qwertyuiopasdfghjklzxcvbnmqwerty AppuntiBicoccaAppuntiBicoccaAppu ntibicoccaappuntibicoccaappuntibic occaappuntibicoccaappuntibicoccaa

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "qwertyuiopasdfghjklzxcvbnmqwerty AppuntiBicoccaAppuntiBicoccaAppu ntibicoccaappuntibicoccaappuntibic occaappuntibicoccaappuntibicoccaa"

Transcript

1 qwertyuiopasdfghjklzxcvbnmqwerty AppuntiBicoccaAppuntiBicoccaAppu ntibicoccaappuntibicoccaappuntibic occaappuntibicoccaappuntibicoccaa Analisi multivariata dei dati Teoria e procedimento con SPSS ppuntibicoccaappuntibicoccaappunt Prof. Gallucci ibicoccaappuntibicoccaappuntibicoc Autore Elena Cod. PS055 caappuntibicoccaappuntibicoccaapp untibicoccaappuntibicoccaappuntibi coccaappuntibicoccaappuntibicocca AppuntiBicoccaAppuntiBicoccaAppu ntibicoccaappuntibicoccaappuntibic occaappuntibicoccaappuntibicoccaa ppuntibicoccaappuntibicoccaappunt ibicoccaappuntibicoccaappuntibicoc caappuntibicoccaappuntibicoccaapp untibicoccaappuntibicoccaappuntibi coccaappuntibicoccaappuntibicocca AppuntiBicoccaAppuntiBicoccaAppu ntibicoccaappuntibicoccaappuntibic occaappuntibicoccanmqwertyuiopas

2 Analisi multivariata dei dati MODELLO LINEARE GENERALE... 2 Regressione (lineare) multipla... 3 Regressione Logistica... 4 ANOVA... 5 MODELLO DI MISURA: ATTENDIBILITA... 6 ANALISI FATTORIALE... 7

3 ANALISI MULTIVARIATA DEI DATI MODELLO LINEARE GENERALE Regressione semplice e multipla e ANOVA sono sottocasi del modello lineare generale. ASSUNZIONI Linearità la relazione tra variabile dipendente e indipendente è lineare. Omoschedasticità la varianza di errore è uguale per tutti i valori predetti Normalità degli errori gli errori associati alla relazione sono normalmente distribuiti. Se violata Non apprezziamo la relazione reale tra i dati. Varianza spiegata sarà distorta. Il valore p sarà diverso dal vero rischio di commettere un errore nel rifiutare l ipotesi nulla. Test Analisi dei residui: quando facciamo regressione o anova (nell anova dobbiamo mettere come VD quella che ci interessa testare e come covariate un altra variabile continua), nella finestra schiacciamo salva e selezioniamo residui e valori predetti non standardizzati. Otterremo nel dataset 2 nuove variabili. Scatter plot con asse x predetti e asse y residui: vedo come variano i residui al variare dei valori predetti. Se relazione tra variabili è lineare e l assunzione di omoschedasticità è rispettata, lo scatterplot avrà una forma a banda costante (fascia di punti più o meno di egual larghezza per tutti i valori della variabile predetta). Se ci sono casi estremi (outlier) dobbiamo eliminarli dal dataset ( di norma quando sono 2-3 deviazioni standard oltre la media). Normalità dei residui: Traccio istogramma dei residui. Graph Histogram Inserisco i residui e seleziono Display Normal Curve. Il test di Kolmogorv-Smirnov testa la differenza tra la distribuzione dei residui e una normale gaussiana. Se il test NON è significativo, l assunzione di normalità è rispettata. Analizza non parametric test 1 sample K-S Testo i residui. Quando variabile dipendente non è normo-distribuita si possono fare due tipi di trasformazioni: Normalizzazione (X ES: ln, elevare alla seconda, invertire la funzione) Non esiste una regola precisa per scegliere la trasformazione: la trasformazione che normalizza la variabile è quella che funziona. Bisogna però tenere presente che dopo normalizzazione le unità di misura cambiano, quindi è preferibile interpretare i coefficienti standardizzati. Trasformazione in ranghi I ranghi rappresentano la posizione in una classifica ordinata secondo i punteggi della variabile dipendente. Aumentare di un unità significa scendere di un posto nella classifica, ma la distanza tra le posizioni non è necessariamente costante. I ranghi rispettano l ordine dei punteggi, non la loro intensità relativa e uniformano la distribuzione dei punteggi. Transform Rank Cases Inserisco variabile che voglio trasformare. La trasformazione in ranghi modifica i test del GLM in test non parametrici: - Correlazione di Spearman: equivale alla correlazione di Pearson. Indica il grado di monotonicità della relazione tra due variabili. Analizza correlate bivariate seleziono Spearman - Mann-Whitney: equivale al t-test. Indica il grado di differenza tra due gruppi nelle distribuzioni della variabile dipendente.

4 Analizza Non-parametric test 2 indipendent samples - Kruskal-Wallis: equivale all ANOVA one-way. Viene valutato con il Chi quadro invece che con F. Indica il grado di differenza delle distribuzioni della variabile dipendente tra vari gruppi. Analizza Non-parametric test K indipendent samples Regressione (lineare) multipla Quando si utilizza? - Per valutare l influenza contemporanea di più variabili indipendenti sulla variabile dipendente. - Per valutare gli effetti diretti di una variabile indipendente, sulla variabile dipendente, al netto/mantenendo costante/parzializzando l effetto di un altra variabile indipendente Analisi della covarianza - Per valutare l effetto di una variabile mediatrice o interveniente nel portare l effetto da una variabile indipendente ad una dipendente Analisi della mediazione e Path Analysis Analizza regressione lineare Inserisco variabile dipendente e variabili indipendenti Seleziono Metodo: per passi (se devo fare un confronto tra modello semplice e modello multiplo) Statistica seleziono correlazione di ordine zero e parziali ( per poter analizzare il contributo delle singole variabili) OUTPUT R-quadro = varianza spiegata dal modello. R = Beta = Zero order = correlazione di Pearson non standardizzata. Nella regressione semplice rappresentano la correlazione tra le variabili. B = pendenza. Coefficiente di regressione, quantifica l effetto diretto di una variabile indipendente sulla variabile dipendente, al netto degli effetti dell altra variabile indipendente. Nella regressione semplice rappresenta il cambiamento atteso della variabile dipendente spostando di un unità il valore della variabile indipendente. Costant = intercetta. valore atteso per tutte le variabili indipendenti uguali a 0 (di solito non si interpreta). Partial (parziali) = pr correlazioni parziali. Al quadrato indica il contributo unico della variabile indipendente, cioè la varianza spiegata al netto dell altra variabile indipendente. Part (parziali indipendenti) = sr correlazioni semi-parziali. Al quadrato indica il quadagno sull R quadro, ossia di quanto aumenta la varianza spiegata con il modello multiplo rispetto al modello semplice. APPLICAZIONI DELLA REGRESSIONE MULTIPLA 1. Analisi della mediazione: variabili indipendenti teoricamente organizzate in cause esogene e cause endogene. a: freccia da x a y b: freccia da x a w c: freccia da w a y Faccio una serie di regressioni e ricavo i coefficienti di regressione: 1. Regressione semplice x y Bx 2. Regressione semplice x w Bw= b 3. Regressione multipla x,w y Bx-w= a, Bw-x= c EFFETTO MEDIATO = RIDUZIONE = b c = Bx - a

5 Parte dell effetto semplice che influenza la variabile dipendente attraverso l effetto della variabile mediatrice. Rappresenta anche la riduzione dell effetto di una variabile esogena, dopo aver parzializzato l effetto della variabile mediatrice. EFFETTO DIRETTO = a EFFETTO SEMPLICE = effetto diretto + effetto mediato = Bx Se a non è significativo c è una mediazione totale della variabile endogena. Se a è significativo e risulta ridotto l effetto rispetto a Bx diremo che la mediazione è parziale. Consideriamo effetti di mediazione, quegli effetti indiretti che possono essere strutturati secondo una logica causale, mentre parliamo di effetti intervenienti quando non si possono strutturare in una logica causale. Non c è differenza statistica tra i due tipi di effetti, la differenza è solo logica e concettuale. 2. Path analysis (satura): variabili indipendenti e dipendenti sono organizzate in un modello preciso. Modelli saturi sono quelli in cui sono previsti tutti i possibili path (frecce) e si possono calcolare con una serie di regressioni tenendo presente che: - Le variabili che ricevono la freccia sono dipendenti - Le variabili che mandano la freccia sono indipendenti - Stimeremo tante regressioni quante sono le variabili che ricevono una freccia. 3. Analisi della covarianza: variabili indipendenti sono teoricamente organizzate in predittori e variabili di disturbo. Si utilizza per stimare gli effetti di una variabile indipendente, dopo aver rimosso gli effetti di una o più altre variabili, dette covariate. Regressione in cui si testano e si interpretano i coefficienti di regressione parziali. Regressione Logistica Quando si utilizza? - Per studiare e quantificare le relazioni tra una o più variabili indipendenti quantitative e una variabile dipendente dicotomica. Quindi in quei casi in cui è difficile che siano soddisfatte le assunzioni per la regressione lineare (infatti, per variabili dipendenti continue normalmente distribuite le assunzioni sono verificate). PROBLEMA: dobbiamo trasformare la variabile dipendente tale da linea rizzare la relazione, rendere la variabile dipendente continua e farla variare su tutto l asse in modo che assuma sia valori positivi che negativi. TRASFORMAZIONI DELLA VARIABILE Variabile originale Odd Logit Probabilità Rapporto di probabilità Logaritmo di Odd P = a+bx Appartenenza ad un gruppo. Scala da 0 a 1 P/(1-P) Quanto è più (o meno) probabile un evento rispetto al suo complemento. Scala da 0 a infinito. Ln(P/1-P) Variabile continua definita su tutto l asse Y: permette di esprimere probabilità mediante valori sia positivi che negativi. Odd=1 eventi equiprobabili Odd>1 evento è più probabile del contrario Odd<1 evento meno probabile del contrario Logaritmo è: 0 se argomento=1 Positivo se argomento >1 Negativo se argomento <1

6 Nella regressione logistica si predice mediante una regressione lineare il logaritmo del rapporto tra la probabilità di essere in un gruppo piuttosto che nell altro. Quindi non prediciamo la variabile dipendente di per sé ma una sua derivazione. Analizza regressione logistica binaria Inserisco come variabile dipendente la variabile dicotomica e la/le variabili indipendenti in covariate OUTPUT B = logartimo naturale di Odd MA l unità di misura del logaritmo non è intuitivamente interpretabile. Quindi nell output viene riportato Exp(B), che è l esponenziale del logaritmo del rapporto di probabilità. La funzione esponenziale riporta la variabile dipendente all unità di misura precedente al logaritmo, ossia all odd ratio. Quindi Exp(B) è interpretabile come il tasso con cui aumenta Odd per ogni unità della variabile indipendente, mentre Exp(Costant) è l Odd atteso quando la variabile indipendente è 0. Nella regressione lineare a valore atteso di y per x=0 b quanto dobbiamo AGGIUNGERE ad a passando da x=0 a x=1 Nella regressione logistica Con scala logaritmica la sostanza è la stessa. Ma noi nell output otteniamo l esponenziale, non il logaritmo. Poiché la somma di 2 logaritmi equivale alla esponenziale dei prodotti degli argomenti: Exp(a) valore atteso di Odd per x=0 Exp(b) quanto dobbiamo MOLTIPLICARE a passando da x=0 a x=1 ANOVA Applicazione della regressione nel caso in cui la variabile indipendente sia categorica. Quando si utilizza? - Per valutare se le medie tra due o più gruppi siano significativamente diverse tra loro. - Nel caso in cui 2 misurazioni siano associate a priori, insistano sullo stesso caso, sulla stessa unità di misurazione, si utilizza un disegno a misure ripetute. In questo caso la variabilità non è valutata tra gruppi, ma tra misure diverse in occasioni diverse. Analizza modello lineare generalizzato uni variate (o misure ripetute) Variabile dipendente, fattori fissi (fattore between, variabili indipendenti), covariate (per fare ANCOVA. Testare effetti di una o più variabili indipendenti al netto di una data variabile, appunto la covariata). Tracciare grafico. Post Hoc: confronto di tutte le medie con tutte le medie, senza ipotesi teorica a priori, si fa dopo aver ottenuto effetto principale significativo. I risultati sono però meno affidabili per la capitalizzazione del caso. OUTPUT Test di Mauchly (nelle misure ripetute) ipotesi nulla: varianze sono uguali tra loro e le correlazioni sono omogenee (nel caso ci siano solo 2 gruppi le assunzioni sono automaticamente verificate). Se il test NON è significativo confermo l ipotesi nulla quindi posso assumere la sfericità. Se è significativo devo utilizzare le correzioni fornite dall output (che operano sui gradi di libertà). Test degli effetti fra/entro soggetti Effetti principali effetti di ogni variabile indipendente. Interazioni quando gli effetti di una variabile indipendente sono diversi a diversi livelli dell altra variabile indipendente. Effetti possono essere quantificati mediante l eta-quadro parziale che indica la varianza spiegata da un dato effetto dopo aver rimosso/parzializzato la varianza spiegata dagli altri effetti.

7 Test dei contrasti fra/entro soggetti SPSS fornisce di default il test dei contrasti polinomiali. Serve per vedere, nel caso ci siano più di due gruppi, come differiscono le medie fra loro, se esiste un trend particolare. Lineare: medie tendono ad aumentare o diminuire nel tempo Quadratico: medie tendono prima ad aumentare e poi diminuire, la loro crescita cambia velocità, non è costante. In media, M1+M4 diverse da M2+M3. Cubico: grafico contiene parte a forma di S. Andamento delle medie altalenante, sale e scende. In media M1+M3 diverse da M2+M4. MODELLO DI MISURA: ATTENDIBILITA La validità indica se la misura utilizzata cattura effettivamente il costrutto atteso concetto metodologico, non statistico. Il grado di attendibilità (affidabilità) ci dice quanto una misura cattura coerentemente un costrutto, o in altri termini indica il grado di replicabilità delle misurazioni concetto statistico. Una buona misura è una misura che ha componente sistematica (a volte detta componente vera) grande rispetto a quella casuale. Se la misura è attendibile, differenti forme di misura convergeranno nella componente sistematica e non in quella casuale. Caso I Caso II Caso III Caso IV Tipo di raters Tipo di scala Indice Caratteristiche Griglia di Categorica, K di Cohen Dipende dal n di valutazione di nominale. Indice di categorie. raters esterni. Presenza/assenza di congruenza tra Non cattura congruenze un tratto. raters. sfalsate. Cutoff : >.80 Griglia di valutazione di raters esterni. Griglia di valutazione di raters esterni. Self report, autovalutazione. Caratteristiche ordinabili. Intensità relativa di un tratto. Si ordinano i soggetti in base al giudizio di ogni rater. Caratteristiche continue. Intensità di un tratto. Raters compilano un questionario basato su scala Likert. Caratteristiche continue W di Kendal Se è alto vuol dire che le posizioni nelle diverse classifiche sono simili. ICC Coeff. Di correlazione intraclasse. Quanta variabilità dei punteggi è dovuta a differenze effettive tra soggetti. α di Cronbach indice di coerenza interna degli item. Cutoff : >.70 Se item sono più di 10 deve essere più alto. Indifferente all ordine. Non dipende dal n di categorie. Cattura congruenze sfalsate (tiene conto del fatto che un giudice attribuisca sistematicamente un punteggio inferiore) Si applica anche con più di 2 raters. Si adatta a valutazioni qualitative. Cattura congruenze sfalsate. Si applica anche con più di 2 raters. Può essere calcolato anche su variabili dicotomiche. Assume che le variabili siano tutte orientate nella stessa direzione: item reversed vanno ribaltati moltiplicando per -1.

8 ANALISI FATTORIALE Quando si utilizza? - Per estrarre un numero limitato di fattori da un set di variabili osservate, al fine di rappresentare al meglio la variabilità di tale set. Analizza dimension reduction factor Inserisco gli item. Estrazione seleziono Scree plot Se soluzione non è semplice, ossia ogni item ha una sola saturazione sostanziale, o se non è praticamente semplice, ossia il numero di item in posizioni interstiziali è inferiore al 10% degli item, si ricorre a una rotazione degli assi volta a rendere la soluzione il più semplice possibile. Se voglio fare rotazione: Rotation: varimax: assi ruotati mantenendo ortogonalità. Risultano cambiate: saturazioni fattoriali per rendere la soluzione più semplice, la varianza spiegata dai singoli fattori (i fattori ruotati risulteranno più omogenei in termini di varianza spiegata). Risulta invariata: la varianza totale spiegata dai fattori e la comunalità degli item. direct oblimin: assi ruotati uno alla volta senza essere mantenuti ortogonali. Si utilizza nel caso in cui i fattori siano correlati. Quando la correlazione tra i fattori è bassa (<.20) la soluzione obliqua non conviene (la vedo nella Matrice di correlazione di componenti). L analisi delle componenti principali assume che tutta la varianza di ogni item possa essere spiegata, quindi l algoritmo continua a cercare parti di varianza delle variabili anche se non sono spiegabili perché non condivise dagli item. Inoltre nell ACP sono gli item a generare il fattore ma teoricamente dovrebbe essere il fattore (costrutto) a produrre l item. L analisi a fattori comuni, invece, assume i fattori come formativi dell item ed è preferibile quando si sa a priori quanti fattori estrarre dai dati sulla base di considerazioni teoriche o di dati in letteratura. I risultati tendono ad essere peggiori rispetto ad ACP ma più veritieri. ACF non estrae tutta la varianza degli item, ma solo quella condivisa tra item. Se voglio fare analisi a fattori comuni: Method: Principal axis factoring o Maximum Likelihood (si può usare Unweightened least squares se i risultati con questi 2 metodi sono assurdi) Inserisco il numero di fattori in Fixed number of factors. I punteggi fattoriali equivalgono alla somma del punteggio ad ogni item pesato per l importanza che ha sul fattore, calcolato mediante il coefficiente di punteggio fattoriale che è una derivazione della saturazione primaria item-componente. Il punteggio fattoriale mi restituisce quindi il punteggio di ogni soggetto per ogni fattore. Se voglio ottenere punteggi fattoriali: Scores: Save as variables Solitamente, se non abbiamo una teoria a priori che ci guida su quanti fattori estrarre, usiamo ACP su tutte le variabili. Sulla base dell analisi fatta da SPSS decidiamo quanti fattori estrarre (scree test, auto valori > 1, interpretabilità dei fattori). Quindi chiediamo ad SPSS di estrarre un numero fisso di fattori e li ruotiamo (solitamente con VARIMAX). Valutiamo l importanza dei fattori ruotati in termini di varianza e li interpretiamo in base alla soluzione ruotata (che modifica le saturazioni per rendere la soluzione più semplice). OUTPUT Comunalità: Iniziale varianza spiegabile per ogni item (in ACP è 1 in AFC è inferiore) Estrazione quanto tutti i fattori estratti, quindi la mia soluzione, spiegano di un singolo item (in AFC spesso, ma non necessariamente, è maggiore di quella iniziale).

9 Totale varianza spiegata Total: Autovalori (considero componenti con auto valore maggiore di 1) % Varianza: varianza spiegata da ogni componente % Cumulative: varianza cumulata (somma della varianza spiegata da una componente con quella spiegata dalle precedenti). Rotation sum of squares loadings: compare se faccio rotazione. Mi dice percentuale di varianza spiegata per ogni item e cumulata dopo la rotazione. Solitamente la varianza delle varie componenti è più omogenea. Scree plot: grafico decrescente degli autovalori. Estraggo quei fattori che si discostano dalla linea orizzontale. Matrice dei modelli: saturazioni fattoriali (correlazione di ogni item con ogni componente). Ci aspettiamo che uno stesso item abbia una saturazione primaria sostanziale (>.35) con una sola componente, e saturazioni secondarie di almeno la metà della saturazione primaria. Matrice di struttura: riporta sempre le saturazioni degli item sulle componenti ma è parzializzata, quindi tiene conto delle correlazioni tra item. Matrice di correlazione tra fattori: matrice di correlazione tra le varie componenti. Se i fattori hanno correlazione bassa con gli altri vuol dire che non correlano e sono quindi ortogonali, se hanno alta correlazione posso giustificare l utilizzo di OBLIMIN. Cutoff <.20 Nel caso che usi VARIMAX ottengo Matrice di trasformazione delle componenti.

L analisi fattoriale

L analisi fattoriale L analisi fattoriale Scopo dell analisi fattoriale e quello di identificare alcune variabili latenti (fattori) in grado di spiegare i legami, le interrelazioni e le dipendenze tra le variabili statistiche

Dettagli

Analisi fattoriale. esplorativa vers. 1.0. Germano Rossi 1 germano.rossi@unimib.it. 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Analisi fattoriale. esplorativa vers. 1.0. Germano Rossi 1 germano.rossi@unimib.it. 1 Dipartimento di Psicologia, Università di Milano-Bicocca Analisi fattoriale esplorativa vers. 1.0 Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca 2009 Rossi (Dip. Psicologia) Analisi fattoriale 2009 1 / 47 Prima

Dettagli

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento Analisi della varianza a una via a misure ripetute (Anova con 1 fattore within) modello strutturale dell'analisi della varianza a misure ripetute con 1 fattore: y = μ ik 0 +π i +α k + ik ε ik interazione

Dettagli

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2.

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2. Analisi multivariata Statistica multivariata Quando il numero delle variabili rilevate sullo stesso soggetto aumentano, il problema diventa gestirle tutte e capirne le relazioni. Cercare di capire le relazioni

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it RIPASSO SULLE MATRICI 1 Addizione tra matrici Moltiplicazione Matrice diagonale Matrice identità Matrice trasposta

Dettagli

RICERCHE DI MERCATO. 5.6 Analisi Fattoriale (Componenti Principali)

RICERCHE DI MERCATO. 5.6 Analisi Fattoriale (Componenti Principali) RICERCHE DI MERCATO 5.6 Analisi Fattoriale (Componenti Principali) Prof. L. Neri Dip. di Economia Politica Premessa Come evidenziato in precedenza l approccio di segmentazione per omogeneità prevede la

Dettagli

Elementi di Psicometria

Elementi di Psicometria Elementi di Psicometria 12-Correlazione vers. 1.1 (27 novembre 2012) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca 2011-2012 G. Rossi (Dip. Psicologia)

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

3) ANALISI DEI RESIDUI

3) ANALISI DEI RESIDUI 3) ANALISI DEI RESIDUI Dopo l analisi di regressione si eseguono alcuni test sui residui per avere una ulteriore conferma della validità del modello e delle assunzioni (distribuzione normale degli errori,

Dettagli

Relazioni tra variabili

Relazioni tra variabili Università degli Studi di Padova Facoltà di Medicina e Chirurgia Corso di Laurea in Medicina e Chirurgia - A.A. 009-10 Scuole di specializzazione in: Medicina Legale, Medicina del Lavoro, Igiene e Medicina

Dettagli

Elaborazione dati in Analisi Sensoriale

Elaborazione dati in Analisi Sensoriale Elaborazione dati in Analisi Sensoriale Si è parlato di interpretazione corretta dei risultati ottenuti; a questo concorrono due fattori: affidabilità e validità. Se i test fossero stati ripetuti con lo

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Disegni di Ricerca e Analisi dei Dati in Psicologia Clinica. Indici di Affidabilità

Disegni di Ricerca e Analisi dei Dati in Psicologia Clinica. Indici di Affidabilità Disegni di Ricerca e Analisi dei Dati in Psicologia Clinica Indici di Affidabilità L Attendibilità È il livello in cui una misura è libera da errore di misura È la proporzione di variabilità della misurazione

Dettagli

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla Il metodo della regressione può essere esteso dal caso in cui si considera la variabilità della risposta della y in relazione ad una sola variabile indipendente X ad una situazione più generale in cui

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

Elaborazione dei dati su PC Regressione Multipla

Elaborazione dei dati su PC Regressione Multipla 21 Elaborazione dei dati su PC Regressione Multipla Analizza Regressione Statistiche Grafici Metodo di selezione Analisi dei dati 21.1 Introduzione 21.2 Regressione lineare multipla con SPSS 21.3 Regressione

Dettagli

In una tabella 2 x 2 il valore del chiquadrato, che quantifica la differenza fra i numero osservati e quelli attesi, è la somma delle quattro celle

In una tabella 2 x 2 il valore del chiquadrato, che quantifica la differenza fra i numero osservati e quelli attesi, è la somma delle quattro celle Test statistici il chi quadrato Valutare la differenza tra due percentuali o proporzioni L'ipotesi zero (o ipotesi nulla) afferma che la differenza osservata - di qualsiasi entità essa sia - è dovuta al

Dettagli

FONDAMENTI DI PSICOMETRIA - 8 CFU

FONDAMENTI DI PSICOMETRIA - 8 CFU Ψ FONDAMENTI DI PSICOMETRIA - 8 CFU STIMA DELL ATTENDIBILITA STIMA DELL ATTENDIBILITA DEFINIZIONE DI ATTENDIBILITA (affidabilità, fedeltà) Grado di accordo tra diversi tentativi di misurare uno stesso

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

Gestione ed Analisi Statistica dei dati

Gestione ed Analisi Statistica dei dati Master in Evidence Based Practice e Metodologia della Ricerca clinico-assistenziale assistenziale Gestione ed Analisi Statistica dei dati Daniela Fortuna 13 giugno 2014 Argomenti Parte teorica Relazioni

Dettagli

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici Test non parametrici Test non parametrici Il test T di Student per uno o per due campioni, il test F di Fisher per l'analisi della varianza, la correlazione, la regressione, insieme ad altri test di statistica

Dettagli

Limited Dependent Variable Models

Limited Dependent Variable Models Limited Dependent Variable Models Logit Tobit Probit Modelli Logit e Probit Latent variable models for binary choice Models for descrete dependent variable Traducendo Spesso vogliamo studiare (le determinanti

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Che cosa è la Validità?

Che cosa è la Validità? Validità Che cosa è la Validità? Un test è valido quando misura ciò che intende misurare. Si tratta di un giudizio complessivo della misura in cui prove empiriche e principi teorici supportano l adeguatezza

Dettagli

LA CORRELAZIONE LINEARE

LA CORRELAZIONE LINEARE LA CORRELAZIONE LINEARE La correlazione indica la tendenza che hanno due variabili (X e Y) a variare insieme, ovvero, a covariare. Ad esempio, si può supporre che vi sia una relazione tra l insoddisfazione

Dettagli

lezione 18 AA 2015-2016 Paolo Brunori

lezione 18 AA 2015-2016 Paolo Brunori AA 2015-2016 Paolo Brunori Previsioni - spesso come economisti siamo interessati a prevedere quale sarà il valore di una certa variabile nel futuro - quando osserviamo una variabile nel tempo possiamo

Dettagli

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE STUDIO DI FUNZIONE Passaggi fondamentali Per effettuare uno studio di funzione completo, che non lascia quindi margine a una quasi sicuramente errata inventiva, sono necessari i seguenti 7 passaggi: 1.

Dettagli

FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA

FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA NB Come potete vedere facendo la somma dei punteggi il numero di quesiti è superiore a quello

Dettagli

servono per andare a studiare l'argomento che prendiamo in considerazione in questo momento cioè la scelta politica. Quindi si presuppone,

servono per andare a studiare l'argomento che prendiamo in considerazione in questo momento cioè la scelta politica. Quindi si presuppone, ANALISI FATTORIALE I calcoli che vengono fatti con l'analisi fattoriale servono soprattutto per validare dei questionari quindi è così troviamo una struttura esterna per andare a vedere gli item, cioè

Dettagli

6. Modelli statistici: analisi della regressione lineare

6. Modelli statistici: analisi della regressione lineare BIOSTATISTICA 6. Modelli statistici: analisi della regressione lineare Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

Il coefficiente di correlazione di Spearman per ranghi

Il coefficiente di correlazione di Spearman per ranghi Il coefficiente di correlazione di Spearman per ranghi Questo indice di correlazione non parametrico viene indicato con r s o Spearman rho e permette di valutare la forza del rapporto tra due variabili

Dettagli

3. Piano di lavoro: - applicazione di alcune semplici procedure, con il confronto tra le diverse soluzioni possibili nell ambito del programma SPSS

3. Piano di lavoro: - applicazione di alcune semplici procedure, con il confronto tra le diverse soluzioni possibili nell ambito del programma SPSS Per utilizzare SPSS sui PC dell aula informatica occorre accedere come: ID: SPSS Password: winidams Testo rapido di consultazione: Fideli R. Come analizzare i dati al computer. ed. Carocci, Urbino, 2002.

Dettagli

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE STATISTICA DESCRITTIVA SCHEDA N. : REGRESSIONE LINEARE Nella Scheda precedente abbiamo visto che il coefficiente di correlazione fra due variabili quantitative X e Y fornisce informazioni sull esistenza

Dettagli

Analisi fattoriale 1

Analisi fattoriale 1 Analisi fattoriale Analisi fattoriale: a che serve? L analisi fattoriale permette di rappresentare un set di variabili tramite un insieme più compatto di nuove variate fra loro indipendenti. Da tante variabili

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Lezione n. 2 (a cura di Chiara Rossi)

Lezione n. 2 (a cura di Chiara Rossi) Lezione n. 2 (a cura di Chiara Rossi) QUANTILE Data una variabile casuale X, si definisce Quantile superiore x p : X P (X x p ) = p Quantile inferiore x p : X P (X x p ) = p p p=0.05 x p x p Graficamente,

Dettagli

Analisi delle relazioni tra due caratteri

Analisi delle relazioni tra due caratteri Analisi delle relazioni tra due caratteri Le misure di connessione misurano il grado di associazione tra due caratteri qualsiasi sotto il profilo statistico (e non causale in quanto non è compito della

Dettagli

Excel Terza parte. Excel 2003

Excel Terza parte. Excel 2003 Excel Terza parte Excel 2003 TABELLA PIVOT Selezioniamo tutti i dati (con le relative etichette) Dati Rapporto tabella pivot e grafico pivot Fine 2 La tabella pivot viene messa di default in una pagina

Dettagli

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE FLAVIO ANGELINI Sommario Queste note hanno lo scopo di indicare a studenti di Economia interessati alla finanza quantitativa i concetti essenziali

Dettagli

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO Pasquale Iandolo Laboratorio analisi ASL 4 Chiavarese, Lavagna (GE) 42 Congresso Nazionale SIBioC Roma

Dettagli

Metodi Statistici di Analisi dei Dati Ambientali

Metodi Statistici di Analisi dei Dati Ambientali Metodi Statistici di Analisi dei Dati Ambientali Arianna Azzellino Politecnico di Milano D.I.I.A.R. Dipartimento di Ingegneria Idraulica, Ambientale, Rilevamento e Infrastrutture Viarie Problematica La

Dettagli

General Linear Model. Esercizio

General Linear Model. Esercizio Esercizio General Linear Model Una delle molteplici applicazioni del General Linear Model è la Trend Surface Analysis. Questa tecnica cerca di individuare, in un modello di superficie, quale tendenza segue

Dettagli

1 Associazione tra variabili quantitative COVARIANZA E CORRELAZIONE

1 Associazione tra variabili quantitative COVARIANZA E CORRELAZIONE 1 Associazione tra variabili quantitative ASSOCIAZIONE FRA CARATTERI QUANTITATIVI: COVARIANZA E CORRELAZIONE 2 Associazione tra variabili quantitative Un esempio Prezzo medio per Nr. Albergo cliente (Euro)

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 29-Analisi della potenza statistica vers. 1.0 (12 dicembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

postulato della valutazione tramite indicatori: La valutazione di un sistema sanitario tramite indicatori ipotizza

postulato della valutazione tramite indicatori: La valutazione di un sistema sanitario tramite indicatori ipotizza postulato della valutazione tramite indicatori: La valutazione di un sistema sanitario tramite indicatori ipotizza la praticabilità di una scomposizione della complessità in informazioni elementari ed

Dettagli

EMBA PART TIME 2012 ROMA I ANNO

EMBA PART TIME 2012 ROMA I ANNO BUSINESS STATISTICS: ASSIGNMENT II: EMBA PART TIME 2012 ROMA I ANNO PROF. MOSCONI ESERCIZIO 1: USO DEL MODELLO DI REGRESSIONE PER DETERMINARE IL VALORE DEGLI IMMOBILI. ESERCIZIO 2: PREVISIONE DI VARIABILI

Dettagli

22.03.07 In alcuni casi è possibile applicare sia l analisi log lineare che la regressione logistica. Analisi log lineare e regressione logistica:

22.03.07 In alcuni casi è possibile applicare sia l analisi log lineare che la regressione logistica. Analisi log lineare e regressione logistica: .03.07 In alcuni casi è possibile applicare sia l analisi log lineare che la regressione logistica. Analisi log lineare e regressione logistica: differenze Nella regressione logistica le variabili vengono

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

La categoria «ES» presenta (di solito) gli stessi comandi

La categoria «ES» presenta (di solito) gli stessi comandi Utilizzo delle calcolatrici FX 991 ES+ Parte II PARMA, 11 Marzo 2014 Prof. Francesco Bologna bolfra@gmail.com ARGOMENTI DELLA LEZIONE 1. Richiami lezione precedente 2.Calcolo delle statistiche di regressione:

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Piacenza, 10 marzo 2014 La preparazione della tesi di Laurea Magistrale

Piacenza, 10 marzo 2014 La preparazione della tesi di Laurea Magistrale Piacenza, 0 marzo 204 La preparazione della tesi di Laurea Magistrale ma questa statistica a che cosa serve? non vedo l ora di cominciare a lavorare per la tesi. e dimenticarmi la statistica!! il mio relatore

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Esercizio 1 Si consideri il seguente modello ad effetti fissi con variabili binarie: + 1 2 a) supponete che N=3. Si mostri che i regressori

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI. Docente: Prof. Massimo Mariani

RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI. Docente: Prof. Massimo Mariani RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI Docente: Prof. Massimo Mariani 1 SOMMARIO Il rendimento di un attività finanziaria: i parametri rilevanti Rendimento totale, periodale e medio Il market

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione (con alcune integrazioni) da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo i dati nel file esercizio10_dati.xls.

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL 1 RAPPRESENTAZIONE GRAFICA Per l analisi dati con Excel si fa riferimento alla versione 2007 di Office, le versioni successive non differiscono

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

Esame del corso di MACROECONOMIA Del 22.07.2015 VERSIONE A) COGNOME NOME

Esame del corso di MACROECONOMIA Del 22.07.2015 VERSIONE A) COGNOME NOME Esame del corso di MACROECONOMIA Del 22.07.2015 VERSIONE A) COGNOME NOME MATRICOLA 1) A B C D 2) A B C D 3) A B C D 4) A B C D 5) A B C D 6) A B C D 7) A B C D 8) A B C D 9) A B C D 10) A B C D 11) A B

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

Il modello di regressione lineare multivariata

Il modello di regressione lineare multivariata Il modello di regressione lineare multivariata Eduardo Rossi 2 2 Università di Pavia (Italy) Aprile 2013 Rossi MRLM Econometria - 2013 1 / 39 Outline 1 Notazione 2 il MRLM 3 Il modello partizionato 4 Collinearità

Dettagli

Modello di regressione lineare

Modello di regressione lineare Modello di regressione lineare a cura di Giordano dott. Enrico enrico.giordano@meliorbanca.com Nel presente lavoro viene descritto in modo dettagliato (attraverso anche un impatto visivo), l analisi di

Dettagli

ANALISI DEI DATI BIOLOGICI

ANALISI DEI DATI BIOLOGICI ANALISI DI DATI BIOLOGICI RAPPRSNTAR L COMUNITA tramite descrizioni grafiche e relazioni tra gli organismi presenti nei vari campioni. DISCRIMINAR dei siti sulla base della loro composizione biologica.

Dettagli

Regressione logistica. Strumenti quantitativi per la gestione

Regressione logistica. Strumenti quantitativi per la gestione Regressione logistica Strumenti quantitativi per la gestione Emanuele Taufer file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/4a_rlg.html#(1) 1/25 Metodi di classificazione I metodi usati per analizzare

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

Design of Experiments

Design of Experiments Design of Experiments Luigi Amedeo Bianchi 1 Introduzione Cominciamo spiegando cosa intendiamo con esperimento, ossia l investigare un processo cambiando i dati in ingresso, osservando i cambiamenti che

Dettagli

Regressione logistica

Regressione logistica Regressione logistica Strumenti quantitativi per la gestione Emanuele Taufer Metodi di classificazione Tecniche principali Alcuni esempi Data set Default I dati La regressione logistica Esempio Il modello

Dettagli

Strumenti Informatici 8.1. Realizzare il test della binomiale (o test dei segni) con Excel e SPSS

Strumenti Informatici 8.1. Realizzare il test della binomiale (o test dei segni) con Excel e SPSS 1 Strumenti Informatici 8.1 Realizzare il test della binomiale (o test dei segni) con Excel e SPSS Il test della binomiale (o test dei segni) può essere eseguito con Excel impostando le formule adeguate

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

EPG Metodologia della ricerca e Tecniche Multivariate dei dati. Dott.ssa Antonella Macchia E-mail: a.macchia@unich.it. www.psicometria.unich.

EPG Metodologia della ricerca e Tecniche Multivariate dei dati. Dott.ssa Antonella Macchia E-mail: a.macchia@unich.it. www.psicometria.unich. EPG Metodologia della ricerca e Tecniche Multivariate dei dati Dott.ssa Antonella Macchia E-mail: a.macchia@unich.it www.psicometria.unich.it GIORNI E ORARI LEZIONI Sabato 01-03-2014 h 08:00-12:00 Sabato

Dettagli

i=1 Y i, dove Y i, i = 1,, n sono indipendenti e somiglianti e con la stessa distribuzione di Y.

i=1 Y i, dove Y i, i = 1,, n sono indipendenti e somiglianti e con la stessa distribuzione di Y. Lezione n. 5 5.1 Grafici e distribuzioni Esempio 5.1 Legame tra Weibull ed esponenziale; TLC per v.a. esponenziali Supponiamo che X Weibull(α, β). (i) Si consideri la distribuzione di Y = X β. (ii) Fissato

Dettagli

In laboratorio si useranno fogli di carta millimetrata con scale lineari oppure logaritmiche.

In laboratorio si useranno fogli di carta millimetrata con scale lineari oppure logaritmiche. GRAFICI Servono per dare immediatamente e completamente le informazioni, che riguardano l andamento di una variabile in funzione dell altra. La Geometria Analitica c insegna che c è una corrispondenza

Dettagli

ELEMENTI DI STATISTICA PER IDROLOGIA

ELEMENTI DI STATISTICA PER IDROLOGIA Carlo Gregoretti Corso di Idraulica ed Idrologia Elementi di statist. per Idrolog.-7//4 ELEMETI DI STATISTICA PER IDROLOGIA Introduzione Una variabile si dice casuale quando assume valori che dipendono

Dettagli

Statistica II, Laurea magistrale in Ing. Gestionale, a.a. 20010/11 Esempi di domande e dissertazioni

Statistica II, Laurea magistrale in Ing. Gestionale, a.a. 20010/11 Esempi di domande e dissertazioni Statistica II, Laurea magistrale in Ing. Gestionale, a.a. 20010/11 Esempi di domande e dissertazioni Note. Si pensi di poter rispondere alle seguenti domande avendo l ausilio di: 1) un foglio con l elenco

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it RAPPRESENTAZIONI GRAFICHE Nella comunicazione una figura vale più di cento numeri e di mille parole! 1 SCOPI DELLE

Dettagli

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA SOMMARIO: 2.1 La domanda. - 2.2 Costi, economie di scala ed economie di varietà. - 2.2.1 I costi. - 2.2.2 Le economie di scala. - 2.2.3 Le economie di varietà.

Dettagli

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato Analizza/Confronta medie ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107 t-test test e confronto tra medie chi quadrato C.d.L. Comunicazione e Psicologia a.a. 2008/09 Medie Calcola medie e altre statistiche

Dettagli

Regressione Logistica: un Modello per Variabili Risposta Categoriali

Regressione Logistica: un Modello per Variabili Risposta Categoriali : un Modello per Variabili Risposta Categoriali Nicola Tedesco (Statistica Sociale) Regressione Logistica: un Modello per Variabili Risposta Categoriali 1 / 54 Introduzione Premessa I modelli di regressione

Dettagli

Tasso di interesse e capitalizzazione

Tasso di interesse e capitalizzazione Tasso di interesse e capitalizzazione Tasso di interesse = i = somma che devo restituire dopo un anno per aver preso a prestito un euro, in aggiunta alla restituzione dell euro iniziale Quindi: prendo

Dettagli

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

LA PREVISIONE DELLA DOMANDA. Corso di Gestione della Produzione prof. De Toni, ing. Fornasier 1

LA PREVISIONE DELLA DOMANDA. Corso di Gestione della Produzione prof. De Toni, ing. Fornasier 1 LA PREVISIONE DELLA DOMANDA Corso di Gestione della Produzione prof. De Toni, ing. Fornasier 1 MANUFACTURING PLANNING & CONTROL SYSTEM Resource planning Production planning Demand management Master production

Dettagli

Capitolo Terzo Valore attuale e costo opportunità del capitale

Capitolo Terzo Valore attuale e costo opportunità del capitale Capitolo Terzo Valore attuale e costo opportunità del capitale 1. IL VALORE ATTUALE La logica di investimento aziendale è assolutamente identica a quella adottata per gli strumenti finanziari. Per poter

Dettagli

evolution and innovation in SME s rating

evolution and innovation in SME s rating evolution and innovation in SME s rating IL RISCHIO OPERATIVO GMA 4 5 LA STRUTTURA PROGETTUALE IL RISCHIO OPERATIVO GMA Il rischio operativo GMA prevede l elaborazione degli ultimi tre bilanci aziendali

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

1. Scopo dell esperienza.

1. Scopo dell esperienza. 1. Scopo dell esperienza. Lo scopo di questa esperienza è ricavare la misura di tre resistenze il 4 cui ordine di grandezza varia tra i 10 e 10 Ohm utilizzando il metodo olt- Amperometrico. Tale misura

Dettagli

LA VALUTAZIONE DI PORTAFOGLIO. Giuseppe G. Santorsola 1

LA VALUTAZIONE DI PORTAFOGLIO. Giuseppe G. Santorsola 1 LA VALUTAZIONE DI PORTAFOGLIO Giuseppe G. Santorsola 1 Rendimento e rischio Rendimento e rischio di un singolo titolo Rendimento e rischio di un portafoglio Rendimento ex post Media aritmetica dei rendimenti

Dettagli

GUIDA ALLA LETTURA DELLE SCHEDE FONDI

GUIDA ALLA LETTURA DELLE SCHEDE FONDI GUIDA ALLA LETTURA DELLE SCHEDE FONDI Sintesi Descrizione delle caratteristiche qualitative con l indicazione di: categoria Morningstar, categoria Assogestioni, indice Fideuram. Commenti sulla gestione

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli