MATEMATICA FINANZIARIA Appello del 14 luglio 2015

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MATEMATICA FINANZIARIA Appello del 14 luglio 2015"

Transcript

1 MATEMATICA FINANZIARIA Appello del 14 luglio 2015 Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati prof. Renò. Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Un imprenditore accede ad un finanziamento di S 0 = da restituire in un unica soluzione dopo T = 4 anni. Il tasso del finanziamento è lineare ed è pari al 4.6% annuo. Si calcoli l ammontare S 4 da restituire al tempo T, e il tasso interno di rendimento i del finanziamento, esprimendolo in forma percentuale e base annua. S 4 = i = % Si risponda alle medesima domanda nel caso che gli interessi siano composti allo stesso tasso annuo. S 4 = i = % Esercizio 2. Un impresa riceve un prestito di da restituire in m = 20 rate trimestrali posticipate al tasso annuo composto i = 2.25%. Si calcoli anzitutto il valore R della rata: R = Dopo t = 4 mesi, l impresa decide di estinguere anticipatamente il debito, ripagando il valore residuo. Si calcoli il valore V 1 da pagare per ripagare il debito nel caso si utilizzi lo stesso tasso precedente per la valutazione: V 1 = Si calcoli il valore V 1 nel caso in cui, invece, si utilizzi un tasso di due punti percentuali superiore a quello precedente. V 1 =

2 Esercizio 3. Un imprenditore decide di accendere un mutuo per una somma di S = , da restituirsi in 4 rate semestrali al tasso annuo i = 5%. L ammortamento del mutuo prevede che le prime tre rate siano uguali fra loro, e la quarta rata sia il doppio della prima. Si compili il piano di ammortamento giustificando adeguatamente i valori inseriti. rata n. rata quota capitale quota interesse debito residuo

3 Esercizio 4. Si consideri un mercato in cui, al tempo t = 0, la struttura per scadenza dei prezzi dei titoli a cedola nulla unitari sia data da p(0, s) = 1 5.1% s, essendo le scadenze s espresse in anni. Si determinimo le seguenti grandezze, esprimendole in base annua: i(0, 2) = % h(0, 2) = anni 1 h(0, 2, 3) = anni 1 δ(0, 2) = anni 1 Si calcoli inoltre il prezzo P di un TCN a termine, pagato in T = 2 anni, se il valore di rimborso del TCN, pagato in s = 3 anni, è P = Esercizio 5. Un azienda ha un esposizione debitoria di valore attuale 10 milioni di e duration 5.5 anni. Dovendo finanziare un nuovo progetto, accede ad un finanziamento che prevede il rimborso di 1 milione di fra un anno. Se la struttura per scadenza dei tassi di interesse è piatta, al tasso annuo i = 6%, si determini il valore V e la duration D dell esposizione dell azienda dopo il nuovo finanziamento. V = D = anni Un istituto di credito propone una ristrutturazione del debito dell azienda, che consiste nel sostituirne la metà del valore V con un finanziamento di pari valore attuale ma con il doppio della duration. Calcolare la duration D delle passività dell azienda, nell ipotesi che la ristrutturazione venga effettuata. D = anni

4 Esercizio 6. Si consideri un CCT appena emesso, con nominale 400, durata un anno e privo di spread. i(0, 0.5) = 2% e i(0, 1) = 2.6%. Si calcoli il prezzo P e la duration D (in anni) del CCT Si assuma che P = D = anni Si ripeta l esercizio nel caso che il CCT abbia uno spread di 80 punti base su ogni cedola, calcolando il prezzo P e la duration D. P = D = anni

5 MATEMATICA FINANZIARIA Appello del 14 luglio 2015 Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati prof. Renò. Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Un imprenditore accede ad un finanziamento di S 0 = da restituire in un unica soluzione dopo T = 4 anni. Il tasso del finanziamento è lineare ed è pari al 5.6% annuo. Si calcoli l ammontare S 4 da restituire al tempo T, e il tasso interno di rendimento i del finanziamento, esprimendolo in forma percentuale e base annua. S 4 = i = % Si risponda alle medesima domanda nel caso che gli interessi siano composti allo stesso tasso annuo. S 4 = i = % Esercizio 2. Un impresa riceve un prestito di da restituire in m = 20 rate trimestrali posticipate al tasso annuo composto i = 3.25%. Si calcoli anzitutto il valore R della rata: R = Dopo t = 4 mesi, l impresa decide di estinguere anticipatamente il debito, ripagando il valore residuo. Si calcoli il valore V 1 da pagare per ripagare il debito nel caso si utilizzi lo stesso tasso precedente per la valutazione: V 1 = Si calcoli il valore V 1 nel caso in cui, invece, si utilizzi un tasso di due punti percentuali superiore a quello precedente. V 1 =

6 Esercizio 3. Un imprenditore decide di accendere un mutuo per una somma di S = , da restituirsi in 4 rate semestrali al tasso annuo i = 5%. L ammortamento del mutuo prevede che le prime tre rate siano uguali fra loro, e la quarta rata sia il doppio della prima. Si compili il piano di ammortamento giustificando adeguatamente i valori inseriti. rata n. rata quota capitale quota interesse debito residuo

7 Esercizio 4. Si consideri un mercato in cui, al tempo t = 0, la struttura per scadenza dei prezzi dei titoli a cedola nulla unitari sia data da p(0, s) = 1 5.2% s, essendo le scadenze s espresse in anni. Si determinimo le seguenti grandezze, esprimendole in base annua: i(0, 2) = % h(0, 2) = anni 1 h(0, 2, 3) = anni 1 δ(0, 2) = anni 1 Si calcoli inoltre il prezzo P di un TCN a termine, pagato in T = 2 anni, se il valore di rimborso del TCN, pagato in s = 3 anni, è P = Esercizio 5. Un azienda ha un esposizione debitoria di valore attuale 20 milioni di e duration 5 anni. Dovendo finanziare un nuovo progetto, accede ad un finanziamento che prevede il rimborso di 1 milione di fra un anno. Se la struttura per scadenza dei tassi di interesse è piatta, al tasso annuo i = 7%, si determini il valore V e la duration D dell esposizione dell azienda dopo il nuovo finanziamento. V = D = anni Un istituto di credito propone una ristrutturazione del debito dell azienda, che consiste nel sostituirne la metà del valore V con un finanziamento di pari valore attuale ma con il doppio della duration. Calcolare la duration D delle passività dell azienda, nell ipotesi che la ristrutturazione venga effettuata. D = anni

8 Esercizio 6. Si consideri un CCT appena emesso, con nominale 500, durata un anno e privo di spread. i(0, 0.5) = 2% e i(0, 1) = 2.7%. Si calcoli il prezzo P e la duration D (in anni) del CCT Si assuma che P = D = anni Si ripeta l esercizio nel caso che il CCT abbia uno spread di 70 punti base su ogni cedola, calcolando il prezzo P e la duration D. P = D = anni

9 MATEMATICA FINANZIARIA Appello del 14 luglio 2015 Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati prof. Renò. Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Un imprenditore accede ad un finanziamento di S 0 = da restituire in un unica soluzione dopo T = 4 anni. Il tasso del finanziamento è lineare ed è pari al 6.6% annuo. Si calcoli l ammontare S 4 da restituire al tempo T, e il tasso interno di rendimento i del finanziamento, esprimendolo in forma percentuale e base annua. S 4 = i = % Si risponda alle medesima domanda nel caso che gli interessi siano composti allo stesso tasso annuo. S 4 = i = % Esercizio 2. Un impresa riceve un prestito di da restituire in m = 20 rate trimestrali posticipate al tasso annuo composto i = 4.25%. Si calcoli anzitutto il valore R della rata: R = Dopo t = 4 mesi, l impresa decide di estinguere anticipatamente il debito, ripagando il valore residuo. Si calcoli il valore V 1 da pagare per ripagare il debito nel caso si utilizzi lo stesso tasso precedente per la valutazione: V 1 = Si calcoli il valore V 1 nel caso in cui, invece, si utilizzi un tasso di due punti percentuali superiore a quello precedente. V 1 =

10 Esercizio 3. Un imprenditore decide di accendere un mutuo per una somma di S = , da restituirsi in 4 rate semestrali al tasso annuo i = 5%. L ammortamento del mutuo prevede che le prime tre rate siano uguali fra loro, e la quarta rata sia il doppio della prima. Si compili il piano di ammortamento giustificando adeguatamente i valori inseriti. rata n. rata quota capitale quota interesse debito residuo

11 Esercizio 4. Si consideri un mercato in cui, al tempo t = 0, la struttura per scadenza dei prezzi dei titoli a cedola nulla unitari sia data da p(0, s) = 1 5.3% s, essendo le scadenze s espresse in anni. Si determinimo le seguenti grandezze, esprimendole in base annua: i(0, 2) = % h(0, 2) = anni 1 h(0, 2, 3) = anni 1 δ(0, 2) = anni 1 Si calcoli inoltre il prezzo P di un TCN a termine, pagato in T = 2 anni, se il valore di rimborso del TCN, pagato in s = 3 anni, è P = Esercizio 5. Un azienda ha un esposizione debitoria di valore attuale 30 milioni di e duration 4.5 anni. Dovendo finanziare un nuovo progetto, accede ad un finanziamento che prevede il rimborso di 1 milione di fra un anno. Se la struttura per scadenza dei tassi di interesse è piatta, al tasso annuo i = 8%, si determini il valore V e la duration D dell esposizione dell azienda dopo il nuovo finanziamento. V = D = anni Un istituto di credito propone una ristrutturazione del debito dell azienda, che consiste nel sostituirne la metà del valore V con un finanziamento di pari valore attuale ma con il doppio della duration. Calcolare la duration D delle passività dell azienda, nell ipotesi che la ristrutturazione venga effettuata. D = anni

12 Esercizio 6. Si consideri un CCT appena emesso, con nominale 600, durata un anno e privo di spread. i(0, 0.5) = 2% e i(0, 1) = 2.8%. Si calcoli il prezzo P e la duration D (in anni) del CCT Si assuma che P = D = anni Si ripeta l esercizio nel caso che il CCT abbia uno spread di 60 punti base su ogni cedola, calcolando il prezzo P e la duration D. P = D = anni

13 MATEMATICA FINANZIARIA Appello del 14 luglio 2015 Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati prof. Renò. Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Un imprenditore accede ad un finanziamento di S 0 = da restituire in un unica soluzione dopo T = 4 anni. Il tasso del finanziamento è lineare ed è pari al 7.6% annuo. Si calcoli l ammontare S 4 da restituire al tempo T, e il tasso interno di rendimento i del finanziamento, esprimendolo in forma percentuale e base annua. S 4 = i = % Si risponda alle medesima domanda nel caso che gli interessi siano composti allo stesso tasso annuo. S 4 = i = % Esercizio 2. Un impresa riceve un prestito di da restituire in m = 20 rate trimestrali posticipate al tasso annuo composto i = 5.25%. Si calcoli anzitutto il valore R della rata: R = Dopo t = 4 mesi, l impresa decide di estinguere anticipatamente il debito, ripagando il valore residuo. Si calcoli il valore V 1 da pagare per ripagare il debito nel caso si utilizzi lo stesso tasso precedente per la valutazione: V 1 = Si calcoli il valore V 1 nel caso in cui, invece, si utilizzi un tasso di due punti percentuali superiore a quello precedente. V 1 =

14 Esercizio 3. Un imprenditore decide di accendere un mutuo per una somma di S = , da restituirsi in 4 rate semestrali al tasso annuo i = 5%. L ammortamento del mutuo prevede che le prime tre rate siano uguali fra loro, e la quarta rata sia il doppio della prima. Si compili il piano di ammortamento giustificando adeguatamente i valori inseriti. rata n. rata quota capitale quota interesse debito residuo

15 Esercizio 4. Si consideri un mercato in cui, al tempo t = 0, la struttura per scadenza dei prezzi dei titoli a cedola nulla unitari sia data da p(0, s) = 1 5.4% s, essendo le scadenze s espresse in anni. Si determinimo le seguenti grandezze, esprimendole in base annua: i(0, 2) = % h(0, 2) = anni 1 h(0, 2, 3) = anni 1 δ(0, 2) = anni 1 Si calcoli inoltre il prezzo P di un TCN a termine, pagato in T = 2 anni, se il valore di rimborso del TCN, pagato in s = 3 anni, è P = Esercizio 5. Un azienda ha un esposizione debitoria di valore attuale 40 milioni di e duration 4 anni. Dovendo finanziare un nuovo progetto, accede ad un finanziamento che prevede il rimborso di 1 milione di fra un anno. Se la struttura per scadenza dei tassi di interesse è piatta, al tasso annuo i = 9%, si determini il valore V e la duration D dell esposizione dell azienda dopo il nuovo finanziamento. V = D = anni Un istituto di credito propone una ristrutturazione del debito dell azienda, che consiste nel sostituirne la metà del valore V con un finanziamento di pari valore attuale ma con il doppio della duration. Calcolare la duration D delle passività dell azienda, nell ipotesi che la ristrutturazione venga effettuata. D = anni

16 Esercizio 6. Si consideri un CCT appena emesso, con nominale 700, durata un anno e privo di spread. i(0, 0.5) = 2% e i(0, 1) = 2.9%. Si calcoli il prezzo P e la duration D (in anni) del CCT Si assuma che P = D = anni Si ripeta l esercizio nel caso che il CCT abbia uno spread di 50 punti base su ogni cedola, calcolando il prezzo P e la duration D. P = D = anni

MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario

MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

MATEMATICA FINANZIARIA Appello dell 11 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello dell 11 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello dell 11 settembre 2013 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 22 gennaio 2015

MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 23 settembre 2015

MATEMATICA FINANZIARIA Appello del 23 settembre 2015 MATEMATICA FINANZIARIA Appello del 23 settembre 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 6 luglio 2011 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 10 luglio 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 20 gennaio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).

MATEMATICA FINANZIARIA Appello del 20 gennaio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). MATEMATICA FINANZIARIA Appello del 20 gennaio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 24 marzo 2015

MATEMATICA FINANZIARIA Appello del 24 marzo 2015 MATEMATICA FINANZIARIA Appello del 24 marzo 2015 Cognome.................................. Nome.................................. C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 18 marzo 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 18 marzo 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 18 marzo 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 4 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 4 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 4 settembre 2013 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 26 gennaio 2009. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

MATEMATICA FINANZIARIA Appello del 26 gennaio 2009. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli MATEMATICA FINANZIARIA Appello del 26 gennaio 2009 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 16 giugno 2014

MATEMATICA FINANZIARIA Appello del 16 giugno 2014 MATEMATICA FINANZIARIA Appello del 16 giugno 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli MATEMATICA FINANZIARIA Appello del 13 06 2008 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 26 febbraio 2009. Cognome e Nome... C.d.L... Matricola n... Firma...

MATEMATICA FINANZIARIA Appello del 26 febbraio 2009. Cognome e Nome... C.d.L... Matricola n... Firma... MATEMATICA FINANZIARIA Appello del 26 febbraio 2009 Cognome e Nome... C.d.L.... Matricola n.... Firma... Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli Fornire le risposte

Dettagli

MATEMATICA FINANZIARIA Appello del 12 febbraio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).

MATEMATICA FINANZIARIA Appello del 12 febbraio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). MATEMATICA FINANZIARIA Appello del 12 febbraio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Per motivi di bilancio, la Banca può scegliere di finanziare una sola delle due imprese. Quale sceglierà, e per quale motivo?

Per motivi di bilancio, la Banca può scegliere di finanziare una sola delle due imprese. Quale sceglierà, e per quale motivo? MATEMATICA FINANZIARIA Prova intermedia dell 11/11/2014 Pacati Renò non iscritto Cognome e Nome..................................................................... Matricola...................... Fornire

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2000

MATEMATICA FINANZIARIA Appello del 10 luglio 2000 MATEMATICA FINANZIARIA Appello del 10 luglio 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale

MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

Esercizi svolti in aula

Esercizi svolti in aula Esercizi svolti in aula 23 maggio 2012 Esercizio 1 (Esercizio 1 del compito di matematica finanziaria 1 (CdL EA) del 16-02-10) Un individuo vuole accumulare su un conto corrente la somma di 10.000 Euro

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Calcolo Finanziario Esercizi proposti Gli esercizi contrassegnati con (*) è consigliato svolgerli con il foglio elettronico, quelli

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. Prova del 23 giugno 2009. Cognome Nome e matr... Anno di Corso... Firma...

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. Prova del 23 giugno 2009. Cognome Nome e matr... Anno di Corso... Firma... ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Prova del 23 giugno 2009 Cognome Nome e matr..................................................................................

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Università degli Studi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli I-IV del testo Claudio Pacati a.a. 1998 99 c Claudio Pacati tutti i diritti riservati. Il presente

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu Prova del 22 Gennaio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

rata n. rata quota capitale quota interesse debito residuo 0 0 0 0 200 000

rata n. rata quota capitale quota interesse debito residuo 0 0 0 0 200 000 MATEMATICA FINANZIARIA Prova intermedia dell //05 Pacati Quaranta Esercizio. Anna è una giovane che ha appena ricevuto un eredità di 50 000 e decide di investirli in un conto di deposito fino a che non

Dettagli

Nome e Cognome... Matricola...

Nome e Cognome... Matricola... Università degli Studi di Perugia Facoltà di Economia Corso di Laurea in Statistica e Informatica per la Gestione delle Imprese (SIGI) Anno accademico 2006-2007 Matematica Finanziaria (5 crediti) - Prova

Dettagli

IV Esercitazione di Matematica Finanziaria

IV Esercitazione di Matematica Finanziaria IV Esercitazione di Matematica Finanziaria 28 Ottobre 2010 Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 85 giorni, prezzo di acquisto (lordo) P = 97.40 euro e

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti 1. Un capitale d ammontare 100 viene investito, in regime di interesse semplice, al tasso annuo

Dettagli

Cognome Nome Matricola

Cognome Nome Matricola Sede di SULMONA Prova scritta di esame del 01 02-2011 Cognome Nome Matricola Esercizio 1 (punti 5) Nel regime dell interesse iperbolico e dell interesse composto, calcolare il tasso semestrale di interesse

Dettagli

1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare.

1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare. MATEMATICA FINANZIARIA - 6 cfu Prova del 14 aprile 2015 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di

Dettagli

3b. [2] Dopo aver determinato la rata esatta, scrivere il piano di ammortamento.

3b. [2] Dopo aver determinato la rata esatta, scrivere il piano di ammortamento. MATEMATICA FINANZIARIA - 6 cfu Prova del 23 aprile 2014 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 22 maggio 2009

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 22 maggio 2009 ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 22 maggio 2009 Cognome Nome e matr..................................................................................

Dettagli

2. Scomporre la seconda rata in quota di capitale e quota d interesse.

2. Scomporre la seconda rata in quota di capitale e quota d interesse. Esercizi di matematica finanziaria Rate e ammortamenti Esercizio.. Un finanziamento di 0000 euro deve essere rimborsato con tre rate annue costanti d ammontare R. Il tasso contrattuale è 2% annuo (composto)..

Dettagli

LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL

LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL ESERCITAZIONE GUIDATA: LE RENDITE 1. Il montante di una rendita immediata posticipata Utilizzando Excel, calcoliamo il montante di una

Dettagli

1a. [2] Determinare il tasso annuo d interesse della legge lineare cui avviene l operazione finanziaria.

1a. [2] Determinare il tasso annuo d interesse della legge lineare cui avviene l operazione finanziaria. MATEMATICA FINANZIARIA - 6 cfu Prova del 5 febbraio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

INFORMAZIONI SULLA BANCA

INFORMAZIONI SULLA BANCA Mutuo chirografario offerto ai consumatori MUTUO CREDITO AMICO Riservato ai Soci persone fisiche (alla data richiesta finanziamento) INFORMAZIONI SULLA BANCA Cassa Rurale di Trento - Banca di Credito Cooperativo

Dettagli

Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014

Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014 Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014 Avvertenze Durante lo svolgimento degli esercizi tenere

Dettagli

7. CONTABILITA GENERALE

7. CONTABILITA GENERALE 7. CONTABILITA GENERALE II) SCRITTURE DI GESTIONE OTTENIMENTO CAPITALE DI TERZI 1 Definizione Per poter acquisire i fattori produttivi da impiegare nel processo produttivo l impresa necessita del fattore

Dettagli

PRESTITO SOCI BPC TASSO MISTO

PRESTITO SOCI BPC TASSO MISTO scheda prodotto PRESTITO SOCI BPC rilascio del 02.05.2014 FOGLIO INFORMATIVO PRESTITO SOCI BPC TASSO MISTO INFORMAZIONI SULLA BANCA Denominazione e forma giuridica BANCA POPOLARE DEL CASSINATE Società

Dettagli

FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI TASSO FISSO

FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI TASSO FISSO FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI TASSO FISSO INFORMAZIONI SULLA BANCA Denominazione Iscrizione in albi e/o registri Indirizzo della sede legale Banca Euromobiliare S.p.A. Iscritta

Dettagli

MATEMATICA FINANZIARIA Appello del 14 gennaio 2016

MATEMATICA FINANZIARIA Appello del 14 gennaio 2016 MATEMATICA FINANZIARIA Appello del 14 gennaio 2016 Cognome e Nome............................................................. Matricola n....................... Cattedra: Pacati Quaranta Fornire le risposte

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 03/11/2015

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 03/11/2015 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 03/11/2015 Piani di ammortamento Esercizio 1. Un finanziamento pari a 100000e viene rimborsato

Dettagli

Metodi Matematici 2 B 28 ottobre 2010

Metodi Matematici 2 B 28 ottobre 2010 Metodi Matematici 2 B 28 ottobre 2010 1 Prova Parziale - Matematica Finanziaria TEST Cognome Nome Matricola Rispondere alle dieci domande sbarrando, nel caso di risposta multipla, la casella che si ritiene

Dettagli

Foglio Informativo Mutui Fondiari Tasso BCE

Foglio Informativo Mutui Fondiari Tasso BCE Informazioni sulla banca Denominazione e forma giuridica: BANCA DEL SUD S.p.A. Sede legale e amministrativa: VIA CALABRITTO, 20 80121 NAPOLI Recapiti ( telefono e fax) 0819776411, 0817976402 Sito internet:

Dettagli

FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI A TASSO VARIABILE

FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI A TASSO VARIABILE INFORMAZIONI SULLA BANCA Denominazione Iscrizione in albi e/o registri Indirizzo della sede legale FOGLIO INFORMATIVO FINANZIAMENTO CHIROGRAFARIO A PRIVATI A TASSO VARIABILE Banca Euromobiliare S.p.A.

Dettagli

Matematica Finanziaria Soluzione della prova scritta del 15/05/09

Matematica Finanziaria Soluzione della prova scritta del 15/05/09 Matematica Finanziaria Soluzione della prova scritta del 15/05/09 ESERCIZIO 1 Il valore in t = 60 semestri dei versamenti effettuati dall individuo è W (m) = R(1 + i 2 ) m + R(1 + i 2 ) m 1 +... R(1 +

Dettagli

Foglio Informativo CR_ACC-MTP01. Foglio Informativo

Foglio Informativo CR_ACC-MTP01. Foglio Informativo Foglio Informativo Infomazioni sulla Banca Banca A.G.C.I. S.p.A. Sede legale e Direzione Generale: Via Alessandrini, 15 40126 Bologna (BO) Capitale sociale Euro 18.000.000 i.v. Riserve per sovrapprezzo

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIARIA E. Michetti Esercitazioni in aula MOD. 2 E. Michetti (Esercitazioni in aula MOD. 2) MATEMATICA FINANZIARIA 1 / 18 Rendite Esercizi 2.1 1. Un flusso di cassa prevede la riscossione

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Matematica Finanziaria Un utile premessa Negli esercizi di questo capitolo, tutti gli importi in euro sono opportunamente arrotondati al centesimo. Ad esempio,e2 589.23658 e2 589.24 (con un

Dettagli

SOMMARIO. Art. 1 Variazioni alle previsioni di entrata e di spesa del bilancio di previsione 2008

SOMMARIO. Art. 1 Variazioni alle previsioni di entrata e di spesa del bilancio di previsione 2008 SOMMARIO Art. 1 Variazioni alle previsioni di entrata e di spesa del bilancio di previsione 2008 Art. 2 Autorizzazioni di spesa per l anno 2008 Art. 3 Variazioni alle previsioni del bilancio pluriennale

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

MATEMATICA FINANZIARIA Appello del 15 luglio 2009

MATEMATICA FINANZIARIA Appello del 15 luglio 2009 MATEMATICA FINANZIARIA Appello del 15 luglio 2009 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Capitalizzazione composta, rendite, ammortamento

Capitalizzazione composta, rendite, ammortamento Capitalizzazione composta, rendite, ammortamento Paolo Malinconico 2 dicembre 2014 Montante Composto dove: C(t) = C(1+i) t C(t) = montante (o valore del capitale) al tempo t C = capitale impiegato (corrispondente

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008 Nome Cognome Matricola Esercizio 1 (6 punti) Dato un debito di 20 000, lo si voglia rimborsare mediante il pagamento di 12 rate mensili posticipate

Dettagli

Matrice Excel Calcolo rata con DURATA DEL FINANZIAMENTO determinata dall'utente

Matrice Excel Calcolo rata con DURATA DEL FINANZIAMENTO determinata dall'utente Matrice Excel Calcolo rata con DURATA DEL FINANZIAMENTO determinata dall'utente L'acquisto di un immobile comporta un impegno finanziario notevole e non sempre è possibile disporre della somma di denaro

Dettagli

A cura della Segreteria Provinciale S.A.P.P.e di Novara

A cura della Segreteria Provinciale S.A.P.P.e di Novara A cura della Segreteria Provinciale S.A.P.P.e di Novara 1 COS E IL MUTUO INPDAP Il mutuo inpdap è un mutuo ipotecario per l'acquisto della prima casa erogato dall' Istituto Nazionale per i Dipendenti dell'

Dettagli

CONTABILITA GENERALE

CONTABILITA GENERALE CONTABILITA GENERALE 7 II) SCRITTURE DI GESTIONE F) OTTENIMENTO CAPITALE DI TERZI 20 novembre 2010 Ragioneria Generale e Applicata - Parte seconda - La contabilità generale 1 F. Scritture relative all

Dettagli

MUTUO IPOTECARIO CASA

MUTUO IPOTECARIO CASA scheda prodotto MUTUO IPOTECARIO CASA rilascio del 30.08.2013 FOGLIO INFORMATIVO MUTUO IPOTECARIO CASA Tipologia di prodotto: Clientela di destinazione: Profili di utilizzo: MUTUO IPOTECARIO CASA CONSUMATORE

Dettagli

Foglio Informativo Mutui Fondiari

Foglio Informativo Mutui Fondiari Informazioni sulla banca Denominazione e forma giuridica: BANCA DEL SUD S.p.A. Sede legale e amministrativa: VIA CALABRITTO, 20 80121 NAPOLI Recapiti ( telefono e fax) 0819776411, 0817976402 Sito internet:

Dettagli

AMMORTAMENTO. Generalità e Funzionamento dell applicativo

AMMORTAMENTO. Generalità e Funzionamento dell applicativo AMMORTAMENTO Generalità e Funzionamento dell applicativo Per ammortamento di un prestito (mutuo) indiviso si intende quel procedimento in base al quale un soggetto (unico) cede ad un tempo iniziale (es.

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 27 maggio 2010

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 27 maggio 2010 ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 27 maggio 2010 Cognome Nome e matr..................................................................................

Dettagli

RIMBORSO DI UN PRESTITO

RIMBORSO DI UN PRESTITO RIMBORSO DI UN PRESTITO Conoscenze Conoscere le principali forme di rimborso di un prestito Saper individuare gli elementi caratterizzanti un rimborso di un prestito Abilità Saper determinare le principali

Dettagli

FOGLIO INFORMATIVO MUTUO CHIRO GARANZIA CONFIDIMPRESA INFORMAZIONI SULLA BANCA CARATTERISTICHE E RISCHI TIPICI DEL SERVIZIO CONDIZIONI ECONOMICHE

FOGLIO INFORMATIVO MUTUO CHIRO GARANZIA CONFIDIMPRESA INFORMAZIONI SULLA BANCA CARATTERISTICHE E RISCHI TIPICI DEL SERVIZIO CONDIZIONI ECONOMICHE INFORMAZIONI SULLA BANCA CASSA RURALE DI PERGINE Banca di Credito Cooperativo Società Cooperativa Piazza Gavazzi 5-38057 PERGINE VALSUGANA (tn) Tel.: 0461/500111- Fax: 0461/531146 Email: info@cr-pergine.net

Dettagli

REGIONE TOSCANA. Bilancio di previsione per l anno finanziario 2007 e Bilancio pluriennale per il triennio 2007 2009. Assestamento.

REGIONE TOSCANA. Bilancio di previsione per l anno finanziario 2007 e Bilancio pluriennale per il triennio 2007 2009. Assestamento. REGIONE TOSCANA Proposta di Legge Bilancio di previsione per l anno finanziario 2007 e Bilancio pluriennale per il triennio 2007 2009 Assestamento SOMMARIO Art. 1 - Variazioni delle previsioni di entrata

Dettagli

1.a [3] Trovare quale importo può essere finanziato pagando una rata mensile posticipata di 1000e per 5 anni, al tasso semestrale del 5%.

1.a [3] Trovare quale importo può essere finanziato pagando una rata mensile posticipata di 1000e per 5 anni, al tasso semestrale del 5%. ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 16 maggio 2008 Cognome Nome e matr..................................................................................

Dettagli

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti 1 MODULO 1 1.1 Principali grandezze finanziarie 1. Si consideri una operazione finanziaria di provvista che prevede di ottenere

Dettagli

i = ˆ i = 0,02007 i = 0,0201 ˆ "3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo

i = ˆ i = 0,02007 i = 0,0201 ˆ 3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo 1 Appello sessione estiva 2009/ 2010 (tassi equivalenti - ammortamento) 1 Parte Rispondere ai seguenti distinti quesiti in A) e in B). A) Il capitale C=10000 è stato impiegato in capitalizzazione composta

Dettagli

FINANZIAMENTO IMPRESA CONVENZIONE CONFIDIMPRESA LAZIO

FINANZIAMENTO IMPRESA CONVENZIONE CONFIDIMPRESA LAZIO scheda prodotto FINANZIAMENTO IMPRESA CONVENZIONE FIDIMPRESA LAZIO rilascio del 30.08.2013 FOGLIO INFORMATIVO FINANZIAMENTO IMPRESA CONVENZIONE CONFIDIMPRESA LAZIO INFORMAZIONI SULLA BANCA Denominazione

Dettagli

FOGLIO INFORMATIVO aggiornato al 02/01/2015 MUTUI CHIROGRAFARI ALLE FAMIGLIE

FOGLIO INFORMATIVO aggiornato al 02/01/2015 MUTUI CHIROGRAFARI ALLE FAMIGLIE FOGLIO INFORMATIVO aggiornato al 02/01/2015 MUTUI CHIROGRAFARI ALLE FAMIGLIE Informazioni sulla Banca Denominazione e forma giuridica: BANCA POPOLARE DEL FRUSINATE Soc. Coop. per azioni Sede legale e amministrativa:

Dettagli

Dati e qualifica soggetto incaricato dell offerta fuori sede

Dati e qualifica soggetto incaricato dell offerta fuori sede Cassa Lombarda S.p.A. 1 di 7 FOGLIO INFORMATIVO MUTUO CHIROGRAFARIO A TASSO VARIABILE Il presente Foglio Informativo è rivolto ai clienti non Consumatori e ai clienti Consumatori che intendono richiedere

Dettagli

Soluzioni del Capitolo 5

Soluzioni del Capitolo 5 Soluzioni del Capitolo 5 5. Tizio contrae un prestito di 5.000 al cui rimborso provvede mediante il pagamento di cinque rate annue; le prime quattro rate sono ciascuna di importo.00. Determinare l importo

Dettagli

Foglio informativo (I0407) MUTUO IPOTECARIO TASSO VARIABILE, RATA COSTANTE, DURATA VARIABILE CON CAP (Cat. 85)

Foglio informativo (I0407) MUTUO IPOTECARIO TASSO VARIABILE, RATA COSTANTE, DURATA VARIABILE CON CAP (Cat. 85) Foglio informativo (I0407) MUTUO IPOTECARIO TASSO VARIABILE, RATA COSTANTE, DURATA VARIABILE CON CAP (Cat. 85) INFORMAZIONI SULLA BANCA Banca di Credito Cooperativo di Cambiano (Castelfiorentino-Firenze)

Dettagli

MUTUO IPOTECARIO ORDINARIO A DURATA VARIABILE

MUTUO IPOTECARIO ORDINARIO A DURATA VARIABILE Foglio informativo redatto ai sensi della disciplina in materia di trasparenza delle operazioni e dei servizi bancari e finanziari IL PRESENTE FOGLIO INFORMATIVO NON EDIZIONE N. 12 COSTITUISCE OFFERTA

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu quadrate, i punti che saranno assegnati se l esercizio è stato svolto in modo corretto. con le seguenti caratteristiche: prezzo di emissione: 99,467e, valore a scadenza 100e,

Dettagli

Prospetto con dati aggiornati al 01/07/2015 Pagina 1 di 8

Prospetto con dati aggiornati al 01/07/2015 Pagina 1 di 8 . AGGIORNAMENTO N.48 01/07/2015 Come previsto dalla Banca d Italia nelle Disposizioni di Vigilanza del 30/12/2008, in relazione all oggetto, si elencano nel prospetto seguente le diverse tipologie di mutui

Dettagli

MUTUO IPOTECARIO OFFERTO AI CONSUMATORI

MUTUO IPOTECARIO OFFERTO AI CONSUMATORI MUTUO IPOTECARIO OFFERTO AI CONSUMATORI INFORMAZIONI SULLA BANCA Banca di Credito Cooperativo di Anagni Società Cooperativa Piazza G. Marconi n. 17-03012 ANAGNI (FR) Tel.: 0775 73391 - Fax: 0775 728276

Dettagli

Matrice Excel Calcolo rata con TASSO DI INTERESSE determinato dall'utente

Matrice Excel Calcolo rata con TASSO DI INTERESSE determinato dall'utente Matrice Excel Calcolo rata con TASSO DI INTERESSE determinato dall'utente L'acquisto di un immobile comporta un impegno finanziario notevole e non sempre è possibile disporre della somma di denaro sufficiente

Dettagli

I TIPI DI MUTUO E I LORO RISCHI

I TIPI DI MUTUO E I LORO RISCHI INFORMAZIONI SULLA BANCA FOGLIO INFORMATIVO Banca di Salerno Credito Cooperativo Società Cooperativa Via Velia n. 15 84122 SALERNO Tel.: 089 403600 - Fax: 089 794244 Email: segreteria@bancadisalerno.it

Dettagli

FOGLIO INFORMATIVO COMPARATIVO relativo ai MUTUI GARANTITI DA IPOTECA PER L ACQUISTO DELL ABITAZIONE PRINCIPALE

FOGLIO INFORMATIVO COMPARATIVO relativo ai MUTUI GARANTITI DA IPOTECA PER L ACQUISTO DELL ABITAZIONE PRINCIPALE Informazioni sulla banca Denominazione e forma giuridica: BANCA DEL SUD S.p.A. Sede legale e amministrativa: VIA CALABRITTO, 20 80121 NAPOLI Recapiti ( telefono e fax) 0819776411, 0817976402 Sito internet:

Dettagli

QUANTO PUÒ COSTARE IL MUTUO IPOTECARIO PRIMA CASA

QUANTO PUÒ COSTARE IL MUTUO IPOTECARIO PRIMA CASA MUTUO IPOTECARIO PRIMA CASA INFORMAZIONI SULLA BANCA Banca di Credito Cooperativo di Anagni Società Cooperativa Piazza G. Marconi n. 17-03012 ANAGNI (FR) Tel.: 0775 73391 - Fax: 0775 728276 Email: ba_info@bancanagni.it

Dettagli

1. INFORMAZIONI E CONTATTI DEL FINANZIATORE Denominazione e forma giuridica BANCA POPOLARE DEL CASSINATE Società Cooperativa per Azioni

1. INFORMAZIONI E CONTATTI DEL FINANZIATORE Denominazione e forma giuridica BANCA POPOLARE DEL CASSINATE Società Cooperativa per Azioni 1. INFORMAZIONI E CONTATTI DEL FINANZIATORE Denominazione e forma giuridica BANCA POPOLARE DEL CASSINATE Società Cooperativa per Azioni Sede legale ed amministrativa Piazza Armando Diaz n.14 03043 Cassino

Dettagli

Titoli indicizzati Definizioni Prezzo di un CCT. Titoli indicizzati. Flavio Angelini. Università di Perugia

Titoli indicizzati Definizioni Prezzo di un CCT. Titoli indicizzati. Flavio Angelini. Università di Perugia Titoli indicizzati Flavio Angelini Università di Perugia Titoli indicizzati Tra i principali titoli indicizzati del mercato monetario ci sono: Mutui a Tasso Variabile, Obbligazioni a Tasso Variabile, Forward

Dettagli

Matrice Excel Calcolo rata con IMPORTO DEL FINANZIAMENTO determinato dall'utente

Matrice Excel Calcolo rata con IMPORTO DEL FINANZIAMENTO determinato dall'utente Matrice Excel Calcolo rata con IMPORTO DEL FINANZIAMENTO determinato dall'utente L'acquisto di un immobile comporta un impegno finanziario notevole e non sempre è possibile disporre della somma di denaro

Dettagli

ESERCIZI DI CONTABILITA PARTE 2

ESERCIZI DI CONTABILITA PARTE 2 ESERCIZI DI CONTABILITA PARTE 2 (prof. MICHELE GALEOTTI Economia aziendale) 31/12 La società X fitta un capannone a 10000 annuali. La riscossione avviene il 20/5 di ogni anno, in maniera anticipata. 31/12

Dettagli

ANNUNCIO PUBBLICITARIO VALORE SOCIO PRESTITO PERSONALE INFORMAZIONI SULLA BANCA DESTINAZIONE CHE COS'E' IL MUTUO

ANNUNCIO PUBBLICITARIO VALORE SOCIO PRESTITO PERSONALE INFORMAZIONI SULLA BANCA DESTINAZIONE CHE COS'E' IL MUTUO INFORMAZIONI SULLA BANCA Banca Padovana Credito Cooperativo S.C. in Amministrazione Straordinaria Via Caltana n. 7-35011 Campodarsego (Padova) Tel.: +39 049 9290111 Fax: +39 049 9290340 Email: info@bancapadovana.it

Dettagli

ISTITUZIONI DI ECONOMIA AZIENDALE

ISTITUZIONI DI ECONOMIA AZIENDALE ISTITUZIONI DI ECONOMIA AZIENDALE LE OPERAZIONI DI FINANZIAMENTO CON CAPITALE DI TERZI 1 LE OPERAZIONI DI FINANZIAMENTO CON CAPITALE DI TERZI OPERAZIONI A BREVE TERMINE - rapporto di conto corrente - operazioni

Dettagli

Foglio informativo (I0409) MUTUO IPOTECARIO TASSO VARIABILE, RATA COSTANTE, DURATA VARIABILE CON CAP (Cat. 85)

Foglio informativo (I0409) MUTUO IPOTECARIO TASSO VARIABILE, RATA COSTANTE, DURATA VARIABILE CON CAP (Cat. 85) Foglio informativo (I0409) MUTUO IPOTECARIO TASSO VARIABILE, RATA COSTANTE, DURATA VARIABILE CON CAP (Cat. 85) INFORMAZIONI SULLA BANCA Banca di Credito Cooperativo di Cambiano (Castelfiorentino-Firenze)

Dettagli

ITG A. POZZO CORSO DI ESTIMO CLASSE 4^LB NOZIONI DI MATEMATICA FINANZIARIA

ITG A. POZZO CORSO DI ESTIMO CLASSE 4^LB NOZIONI DI MATEMATICA FINANZIARIA ITG A. POZZO CORSO DI ESTIMO CLASSE 4^LB NOZIONI DI MATEMATICA FINANZIARIA Anno scolastico 2008/09 Prof. Romano Oss Matematica finanziaria è uno strumento di calcolo basato sulla teoria dell interesse,

Dettagli

FOGLIO INFORMATIVO CONTRATTO DI MUTUO FONDIARIO AI SENSI DEGLI ARTICOLI 38 E SS. DEL D.LGS. 1 SETTEMBRE 1993, N. 385

FOGLIO INFORMATIVO CONTRATTO DI MUTUO FONDIARIO AI SENSI DEGLI ARTICOLI 38 E SS. DEL D.LGS. 1 SETTEMBRE 1993, N. 385 FOGLIO INFORMATIVO CONTRATTO DI MUTUO FONDIARIO AI SENSI DEGLI ARTICOLI 38 E SS. DEL D.LGS. 1 SETTEMBRE 1993, N. 385 INFORMAZIONI SULLA BANCA CREDIT SUISSE (ITALY) S.p.A. Capogruppo del Gruppo Credit Suisse

Dettagli

Esercizi svolti di Matematica Finanziaria

Esercizi svolti di Matematica Finanziaria Esercizi svolti di Matematica Finanziaria Esercizio I. Si consideri un obbligazione al 6%, con cedole trimestrali, vita a scadenza di anno, rendimento del 3, 7%. Calcolare il prezzo di tale obbligazione,

Dettagli

APPLICAZIONI DELLA MATEMATICA ALL ECONOMIA LEZIONE GLI AMMORTAMENTI. Autore. Francesca Miglietta

APPLICAZIONI DELLA MATEMATICA ALL ECONOMIA LEZIONE GLI AMMORTAMENTI. Autore. Francesca Miglietta APPLICAZIONI DELLA MATEMATICA ALL ECONOMIA LEZIONE GLI AMMORTAMENTI Autore Francesca Miglietta 1 Che cosa si intende per ammortamento? L ammortamento non è altro che il rimborso di un prestito. Il rimborso

Dettagli

PRESTITO D ONORE. Cassa Rurale di Trento - Banca di Credito Cooperativo - Società cooperativa

PRESTITO D ONORE. Cassa Rurale di Trento - Banca di Credito Cooperativo - Società cooperativa Il presente foglio informativo non costituisce offerta al pubblico ai sensi dell art. 1336 Cod.Civ. PRESTITO D ONORE FONDO PER LA VALORIZZAZIONE E LA PROFESSIONALIZZAZIONE DEI GIOVANI (Apertura di credito

Dettagli

Finanziamento degli impianti domestici fotovoltaici in abitazioni di proprietà con installazioni fino a 3 kw.

Finanziamento degli impianti domestici fotovoltaici in abitazioni di proprietà con installazioni fino a 3 kw. INFORMAZIONI SULLA BANCA Banca Padovana Credito Cooperativo S.C. in Amministrazione Straordinaria Via Caltana n. 7-35011 Campodarsego (Padova) Tel.: +39 049 9290111 Fax: +39 049 9290340 Email: info@bancapadovana.it

Dettagli