Il modello di regressione lineare multivariata

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il modello di regressione lineare multivariata"

Transcript

1 Il modello di regressione lineare multivariata Eduardo Rossi 2 2 Università di Pavia (Italy) Aprile 2013 Rossi MRLM Econometria / 39

2 Outline 1 Notazione 2 il MRLM 3 Il modello partizionato 4 Collinearità Rossi MRLM Econometria / 39

3 Notazione Il MRLM Il modello di regressione lineare multipla: Y i = β 0 + β 1 X 1i β k X ki + u i i = 1, 2,..., n β 0, β 1,... β k parametri fissi ma ignoti, u i ignoto, Y i regredendo, v.casuale, X ik regressore, covariata casuale. 1 β = [β 0, β 1, β 2,..., β k ] X 1i ((k + 1) 1) X i = ((k + 1) 1). 1 y i = [β 0, β 1,..., β k ] X 1i. + u i X ki Y i = β X i + u i X ki i = 1, 2,..., n Rossi MRLM Econometria / 39

4 Notazione Notazione Notazione matriciale Y = X = Y 1. Y n X 1. X n (n 1) = 1 X 11 X X k1 1 X 12 X X k X 1n X 2n... X kn u 1 u 2 u =. u n (n 1) (n (k + 1)) Rossi MRLM Econometria / 39

5 Notazione X 1 β. X nβ = Xβ Il vettore Y raccoglie tutte le osservazioni della variabile dipendente. La matrice X raccoglie le osservazioni sulle variabili esplicative. Ogni colonna di X contiene tutte le osservazioni per la singola variabile esplicativa. Il MRLM in notazione matriciale: Y = Xβ + u Rossi MRLM Econometria / 39

6 il MRLM MRLM - Assunzioni 1. La media condizionale è lineare: E[Y i X i ] = X iβ 2. Campionamento casuale. Per ogni istante (unità) i un nuovo vettore (Y i, X i ) è estratto dalla popolazione in modo indipendente. Rossi MRLM Econometria / 39

7 il MRLM MRLM - Assunzioni La conoscenza di x j per ogni j i non può aiutare nella previsione di Y i : (Y i, X i ) sono estratti in modo indipendente, questo significa: E[Y i X 1,..., X i,..., X n ] = X iβ i = 1,..., n e E[Y i X 1,..., X i,..., X n, Y 1,..., Y i 1, Y i+1,..., Y n ] = X iβ Rossi MRLM Econometria / 39

8 il MRLM 3. Il rango di X è k Il termine di disturbo E[u X] = 0 E[uu X] = σui 2 N In modo non condizionale, per la legge delle aspettative iterate: E{E[u X]} = E[u] = 0 E{E[uu X]} = E[uu ] = σui 2 N Rossi MRLM Econometria / 39

9 il MRLM Il metodo dei minimi quadrati I caratteri variano simultaneamente tra gli individui. Il metodo dei minimi quadrati ordinari è un modo per scomporre le differenze nella variabile dipendente fra diverse caratteristiche osservate (variabili esplicative) per le diverse unità nel campione. Il metodo dei minimi quadrati ordinari (in inglese Ordinary Least Squares, OLS) è usato per stimare il valore di β i, i = 1,..., k. Questi sono scelti in modo tale che siano la soluzione al seguente problema: min β 0,β 1,...,β K n [Y i (β 0 + β 1 X 1i + β 2 X 2i β k X ki )] 2 i=1 Il termine minimi quadrati si riferisce alla minimizzazione della somma delle differenze al quadrato: gli scarti. [Y i (β 0 + β 1 X 1i β k X ki )] Rossi MRLM Econometria / 39

10 il MRLM La somma dei quadrati La funzione obiettivo f(β 0, β 1,..., β k ) = n [Y i (β 0 + β 1 X 1i + β 2 X 2i β k X ik )] 2 (1) i=1 è la sum of squared residuals (somma dei quadrati dei residui). Quando i residui sono valutati in β 1,..., β k i residui sono detti fitted residuals (residui fittati, o residui della regressione). Rossi MRLM Econometria / 39

11 il MRLM Lo stimatore dei minimi quadrati (OLS) Il metodo dei minimi quadrati risolve il problema Definiamo β arg min(y Xβ) (Y Xβ) β S(β) (Y Xβ) (Y Xβ) = i (Y i X iβ) 2 Rossi MRLM Econometria / 39

12 il MRLM Lo stimatore dei minimi quadrati (OLS) S(β) β = i (Y i X i β)2 β i = (Y i X i β)2 β i = 2 (Y i X i β) (β X i ) β ma segue che β β X i = I k X i = X i i 2 (Y i β X i ) (β X i ) = 2 β i (Y i X iβ)x i Rossi MRLM Econometria / 39

13 il MRLM Lo stimatore dei minimi quadrati (OLS) Condizione del primo ordine: (Y i X i β)x i = 0 ovvero i X i Y i = X i X i β i i [ ] 1 β = X i X i X i Y i i β = ( X X ) 1 X Y Gli OLS sono delle somme ponderate delle {Y i }, cioè sono funzioni lineari della variabile dipendente. Questa linearità in {Y i } semplifica l analisi statistica degli OLS. i Rossi MRLM Econometria / 39

14 il MRLM Non distorsione β = (X X) 1 X Y = β + (X X) 1 X u E[ β X] = β + (X X) 1 X E[u X] = β + (X X) 1 X 0 = β Lo stimatore OLS è condizionalmente non distorto, ma anche non condizionatamente (per la legge delle aspettative iterate): E{E[ β X]} = E[ β] = β Rossi MRLM Econometria / 39

15 il MRLM inoltre, [ ] E X β X = Xβ [ E [ ɛ X] = E ] Y X β X = E [Y X] E = Xβ XE[ β X] = Xβ Xβ = 0 [ X β X ] Rossi MRLM Econometria / 39

16 il MRLM Proprietà stimatore OLS Varianza dello stimatore OLS: Var[ β X] = E[( β β)( β β) X] = E[(X X) 1 X uu X(X X) 1 X] = (X X) 1 X E[uu X]X(X X) 1 = σ 2 (X X) 1 La matrice di covarianza misura quanto informatico è il campione per i parametri. La varianza non condizionale Var[ β] = E{V ar[ β X]} = σ 2 E[(X X) 1 ] Se viene ripetuto l esperimento casuale con estrazioni casuali di X, la distribuzione di β è descritta da Var[ β]. Rossi MRLM Econometria / 39

17 il MRLM Matrici di proiezione Data Simmetrica: P X = X(X X) 1 X P X = P X Idempotente: P X P X = [X(X X) 1 X ][X(X X) 1 X ] = X(X X) 1 (X X)(X X) 1 X = X(X X) 1 X = P X con P X X = [X(X X) 1 X ]X = X Rossi MRLM Econometria / 39

18 il MRLM Valori stimati Valori stimati: Ŷ = X β = X(X X) 1 X Y = P X Y Rossi MRLM Econometria / 39

19 il MRLM Residui Residui û = Y X β = Y (X X) 1 X Y = [ I n X(X X) 1 X ] Y = [I n P X ] Y = M X Y con dove M X = I n P X M X X = (I n P X )X = X X = 0 û = M X Y = M X (Xβ + u) = M X u Rossi MRLM Econometria / 39

20 il MRLM Matrici di proiezione M X è simmetrica ed idempotente (come P X ). Inoltre, M X e P X sono ortogonali. P X M X = P X (I n P X ) = P X P X = 0 Rossi MRLM Econometria / 39

21 il MRLM I residui û = M X Y = M X (Xβ + u) = M X Xβ + M X u = M X u Sebbene i residui siano stime di variabili non correlate per assunzione risultano correlati E[ûû X] = E[M X uu M X X] = σ 2 um X la distribuzione è singolare, la matrice di varianza-covarianza è singolare con rango n k 1. Questa è la conseguenza dell ortogonalità con X. Rossi MRLM Econometria / 39

22 Il modello partizionato Il modello partizionato Assunzioni X, (n (k + 1)), è una matrice di rango-colonna pieno, n > k + 1. Il modello partizionato è utile per descrivere come gli OLS assegnano valori agli elementi di β quando tutte le variabili esplicative cambiano da osservazione a osservazione. Y = Xβ = [ X 1 X 2 ] [ β 1 β 2 X 1 (n k 1 ) X 2 (n k 2 ) β 1 (k 1 1) β 2 (k 2 1) ] = X 1 β 1 + X 2 β 2 Rossi MRLM Econometria / 39

23 Il modello partizionato Il modello partizionato Frisch e Waugh (1933), Lowell (1963). Y = P X Y + (I n P X )Y = P X Y + M X Y P X Y = X 1 β1 + X 2 β2 Y = X 1 β1 + X 2 β2 + M X Y M X2 = I n X 2 (X 2X 2 ) 1 X 2 Premoltiplichiamo con X 1 M X 2 : X 1M X2 Y = X 1M X2 X 1 β1 + X 1M X2 X 2 β2 + X 1M X2 M X Y ma M X2 X 2 = 0 M X M X2 X 1 = 0 perchè M X2 X 1 Col(X). Rossi MRLM Econometria / 39

24 Il modello partizionato Il modello partizionato Risolvendo per β 1 si ottiene β 1 = ( X 1M X2 X 1 ) 1 X 1 M X2 Y Quindi lo stimatore β 1 può essere trovato con una procedura a due stadi: 1 regressione di X 1 su X 2, da cui si ottengono i residui M X2 X 1 ; 2 regressione di y sui residui della regressione del primo stadio, M X2 X 1. β 1 cattura la componente di y collineare con X 1 che non può essere spiegata da X 2. Rossi MRLM Econometria / 39

25 Il modello partizionato Il modello partizionato Con errori omoschedastici: ˆβ 1 = ( X ) 1 1M X2 X 1 X 1 M X2 Y = ( X ) 1 1M X2 X 1 X 1 M X2 [X 1 β 1 + X 2 β 2 + u] = β 1 + ( X ) 1 1M X2 X 1 X 1 M X2 u Var[ˆβ 1 X] = E[(β 1 ˆβ 1 )(β 1 ˆβ 1 ) X] = E[ ( X ) 1 1M X2 X 1 X 1 M X2 uu ( ) M X2 X 1 X 1 1 M X2 X 1 X] = ( X ) 1 1M X2 X 1 X 1 M X2 E[uu ( ) X]M X2 X 1 X 1 1 M X2 X 1 = σu 2 ( ) X 1 ( ) 1 M X2 X 1 X 1 M X2 X 1 X 1 1 M X2 X 1 = σu 2 ( ) X 1 1 M X2 X 1 Rossi MRLM Econometria / 39

26 Il modello partizionato La distribuzione degli stimatori OLS nella regressione multipla Sotto le quattro assunzioni dei minimi quadrati, La distribuzione campionaria di ˆβ 1 ha media β 1 Var( ˆβ 1 ) è inversamente proporzionale a n. Al di là di media e varianza, la distribuzione esatta (n-finita) di ˆβ i molto complessa; ma per n grande... p è consistente: ˆβ1 β1 (legge dei grandi numeri) è approssimata da una distribuzione N(0,1) (TLC) Queste proprietà valgono per ˆβ 2,..., ˆβ k Concettualmente, non vi è nulla di nuovo! Rossi MRLM Econometria / 39

27 Il modello partizionato Stima della varianza dell errore E[u 2 i X] = σ 2 Per la legge delle aspettative iterate: Stimatore non distorto: E{E[u 2 i X]} = E[u 2 i ] = σ 2 s 2 = û û n k 1 Per dimostrare la correttezza usiamo le seguenti proprietà della traccia a = tr(a) a R tr(ab) = tr(ba) Rossi MRLM Econometria / 39

28 Il modello partizionato Stima della varianza dell errore E[s 2 X] = E[u M X u X] n k 1 = E[tr(u M X u) X] n k 1 = E[tr(M Xuu ) X] = tr[e(m Xuu X)] n k 1 n k 1 = tr[m XE(uu X)] n k 1 = tr(m Xσ 2 I N ) = tr(σ2 um X ) N K n k 1 = tr(m X ) σ2 u n k 1 = n k 1 σ2 u n k 1 = σu 2 Rossi MRLM Econometria / 39

29 Il modello partizionato Stima della varianza dell errore Non condizionatamente: [ û ] û E n k 1 = σ 2 u s 2 è corretto solo nel caso di disturbi omoschedastici (E[uu ] = σ 2 ui n ). Rossi MRLM Econometria / 39

30 Il modello partizionato La distribuzione degli stimatori OLS nella regressione con due regressori Y i = β 1 X 1i + β 2 X 2i + u i Errori omoschedastici: Var[u i X 1i, X 2i ] = σu 2 notazione matriciale: Y = β 1 X 1 + β 2 X 2 + u ˆβ 1 = ( X ) 1 1M X2 X 1 X 1 M X2 Y X 2 = I n X 2 (X 2X 2 ) 1 X 2 In grandi campioni, la distribuzione di ˆβ 1 ˆβ 1 N(β 1, σ 2ˆβ1 ) Rossi MRLM Econometria / 39

31 Il modello partizionato La distribuzione degli stimatori OLS nella regressione con due regressori Var( ˆβ 1 X) = σu 2 ( ) X 1 1 M X2 X 1 [ X 1 X 1 X 1X 2 (X 2X 2 ) 1 X ] 1 2X 1 = σu 2 = σu 2 1 X 1 X 1 = σu 2 1 X 1 X 1 σ 2 u [ 1 [ 1 (X 1 X 2) 2 ] (X 2 X 2)(X 1 X 1) (X 1 X 2) 2 (X 2 X 2)(X 1 X 1) σ 2ˆβ1 = 1 n σx 2 (1 ρ 2 X 1,X 2 ) 1 1 ] 1 Se X 1 e X 2 sono fortemente correlati allora 1 ρ 2 X 1,X 2 0 e la varianza di ˆβ 1 è più grande di quella che si avrebbe se ρ 2 X 1,X 2 0. Rossi MRLM Econometria / 39

32 Collinearità Collinearità perfetta La collinearità perfetta si ha quando uno dei regressori è una funzione lineare esatta degli altri. Esempi di collinearità perfetta Includere STR due volte, Eseguite la regressione di TestScore su una costante e due variabili dummy, D e B { 1 se STR 20 D i = 0 altrimenti { 1 se STR > 20 B i = 0 altrimenti perciò B i = 1 D i e vi è collinearità perfetta. Ci sarebbe collinearità perfetta se l intercetta (costante) fosse esclusa da questa regressione? Questo esempio è un caso di trappola della dummy. Rossi MRLM Econometria / 39

33 Collinearità Dummy per fenomeni stagionali Consumo: C i = β 0 + β 1 D 1i + β 2 D 2i + βd 3i + β 4 X i + u i { 0 i = secondo, terzo e quarto trimestre D 1i = 1 i = primo trimestre { 0 i = primo, terzo e quarto trimestre D 2i = 1 i = secondo trimestre { 0 i = primo, secondo e quarto trimestre D 3i = 1 i = terzo trimestre La quarta equazione non ha dummy. E l equazione di riferimento cioè la base di partenza rispetto alla quale c è la correzione di intercetta. Rossi MRLM Econometria / 39

34 Collinearità Dummy per fenomeni stagionali n = 8, 8 trimestri X = 1 Y Y Y Y Y Y Y Y Le ultime tre colonne rappresentano le 3 dummy. Rossi MRLM Econometria / 39

35 Collinearità Dummy per fenomeni stagionali Attenzione: Se inseriamo la quarta dummy la prima colonna X = 1 Y Y Y Y Y Y Y Y X 1 = X 3 + X 4 + X 5 + X 6 abbiamo una matrice di rango ridotto (collinearità perfetta). Rossi MRLM Econometria / 39

36 Collinearità Dummy per fenomeni stagionali Con dati trimestrali si usano 3 dummy, con dati mensili si usano 11 dummy. La presenza di outlier la si può accertare, in prima istanza, attraverso l analisi dei residui. Quando vi sono residui molto grandi è probabile che siamo in presenza di un outlier. Rossi MRLM Econometria / 39

37 Collinearità Collinearità perfetta Con G variabili binarie, Se ogni osservazione rientra in una e una sola categoria. se c è un intercetta nella regressione. se tutte le variabili binarie G sono incluse come regressori. allora ci sarà collinearità perfetta. Per eliminare la collinearità perfetta dobbiamo escludere una delle variabili binarie. In questo caso i coefficienti associati con le variabili binarie incluse devono essere interpretati come deviazione dal livello medio. Rossi MRLM Econometria / 39

38 Collinearità Collinearità perfetta La collinearità perfetta solitamente riflette un errore nelle definizioni dei regressori, o una stranezza nei dati Se avete collinearità perfetta, il software statistico ve lo farà sapere bloccandosi, o mostrando un messaggio di errore, o scaricando arbitrariamente una delle variabili La soluzione alla collinearità perfetta consiste nel modificare l elenco di regressori. Rossi MRLM Econometria / 39

39 Collinearità Collinearità imperfetta La collinearità imperfetta è ben diversa dalla collinearità perfetta, nonostante la somiglianza dei nomi La collinearità imperfetta si verifica quando due o più regressori sono altamente correlati. Perchè si usa il termine collinearità? Se due regressori sono altamente correlati, allora il loro diagramma a nuvola apparirà molto simile a una retta sono co-lineari ma a meno che la correlazione sia esattamente = 1, tale collinearità è imperfetta. Rossi MRLM Econometria / 39

Verifica di ipotesi e intervalli di confidenza nella regressione multipla

Verifica di ipotesi e intervalli di confidenza nella regressione multipla Verifica di ipotesi e intervalli di confidenza nella regressione multipla Eduardo Rossi 2 2 Università di Pavia (Italy) Maggio 2014 Rossi MRLM Econometria - 2014 1 / 23 Sommario Variabili di controllo

Dettagli

MODELLO DI REGRESSIONE PER DATI DI PANEL

MODELLO DI REGRESSIONE PER DATI DI PANEL MODELLO DI REGRESSIONE PER DAI DI PANEL 5. Introduzione Storicamente l analisi econometrica ha proceduto in due distinte direzioni: lo studio di modelli macroeconomici, sulla base di serie temporali di

Dettagli

Il modello di regressione lineare multipla con regressori stocastici

Il modello di regressione lineare multipla con regressori stocastici Università di Pavia Il modello di regressione lineare multipla con regressori stocastici Eduardo Rossi Il valore atteso condizionale Modellare l esperimento casuale bivariato nel quale le variabili casuali

Dettagli

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Esercizio 1 Si consideri il seguente modello ad effetti fissi con variabili binarie: + 1 2 a) supponete che N=3. Si mostri che i regressori

Dettagli

Regressione Lineare con un Singolo Regressore

Regressione Lineare con un Singolo Regressore Regressione Lineare con un Singolo Regressore Quali sono gli effetti dell introduzione di pene severe per gli automobilisti ubriachi? Quali sono gli effetti della riduzione della dimensione delle classi

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

Gli OLS come statistica descrittiva

Gli OLS come statistica descrittiva Gli OLS come statistica descrittiva Cos è una statistica descrittiva? È una funzione dei dati che fornisce una sintesi su un particolare aspetto dei dati che a noi interessa; naturalmente, è auspicabile

Dettagli

Appunti di Econometria

Appunti di Econometria Appunti di Econometria ARGOMEO [5]: ANALISI DEI DATI PANEL Maria Luisa Mancusi Università Bocconi Novembre 2009 1 I dati panel Un panel è un campione che contiene osservazioni su N individui per T anni.

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

6. Modelli statistici: analisi della regressione lineare

6. Modelli statistici: analisi della regressione lineare BIOSTATISTICA 6. Modelli statistici: analisi della regressione lineare Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

4. Matrici e Minimi Quadrati

4. Matrici e Minimi Quadrati & C. Di Natale: Matrici e sistemi di equazioni di lineari Formulazione matriciale del metodo dei minimi quadrati Regressione polinomiale Regressione non lineare Cross-validazione e overfitting Regressione

Dettagli

Regressione lineare multipla

Regressione lineare multipla Regressione lineare multipla Eduardo Rossi 2 2 Università di Pavia (Italy) Aprile 2014 Rossi Regressione lineare Econometria - 2014 1 / 31 Outline 1 La distorsione da variabili omesse 2 Causalità 3 Misure

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

Test di restrizioni lineari nel MRLM: Esempi

Test di restrizioni lineari nel MRLM: Esempi Test di restrizioni lineari nel MRLM: Esempi Eduardo Rossi Università degli Studi di Pavia Corso di Econometria Marzo 2012 Rossi Test F: esempi 2012 1 / 23 Funzione di produzione Cobb-Douglas Esempio GDP

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE STATISTICA DESCRITTIVA SCHEDA N. : REGRESSIONE LINEARE Nella Scheda precedente abbiamo visto che il coefficiente di correlazione fra due variabili quantitative X e Y fornisce informazioni sull esistenza

Dettagli

Lineamenti di econometria 2

Lineamenti di econometria 2 Lineamenti di econometria 2 Camilla Mastromarco Università di Lecce Master II Livello "Analisi dei Mercati e Sviluppo Locale" (PIT 9.4) Aspetti Statistici della Regressione Aspetti Statistici della Regressione

Dettagli

La Regressione Lineare

La Regressione Lineare La Regressione Lineare. Cos è l Analisi della Regressione Multipla? L analisi della regressione multipla è una tecnica statistica che può essere impiegata per analizzare la relazione tra una variabile

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2.

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2. Analisi multivariata Statistica multivariata Quando il numero delle variabili rilevate sullo stesso soggetto aumentano, il problema diventa gestirle tutte e capirne le relazioni. Cercare di capire le relazioni

Dettagli

Modello di regressione lineare

Modello di regressione lineare Modello di regressione lineare a cura di Giordano dott. Enrico enrico.giordano@meliorbanca.com Nel presente lavoro viene descritto in modo dettagliato (attraverso anche un impatto visivo), l analisi di

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Lineamenti di econometria 2

Lineamenti di econometria 2 Lineamenti di econometria 2 Camilla Mastromarco Università di Lecce Master II Livello "Analisi dei Mercati e Sviluppo Locale" (PIT 9.4) Regressione con Variabili Dummy Regressione con Variabili Dummy La

Dettagli

lezione 18 AA 2015-2016 Paolo Brunori

lezione 18 AA 2015-2016 Paolo Brunori AA 2015-2016 Paolo Brunori Previsioni - spesso come economisti siamo interessati a prevedere quale sarà il valore di una certa variabile nel futuro - quando osserviamo una variabile nel tempo possiamo

Dettagli

Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni)

Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni) STATISTICA (2) ESERCITAZIONE 4 18.02.2013 Dott.ssa Antonella Costanzo Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni) Sia X una popolazione distribuita secondo la legge Bernoulliana

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla Il metodo della regressione può essere esteso dal caso in cui si considera la variabilità della risposta della y in relazione ad una sola variabile indipendente X ad una situazione più generale in cui

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it RIPASSO SULLE MATRICI 1 Addizione tra matrici Moltiplicazione Matrice diagonale Matrice identità Matrice trasposta

Dettagli

Appunti di Econometria

Appunti di Econometria Appunti di Econometria ARGOMENTO [2]: ESTENSIONI DEL MODELLO LINEARE Tommaso Nannicini Università Bocconi Ottobre 2010 1 Scelta della forma funzionale Abbiamo visto che abbandonare l assunzione di normalità

Dettagli

Il modello di regressione lineare classico

Il modello di regressione lineare classico Università di Pavia Il modello di regressione lineare classico Eduardo Rossi Ipotesi Il modello di regressione lineare classico y t = x tβ + ε t t = 1,...,N Y = Xβ + ε Se il modello ha un intercetta allora

Dettagli

Elaborazione dei dati su PC Regressione Multipla

Elaborazione dei dati su PC Regressione Multipla 21 Elaborazione dei dati su PC Regressione Multipla Analizza Regressione Statistiche Grafici Metodo di selezione Analisi dei dati 21.1 Introduzione 21.2 Regressione lineare multipla con SPSS 21.3 Regressione

Dettagli

Analisi Statistica Spaziale

Analisi Statistica Spaziale Analisi Statistica Spaziale Posa D., De Iaco S. posa@economia.unile.it s.deiaco@economia.unile.it UNIVERSITÀ del SALENTO DIP.TO DI SCIENZE ECONOMICHE E MATEMATICO-STATISTICHE FACOLTÀ DI ECONOMIA ANNO ACCADEMICO

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

= E(X t+k X t+k t ) 2 + 2E [( X t+k X t+k t + E

= E(X t+k X t+k t ) 2 + 2E [( X t+k X t+k t + E 1. Previsione per modelli ARM A Questo capitolo è dedicato alla teoria della previsione lineare per processi stocastici puramente non deterministici, cioè per processi che ammettono una rappresentazione

Dettagli

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini)

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Esercizio 1 In uno studio sugli affitti mensili, condotto su un campione casuale di 14 monolocali nella città nella città

Dettagli

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008 Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica 18 dicembre 008 Esame sull intero programma: esercizi da A a D Esame sulla seconda parte del programma: esercizi

Dettagli

Lineamenti di econometria 2

Lineamenti di econometria 2 Lineamenti di econometria 2 Camilla Mastromarco Università di Lecce Master II Livello "Analisi dei Mercati e Sviluppo Locale" (PIT 9.4) La Regressione Multipla La Regressione Multipla La regressione multipla

Dettagli

EMBA PART TIME 2012 ROMA I ANNO

EMBA PART TIME 2012 ROMA I ANNO BUSINESS STATISTICS: ASSIGNMENT II: EMBA PART TIME 2012 ROMA I ANNO PROF. MOSCONI ESERCIZIO 1: USO DEL MODELLO DI REGRESSIONE PER DETERMINARE IL VALORE DEGLI IMMOBILI. ESERCIZIO 2: PREVISIONE DI VARIABILI

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica

Dettagli

(a cura di Francesca Godioli)

(a cura di Francesca Godioli) lezione n. 12 (a cura di Francesca Godioli) Ad ogni categoria della variabile qualitativa si può assegnare un valore numerico che viene chiamato SCORE. Passare dalla variabile qualitativa X2 a dei valori

Dettagli

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento Analisi della varianza a una via a misure ripetute (Anova con 1 fattore within) modello strutturale dell'analisi della varianza a misure ripetute con 1 fattore: y = μ ik 0 +π i +α k + ik ε ik interazione

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione (con alcune integrazioni) da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo i dati nel file esercizio10_dati.xls.

Dettagli

Concetti introduttivi

Concetti introduttivi Indice 1 Concetti introduttivi 3 1.1 Studi sperimentali e studi osservazionali..................... 3 1.2 Concetti iniziali: indipendenza fra eventi..................... 6 1.3 Indipendenza fra variabili

Dettagli

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL 1 RAPPRESENTAZIONE GRAFICA Per l analisi dati con Excel si fa riferimento alla versione 2007 di Office, le versioni successive non differiscono

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica

Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica Università del Piemonte Orientale Corsi di Laurea Triennale di area tecnica Corso di Statistica Medica Campionamento e distribuzione campionaria della media Corsi di laurea triennale di area tecnica -

Dettagli

1. Richiami di Statistica. Stefano Di Colli

1. Richiami di Statistica. Stefano Di Colli 1. Richiami di Statistica Metodi Statistici per il Credito e la Finanza Stefano Di Colli Dati: Fonti e Tipi I dati sperimentali sono provenienti da un contesto delimitato, definito per rispettare le caratteristiche

Dettagli

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice cap 0 Romane - def_layout 1 12/06/12 07.51 Pagina V Prefazione xiii Capitolo 1 Nozioni introduttive 1 1.1 Introduzione 1 1.2 Cenni storici sullo sviluppo della Statistica 2 1.3 La Statistica nelle scienze

Dettagli

Analisi discriminante

Analisi discriminante Capitolo 6 Analisi discriminante L analisi statistica multivariata comprende un corpo di metodologie statistiche che permettono di analizzare simultaneamente misurazioni riguardanti diverse caratteristiche

Dettagli

Statistica Applicata all edilizia: il modello di regressione

Statistica Applicata all edilizia: il modello di regressione Statistica Applicata all edilizia: il modello di regressione E-mail: orietta.nicolis@unibg.it 27 aprile 2009 Indice Il modello di Regressione Lineare 1 Il modello di Regressione Lineare Analisi di regressione

Dettagli

La regressione lineare applicata a dati economici

La regressione lineare applicata a dati economici La regressione lineare applicata a dati economici Matteo Pelagatti 7 febbraio 2008 Indice 1 Il modello lineare 2 2 La stima dei coefficienti e le ipotesi classiche 2 3 Le conseguenze del venir meno di

Dettagli

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE FLAVIO ANGELINI Sommario Queste note hanno lo scopo di indicare a studenti di Economia interessati alla finanza quantitativa i concetti essenziali

Dettagli

3) ANALISI DEI RESIDUI

3) ANALISI DEI RESIDUI 3) ANALISI DEI RESIDUI Dopo l analisi di regressione si eseguono alcuni test sui residui per avere una ulteriore conferma della validità del modello e delle assunzioni (distribuzione normale degli errori,

Dettagli

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza.

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza. VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD Si definisce varianza campionaria l indice s 2 = 1 (x i x) 2 = 1 ( xi 2 n x 2) Si definisce scarto quadratico medio o deviazione standard la radice quadrata della

Dettagli

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

Regressione non lineare con un modello neurale feedforward

Regressione non lineare con un modello neurale feedforward Reti Neurali Artificiali per lo studio del mercato Università degli studi di Brescia - Dipartimento di metodi quantitativi Marco Sandri (sandri.marco@gmail.com) Regressione non lineare con un modello neurale

Dettagli

Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 2011-12)

Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 2011-12) Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 011-1) REGRESSIONE LINEARE SEMPLICE OPEN STATISTICA 8.44 Per 8 settimanali, appartenenti alla medesima fascia di prezzo e presenti in edicola

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Nome N. Matricola Ancona, 14 luglio 2015 1. Tre macchine producono gli stessi pezzi

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

Appunti di Statistica Descrittiva

Appunti di Statistica Descrittiva Appunti di Statistica Descrittiva 30 dicembre 009 1 La tabella a doppia entrata Per studiare dei fenomeni con caratteristiche statistiche si utilizza l espediente della tabella a doppia entrata Per esempio

Dettagli

Il modello di regressione lineare multipla. Il modello di regressione lineare multipla

Il modello di regressione lineare multipla. Il modello di regressione lineare multipla Introduzione E la generalizzazione del modello di regressione lineare semplice: per spiegare il fenomeno d interesse Y vengono introdotte p, con p > 1, variabili esplicative. Tale generalizzazione diventa

Dettagli

MODELLO DI REGRESSIONE LINEARE. le ipotesi del modello di regressione classico, stima con i metodi dei minimi quadrati e di massima verosimiglianza,

MODELLO DI REGRESSIONE LINEARE. le ipotesi del modello di regressione classico, stima con i metodi dei minimi quadrati e di massima verosimiglianza, MODELLO DI REGRESSIONE LINEARE le ipotesi del modello di regressione classico, stima con i metodi dei minimi quadrati e di massima verosimiglianza, teorema di Gauss-Markov, verifica di ipotesi e test di

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Regressione lineare semplice: inferenza

Regressione lineare semplice: inferenza Regressione lineare semplice: inferenza Eduardo Rossi 2 2 Università di Pavia (Italy) Marzo 2014 Rossi Regressione lineare semplice Econometria - 2014 1 / 60 Outline 1 Introduzione 2 Verifica di ipotesi

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA A. A. 2008-2009 FACOLTÀ DI ECONOMIA. Programma del modulo di STATISTICA I (6 crediti)

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA A. A. 2008-2009 FACOLTÀ DI ECONOMIA. Programma del modulo di STATISTICA I (6 crediti) UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA A. A. 2008-2009 FACOLTÀ DI ECONOMIA Programma del modulo di STATISTICA I (6 crediti) ECOCOM (lettere A-Lh): ECOCOM (lettere Li-Z): ECOBAN: ECOAMM (Lettere A-Lh):

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

CIRCUITI INTELLIGENTI Parte 5: PCA e ICA

CIRCUITI INTELLIGENTI Parte 5: PCA e ICA Ing. Simone SCARDAPANE Circuiti e Algoritmi per l Elaborazione dei Segnali Anno Accademico 2012/2013 Indice della Lezione 1. Analisi delle Componenti Principali 2. Auto-Associatori 3. Analisi delle Componenti

Dettagli

Appunti sulla regressione lineare semplice e multipla

Appunti sulla regressione lineare semplice e multipla Appunti sulla regressione lineare semplice e multipla Germano Rossi 9 aprile 004 vers. 0.3. Indice Indice 1 1 Appunti sulla regressione lineare semplice e multipla 1.1 Introduzione.......................................

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 010-011 Corso di Psicometria - Modulo B Dott. Marco Vicentini marco.vicentini@unipd.it Rev. 10/01/011 La distribuzione F di Fisher - Snedecor

Dettagli

Modelli statistici lineari

Modelli statistici lineari Modelli statistici lineari Sergio Polini 19 gennaio 2010 2 Indice 1 Disegni sperimentali e modelli statistici parametrici 5 1.1 Il disegno sperimentale............................. 5 1.1.1 Le componenti

Dettagli

PARTE TERZA. STATISTICA DESCRITTIVA MULTIDIMENSIONALE (Analisi delle Relazioni)

PARTE TERZA. STATISTICA DESCRITTIVA MULTIDIMENSIONALE (Analisi delle Relazioni) PARTE TERZA STATISTICA DESCRITTIVA MULTIDIMESIOALE (Analisi delle Relazioni) La notazione matriciale 3 III.. LA OTAZIOE MATRICIALE III... L analisi statistica dei fenomeni multivariati L intrinseca complessità

Dettagli

General Linear Model. Esercizio

General Linear Model. Esercizio Esercizio General Linear Model Una delle molteplici applicazioni del General Linear Model è la Trend Surface Analysis. Questa tecnica cerca di individuare, in un modello di superficie, quale tendenza segue

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

La regressione lineare multipla

La regressione lineare multipla 13 La regressione lineare multipla Introduzione 2 13.1 Il modello di regressione multipla 2 13.2 L analisi dei residui nel modello di regressione multipla 9 13.3 Il test per la verifica della significatività

Dettagli

1 BREVE RIPASSO DEI TEST STATISTICI 2 I TEST STATISTICI NEI SOFTWARE ECONOMETRICI E IL P-VALUE 3 ESERCIZI DI ALLENAMENTO

1 BREVE RIPASSO DEI TEST STATISTICI 2 I TEST STATISTICI NEI SOFTWARE ECONOMETRICI E IL P-VALUE 3 ESERCIZI DI ALLENAMENTO I TEST STATISTICI E IL P-VALUE Obiettivo di questo Learning Object è ripassare la teoria ma soprattutto la pratica dei test statistici, con un attenzione particolare ai test che si usano in Econometria.

Dettagli

Regressione Logistica: un Modello per Variabili Risposta Categoriali

Regressione Logistica: un Modello per Variabili Risposta Categoriali : un Modello per Variabili Risposta Categoriali Nicola Tedesco (Statistica Sociale) Regressione Logistica: un Modello per Variabili Risposta Categoriali 1 / 54 Introduzione Premessa I modelli di regressione

Dettagli

Metodi di previsione

Metodi di previsione Metodi di previsione Giovanni Righini Università degli Studi di Milano Corso di Logistica I metodi di previsione I metodi di previsione sono usati per ricavare informazioni a sostegno dei processi decisionali

Dettagli

CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA

CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA ANNO ACCADEMICO 2013-2014 UNIVERSITA DEGLI STUDI DI TERAMO FACOLTA DI MEDICINA VETERINARIA CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA CFU 5 DURATA DEL CORSO : ORE 35 DOCENTE PROF. DOMENICO DI DONATO

Dettagli

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Introduzione : analisi delle relazioni tra due caratteristiche osservate sulle stesse unità statistiche studio del comportamento di due caratteri

Dettagli

UNIVERSITÀ DEGLI STUDI DI FERRARA

UNIVERSITÀ DEGLI STUDI DI FERRARA UNIVERSITÀ DEGLI STUDI DI FERRARA Anno Accademico 2012/2013 REGISTRO DELL ATTIVITÀ DIDATTICA Docente: ANDREOTTI MIRCO Titolo del corso: MATEMATICA ED ELEMENTI DI STATISTICA Corso: CORSO UFFICIALE Corso

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA

FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA NB Come potete vedere facendo la somma dei punteggi il numero di quesiti è superiore a quello

Dettagli

La categoria «ES» presenta (di solito) gli stessi comandi

La categoria «ES» presenta (di solito) gli stessi comandi Utilizzo delle calcolatrici FX 991 ES+ Parte II PARMA, 11 Marzo 2014 Prof. Francesco Bologna bolfra@gmail.com ARGOMENTI DELLA LEZIONE 1. Richiami lezione precedente 2.Calcolo delle statistiche di regressione:

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

Analisi di Regressione Multivariata. β matrice incognita dei coeff. di regressione (regr. lineare in β)

Analisi di Regressione Multivariata. β matrice incognita dei coeff. di regressione (regr. lineare in β) Analisi di Regressione Multivariata Regressione: metodologia per dedurre info e per anticipare risposte di una variabile dip. Modello classico di regressione lineare: Y {z} n k = {z} X β + ρ {z} {z} n

Dettagli

Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera

Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera 1. Avete risparmiato 10 dollari che volete investire per un anno in azioni e/o buoni del tesoro

Dettagli

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica.

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica. Esempio Risultati sperimentali Approssimazione con il criterio dei minimi quadrati Esempio Interpolazione con spline cubica. Esempio 1 Come procedere? La natura del fenomeno suggerisce che una buona approssimazione

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

lezione 7 AA Paolo Brunori

lezione 7 AA Paolo Brunori AA 2016-2017 Paolo Brunori dove siamo arrivati? - se siamo interessati a studiare l andamento congiunto di due fenomeni economici - possiamo provare a misurare i due fenomeni e poi usare la lineare semplice

Dettagli

Indice Prefazione xiii 1 Probabilità

Indice Prefazione xiii 1 Probabilità Prefazione xiii 1 Probabilità 1 1.1 Origini del Calcolo delle Probabilità e della Statistica 1 1.2 Eventi, stato di conoscenza, probabilità 4 1.3 Calcolo Combinatorio 11 1.3.1 Disposizioni di n elementi

Dettagli

Elementi di Econometria. Riccardo (Jack) Lucchetti

Elementi di Econometria. Riccardo (Jack) Lucchetti Elementi di Econometria Riccardo (Jack) Lucchetti 2 ottobre 2014 2 Premessa (per chi è già del mestiere) Questo non è un vero libro di econometria. È un libro per bambini. Ma è anche un esercizio di acrobazia.

Dettagli

Prelazione. Lista delle Figure. Lista delle Tabelle

Prelazione. Lista delle Figure. Lista delle Tabelle Indice Prelazione Indice Lista delle Figure Lista delle Tabelle VI IX XV XVI 1 Nozioni Introduttive 1 1.1 Inferenza Statistica 1 1.2 Campionamento 5 1.3 Statistica e Probabilità 7 1.4 Alcuni Problemi e

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Corso di Statistica Medica Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Sono previste 40 ore complessive, di cui almeno 16 di lezione frontale e le restanti

Dettagli

Inferenza statistica. Statistica medica 1

Inferenza statistica. Statistica medica 1 Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione sulla base di alcune informazioni ricavate da un campione estratto da quella

Dettagli