAZIONI ESPONENZIALI Un'equzione si dice esponenzile qundo l'incognit compre soltnto nell'esponente di un o più potenze. L'equzione esponenzile più semplice (elementre) è del

Dettagli

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è: Titolzione Acido Debole Bse Forte L rezione che vviene nell titolzione di un cido debole HA con un bse forte NOH è: HA(q) NOH(q) N (q) A (q) HO Per quest rezione l costnte di equilibrio è: 1 = = >>1 w

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI CAGLIARI Fcoltà di Ingegneri Corso di Lure Specilistic in Ingegneri per l Ambiente e il Territorio TESINA DI CALCOLO NUMERICO Anlisi dell errore nei metodi di risoluzione dei

Dettagli

UN ESPERIENZA DIDATTICA IN UNA SECONDA CLASSE DI LICEO SCIENTIFICO: I RADICALI IN R

UN ESPERIENZA DIDATTICA IN UNA SECONDA CLASSE DI LICEO SCIENTIFICO: I RADICALI IN R ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA Sede di Bologn Scuol di Specilizzzione per l Insegnmento Secondrio Indirizzo Fisico Informtico Mtemtico Clsse A047 Direttore dell Scuol: Prof. Roberto Greci Direttore

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

ESERCIZI ESERCIZI. Test di autoverifica... 206 Prova strutturata conclusiva... 208 ESERCIZI

ESERCIZI ESERCIZI. Test di autoverifica... 206 Prova strutturata conclusiva... 208 ESERCIZI Indice cpitolo Insiemi ed elementi di logic... 7 8 Insiemi... Operzioni con gli insiemi... 8 Introduzione ll logic... 9 Connettivi e tvole di verità... Espressioni proposizionli... 0 Predicti e quntifictori...

Dettagli

Appunti di Analisi matematica 1. Paolo Acquistapace

Appunti di Analisi matematica 1. Paolo Acquistapace Appunti di Anlisi mtemtic Polo Acquistpce 23 febbrio 205 Indice Numeri 4. Alfbeto greco................................. 4.2 Insiemi..................................... 4.3 Funzioni....................................

Dettagli

Appunti di Analisi Matematica 1

Appunti di Analisi Matematica 1 Appunti di Anlisi Mtemtic 1 MASTER IN ECONOMIA DIGITALE & e-business Centro per lo studio dei sistemi complessi Università di Sien Mrzo 2005 Prof. Polo Nistri Un funzione (o ppliczione) tr due insiemi

Dettagli

Calcolo letterale. 1) Operazioni con i monomi. a) La moltiplicazione. b) La divisione. c) Risolvi le seguenti espressioni con i monomi.

Calcolo letterale. 1) Operazioni con i monomi. a) La moltiplicazione. b) La divisione. c) Risolvi le seguenti espressioni con i monomi. Clcolo letterle. ) Operzioni con i monomi. ) L moltipliczione. ) L divisione. c) Risolvi le seguenti espressioni con i monomi. ) I polinomi. ) Clcol le seguenti somme di polinomi. ) Applic l proprietà

Dettagli

Saluti estivi e altre amenità

Saluti estivi e altre amenità Trscurre l mtemtic è un'offes l spere, poiché chi l ignor non può conoscere le ltre scienze o le cose del mondo. Roger Bcon (Ruggero Bcone) (114-194) L mtemtic, l di sopr dell su pplicbilità lle scienze,

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

LE RETTIFICHE DI STORNO

LE RETTIFICHE DI STORNO Cpitolo 11 LE RETTIFICHE DI STORNO cur di Alfredo Vignò Le scritture di rettific di fine esercizio Sono composte l termine del periodo mministrtivo per inserire nel sistem vlori stimti e congetturti di

Dettagli

Alcune mosse che utilizzano le proprietà delle operazioni in N

Alcune mosse che utilizzano le proprietà delle operazioni in N Operzioni in N Proprietà commuttiv dell ddizione + b b +,b N Proprietà ssocitiv dell ddizione ( + b) + c + (b + c) + b + c,b,c N Proprietà invrintiv dell sottrzione b ( + c) (b + c) b ( c) (b c),b,c N,b,c

Dettagli

PRODOTTI NOTEVOLI. Esempi

PRODOTTI NOTEVOLI. Esempi PRODOTTI NOTEVOLI In lger ci sono delle regole per eseguire in modo più reve e più veloce l moltipliczione tr prticolri polinomi. Queste regole (o meglio formule si chimno prodotti notevoli. Anlizzimo

Dettagli

Corso di Laurea in Chimica Regolamento Didattico

Corso di Laurea in Chimica Regolamento Didattico Corso di Lure in Chimic Regolmento Didttico Art.. Il Corso di Lure in Chimic h come finlità l formzione di lureti con competenze nei diversi settori dell chimic per qunto rigurd si gli spetti teorici che

Dettagli

Sistemi lineari Sistemi lineari quadrati

Sistemi lineari Sistemi lineari quadrati Sistemi lineri Sistemi lineri qudrti Definizione e crtteristiche di sistem qudrto (/) Dti un mtrice qudrt A(n n) ed un vettore (colonn) b d n componenti; Determinimo in modo tle che: A b Quest relzione

Dettagli

PROGRAMMA SOCIO EDUCATIVO DI ANIMAZIONE 2014/2015

PROGRAMMA SOCIO EDUCATIVO DI ANIMAZIONE 2014/2015 PROGRMM SOCIO EDUCTIVO DI NIMZIONE 2014/2015 PRESENTZIONE DELLE TTIVIT' EDUCTIVE INTEGRTE ORDINRIE MENSILI - SETTIMNLI ED EXTR ORDINRIE DI NIMZIONE. Relazione e comunicazione : interventi educativi individuali

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

SCOMPOSIZIONE IN FATTORI

SCOMPOSIZIONE IN FATTORI Sintesi di Mtemtic cur di Griell Grzino SCOMPOSIZIONE IN FATTORI ) Rccoglimento fttore comune ( Applicile d un polinomio di un numero qulunque di termini purchè i termini presentino lmeno un letter o un

Dettagli

Rendite (2) (con rendite perpetue)

Rendite (2) (con rendite perpetue) Rendite (2) (con rendite perpetue) Esercizio n. Un ziend industrile viene vlutt ttulizzndo i redditi futuri dell gestione l tsso del 9% con inflzione null. I redditi prospettici vengono stimnti nell misur

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI Elis Gonizzi N mtricol: 3886 Lezione del -- :3-:3 IRRAGGIAMENO: APPLICAZIONI ED EERCIZI E utile l fine di comprendere meglio le ppliczioni e gli esercizi ricordre cos si intend con i termini CORPI NERI

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

Problema 1. Una distribuzione continua di carica vale, in coordinate cilindriche,

Problema 1. Una distribuzione continua di carica vale, in coordinate cilindriche, Corso i Lure in Mtemtic Prim prov in itinere i Fisic 2 (Prof. E. Sntovetti) 18 novemre 2016 Nome: L rispost numeric eve essere scritt nell pposito riquro e giustifict cclueno i clcoli reltivi. Prolem 1.

Dettagli

Ordinanza concernente la legge sul credito al consumo

Ordinanza concernente la legge sul credito al consumo Ordinnz concernente l legge sul credito l consumo (OLCC) 221.214.11 del 6 novemre 2002 (Stto 1 mrzo 2006) Il Consiglio federle svizzero, visti gli rticoli 14, 23 cpoverso 3 e 40 cpoverso 3 dell legge federle

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

PIANO di LAVORO A. S. 2013/ 2014

PIANO di LAVORO A. S. 2013/ 2014 Nome docente Borgn Giorgio Mteri insegnt Mtemtic Clsse Previsione numero ore di insegnmento IV G IPSIA ore complessive di insegnmento 33 settimne X 3 ore = 99 ore Nome Ins. Tecn. Prtico Testo in dozione

Dettagli

C A 10 [HA] C 0 > 100 K

C A 10 [HA] C 0 > 100 K Soluzioni Tmpone Le soluzioni tmpone sono soluzioni in cui sono presenti un cido debole e l su bse coniugt sotto form di sle molto solubile. Hnno l crtteristic di mntenere il ph qusi costnte nche se d

Dettagli

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Ai gentili Clienti Loro sedi Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Al termine di ciscun periodo d impost, dopo ver effettuto le scritture di ssestmento e rettific,

Dettagli

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti:

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti: Minori di un mtrice Si A K m,n, si definisce minore di ordine p con p N, p

Dettagli

Strumenti Matematici per la Fisica

Strumenti Matematici per la Fisica Strumenti Mtemtici per l Fisic Strumenti Mtemtici per l Fisic Approssimzioni Notzione scientific (o esponenzile) Ordine di Grndezz Sistem Metrico Decimle Equivlenze Proporzioni e Percentuli Relzioni fr

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3

Dettagli

Saluti estivi e altre amenità

Saluti estivi e altre amenità Trscurre l mtemtic è un'offes l spere, poiché chi l ignor non può conoscere le ltre scienze o le cose del mondo. Roger Bcon (Ruggero Bcone) (1214-1294) L mtemtic, l di sopr dell su pplicbilità lle scienze,

Dettagli

TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY

TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY DANIELE ANDREUCCI DIP. METODI E MODELLI, UNIVERSITÀ LA SAPIENZA VIA A.SCARPA 16, 00161 ROMA, ITALY ndreucci@dmmm.unirom1.it 1. Notzione fondmentle e prime definizioni

Dettagli

PROGETTO CL@SSI 2.0. 3. Quali di questi strumenti possedete? Mettere una crocetta in una o più caselle. a a. a a

PROGETTO CL@SSI 2.0. 3. Quali di questi strumenti possedete? Mettere una crocetta in una o più caselle. a a. a a Nome scuol... Clsse PROGETTO CL@SSI 2.0 QUESTIONARIO PER LA FASE DI RILEVAZIONE DELLA DOMANDA 1. Genitore ell'lunno/... 3. Quli i questi strumenti posseete? Mettere un crocett in un o più cselle SÌ NO

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Teori in sintesi ESPONENZIALI Potenze con esponente rele Esponenzili e ritmi L potenz è definit: se, per ogni R se, per tutti e soli gli R se, per tutti e soli gli Z. Sono definite: 7 7. Non sono definite:.

Dettagli

Richiami sui vettori. A.1 Segmenti orientati e vettori

Richiami sui vettori. A.1 Segmenti orientati e vettori A Richimi sui vettori Richimimo lcune definizioni e proprietà dei vettori, senz ssolutmente pretendere di drne un trttzione mtemticmente complet. Lvoreremo sempre in uno spzio crtesino (euclideo) tre dimensioni,

Dettagli

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali.

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali. I rdicli Cos è un rdicle? Il simbolo si chim rdicle e si legge rdice ennesim di. - n si chim indice dell rdice e deve essere un numero nturle mggiore di zero. Qundo l indice si sottintende e il rdicle

Dettagli

Mappa delle attività e dei contenuti (indicazioni nodali) Rappresentazioni grafico-pittoruche di esperienze e soggetti a tema (AI)

Mappa delle attività e dei contenuti (indicazioni nodali) Rappresentazioni grafico-pittoruche di esperienze e soggetti a tema (AI) Prim Obietti vi ppren ment o ipotizz ti Disci pline Obiettivi ppren mento* IT 1 2 3 4 5 7 ING 3 MU 1 AI 1 CMS 1 5 ST 1 GEO 3 MAT 1 2 4 7 12 SC 3 TE 2 Mpp delle ttività e dei contenuti (inczioni nodli)

Dettagli

] + [ ] [ ] def. ] e [ ], si ha subito:

] + [ ] [ ] def. ] e [ ], si ha subito: OPE OPERAZIONI BINARIE Definizione di operzione inri Dto un insieme A non vuoto, si him operzione (inri) su A ogni pplizione di A in A In generle, un'operzione su A viene indit on il simolo Se (x, y) è

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

LA GESTIONE DELLE PERDITE SU CREDITI E DELLE SVALUTAZIONI

LA GESTIONE DELLE PERDITE SU CREDITI E DELLE SVALUTAZIONI LA GESTIONE DELLE PERDITE SU CREDITI E DELLE SVALUTAZIONI Le recenti modifiche normtive lle regole fiscli per l gestione delle perdite su crediti, unitmente ll recente pprovzione dell versione revisiont

Dettagli