Geometria della programmazione lineare

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Geometria della programmazione lineare"

Transcript

1 Geometria della programmazione lineare p. 1/39 Geometria della programmazione lineare Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria

2 Geometria della programmazione lineare p. 2/39 Insiemi convessi Si consideri lo spazio vettoriale n-dimensionale R n DEFINIZIONE. Un insieme X R n si dice convesso se x 1,x 2 X e λ [0, 1] si ha λx 1 + (1 λ)x 2 X. Risulta che un insieme è convesso se il segmento che unisce una coppia arbitraria di punti nell insieme è tutto contenuto nell insieme.

3 Geometria della programmazione lineare p. 3/39 Sottospazi e sottospazi affini DEFINIZIONE. Un sottoinsieme S R n chiuso rispetto alla somma vettoriale ed al prodotto scalare si dice sottospazio di R n. Ogni sottospazio S di R n può essere rappresentato come l insieme dei punti dello spazio che soddisfano ad un sistema di equazioni lineari omogenee, cioè S = {x R n : Ax = 0} dove A è una matrice (m,n); senza perdere di generalità, si supporrà che m n.

4 Geometria della programmazione lineare p. 4/39 DEFINIZIONE. La dimensione di un sottospazio S è il massimo numero di vettori linearmente indipendenti contenuti in S. ESEMPIO. In R 3 l insieme S = {(x,y,z) : x + y + z = 0} rappresenta un sottospazio (con m = 1, n = 3). E facile vedere che i vettori linearmente indipendenti v 1 = [1, 1, 0], v 2 = [1, 0, 1] appartengono ad S e che non è possibile trovare tre vettori indipendenti in S. Quindi la dimensione di questo sottospazio è 2.

5 Geometria della programmazione lineare p. 5/39 Vale una proprietà che rende più semplice il calcolo della dimensione di un sottospazio. TEOREMA. La dimensione di un sottospazio S = {x R n : Ax = 0} è pari a n rango(a). Nell esempio precedente, il rango della matrice dei coefficienti A = [1, 1, 1] è pari ad 1 e, pertanto, la dimensione di S è 2.

6 Geometria della programmazione lineare p. 6/39 DEFINIZIONE. Un sottospazio affine è un sottoinsieme di R n ottenuto traslando un sottospazio. Equivalentemente un sottospazio affine è rappresentabile come un sottoinsieme S di R n che soddisfa un sistema di equazioni lineari (non necessariamente omogenee): S = {x R n : Ax = b}. La dimensione di un sottospazio affine è quella del sottospazio corrispondente (cioè quella del sottospazio ottenuto ponendo b = 0).

7 Geometria della programmazione lineare p. 7/39 DEFINIZIONE. La dimensione di un qualunque insieme E R n è la minima dimensione di un sottospazio affine che contenga E. Ad esempio, un insieme costituito da due punti distinti in R n, con n 1, ha dimensione 1, come pure ha dimensione 1 un segmento; un cerchio con raggio strettamente positivo ha dimensione 2, e così via.

8 Geometria della programmazione lineare p. 8/39 L insieme ammissibile di un problema di PL Ax = b x 0 è un sottoinsieme dello spazio affine {x : Ax = b} e pertanto avrà dimensione non superiore a n rango(a).

9 Geometria della programmazione lineare p. 9/39 Poliedri e polítopi Sia α R n un vettore non nullo e β un numero reale. DEFINIZIONE. Si definisce iperpiano il sottospazio affine di dimensione n 1: H = {x R n : α T x = β} Il vettore α si dice normale ad H. Per es., se n = 2 retta, se n = 3 piano.

10 Geometria della programmazione lineare p. 10/39 Un iperpiano suddivide lo spazio in due regioni convesse dette semispazi affini la cui espressione analitica è: H = {x R n : α T x β} H = {x R n : α T x β} Si può vedere che l orientamento del vettore α è verso l interno del semispazio affine H.

11 Geometria della programmazione lineare p. 11/39 Un sistema di disequazioni lineari Ax b rappresenta l intersezione di un numero finito di semispazi affini. DEFINIZIONE. L intersezione di un numero finito di semispazi affini è una figura convessa detta poliedro.

12 Geometria della programmazione lineare p. 12/39 L insieme ammissibile F di un problema di PL (in forma canonica): è un poliedro. F = {x R n : α T i x b i, i = 1,...,m, x 0}

13 Geometria della programmazione lineare p. 13/39 L insieme ammissibile F di un problema di PL (in forma canonica): F = {x R n : α T i x b i, i = 1,...,m, x 0} è un insieme convesso. Infatti, siano x,y F, λ F. Si ha: α T i [λx + (1 λ)y] = λα T i x + (1 λ)α T i y λb i + (1 λ)b i = b i e λx + (1 λ)y F λx + (1 λ)y 0

14 Geometria della programmazione lineare p. 14/39 DEFINIZIONE. Un poliedro P limitato e non vuoto è detto polítopo. (Limitatezza: esiste M > 0 tale che x < M per ogni x P, cioè P è contenuto in una sfera di raggio M.)

15 Geometria della programmazione lineare p. 15/39 L insieme ammissibile F di un problema di PL può essere: 1. un polítopo min{x 1 + x 2 : 0 x 1,x 2 1} 2. un poliedro illimitato min{x 1 + x 2 : 2x 1 + x 2 = 1} 3. un poliedro vuoto min{x 1 +x 2 : x 1 0, 0 x 2 1, x 1 +x 2 4, x 1 +3x 2 7}

16 Geometria della programmazione lineare p. 16/39 Esempio Si consideri l insieme ammissibile del seguente problema di PL in R 2 : x + y 0 x + y 1 x + 2y 6 y 4 x 2 x 0 y 0. Questo insieme è un polítopo che può essere rappresentato graficamente.

17 Geometria della programmazione lineare p. 17/ C 2 D 1 B A 0 O Come si può vedere dal grafico alcuni vincoli possono risultare ridondanti: nell esempio la regione ammissibile non cambierebbe se si eliminassero i vincoli y 0, y 4, x 2.

18 Geometria della programmazione lineare p. 18/39 Vertici ed estremi Si consideri ora un poliedro P di dimensione d. DEFINIZIONE. Una disequazione α T x β si dice valida per P se P {x R n : α T x β}.

19 Geometria della programmazione lineare p. 19/39 DEFINIZIONE. Data una disequazione α T x β valida per P, l iperpiano H = {x R n : α T x = β} si dice iperpiano di supporto per P se e solo se P H L insieme P H si chiama faccia del poliedro.

20 Geometria della programmazione lineare p. 20/39 I vincoli che definiscono un generico poliedro sono ovviamente diseguaglianze valide. Se con a T i e b i si indicano rispettivamente i coefficienti dell i-simo vincolo ed il corrispondente termine noto, si ha che l intersezione di ogni iperpiano della forma a T i x = b i con il poliedro P, se non vuota, costituisce una faccia; inoltre l intersezione di più facce di P è una faccia. DEFINIZIONE. Una faccia di dimensione zero (cioè un punto) si dice vertice mentre una faccia di dimensione 1 si dice spigolo. Una faccia di dimensione n 1 è detta faccia massimale.

21 Geometria della programmazione lineare p. 21/39 ESEMPIO (continuazione). I segmenti AB,BC,CD,DA sono spigoli (e anche facce massimali) del poliedro i cui vertici sono A,B,C,D. In particolare, lo spigolo AB può essere generato dalla disequazione valida x + y 1. Infatti la retta x + y = 1 interseca il poliedro lungo lo spigolo AB. L intersezione fra la faccia AB e la faccia AD corrisponde al vertice A. Tale vertice è una faccia di dimensione 0; può ad esempio essere generato dalla disequazione valida 2y 1.

22 Geometria della programmazione lineare p. 22/39 La retta 2y = 1 è di supporto al poliedro, e la sua intersezione con il poliedro è il vertice A. Il vincolo y 4 è naturalmente una disequazione valida, ma la retta y = 4 non interseca il poliedro: non costituisce pertanto un supporto e non definisce una faccia.

23 Geometria della programmazione lineare p. 23/39 DEFINIZIONE. Un punto x di un insieme convesso C si dice estremo se non è rappresentabile come combinazione convessa di alcuna coppia di punti distinti di C, cioè se non esistono y,z C, y z, tali che x = λy + (1 λ)z, per λ (0, 1) (cioè non si trova sul segmento che li congiunge) TEOREMA. In un poliedro P vertici e punti estremi coincidono. Per i poliedri si possono quindi usare indifferentemente i termini di vertice e di punto estremo.

24 Geometria della programmazione lineare p. 24/39 TEOREMA. Ogni punto di un polítopo si può ottenere come combinazione convessa dei suoi vertici, cioè se x 1,...,x k sono i vertici di un polítopo P e y P allora esistono λ 1,...,λ k 0, n i=1 λ i = 1 tali che y = n λ i x i i=1

25 Geometria della programmazione lineare p. 25/39 Teoremi fondamentali della PL TEOREMA. Se l insieme P = {x R n : Ax = b,x 0} delle soluzioni ammissibili di un problema di PL è limitato allora esiste un vertice di P ottimo. Dim. Siano i vertici di P e x 1,...,x k z = min{c T x i : i = 1,...,k}. Dato un qualunque y P, occorre dimostrare che c T y z.

26 Geometria della programmazione lineare p. 26/39 y P implica l esistenza di λ 1,...,λ k 0, con k i=1 λ i = 1 tali che y = k λ i x i. i=1 Si ha allora: c T y = c T k λ i x i = k λ i (c T x i ) k λ i z = z i=1 i=1 i=1 }{{} =1

27 Geometria della programmazione lineare p. 27/39 TEOREMA. Un punto x P è vertice del poliedro non vuoto P = {x R n : Ax = b,x 0} se e solo se x è una soluzione base ammissibile del sistema Ax = b. Dim. 1) x soluzione di base ammissibile x è un vertice Sia x = [x 1,...,x }{{ k,,0...,0] } >0 una soluzione di base ammissibile associata a qualche base B di A (k è il numero delle componenti non nulle di x). Ne consegue che le colonne A 1,...,A k devono far parte di B, insieme eventualmente ad altre colonne (in caso di soluzione degenere).

28 Geometria della programmazione lineare p. 28/39 Supponiamo per assurdo che x non sia un vertice. Esistono dunque con y z tali che per qualche λ (0, 1). y = [y 1,...,y k, 0,...,0] T P z = [z 1,...,z k, 0,...,0] T P x = λy + (1 λ)z (Si noti che sia y che z devono avere le ultime componenti a zero, altrimenti la loro combinazione convessa non potrebbe dare x).

29 Geometria della programmazione lineare p. 29/39 Per le ipotesi si ha allora: y P Ay = b A 1 y A k y k = b z P Az = b A 1 z A k z k = b Sottraendo la seconda equazione dalla prima si ottiene: (y 1 z 1 ) A }{{} (y k z k ) A }{{} k = α 1 A α k A k = 0 α 1 α k Esistono allora scalari α 1,...,α k non tutti nulli (dato che y z) tali che k i=1 α ia i = 0, pertanto le colonne A 1,...,A k sono linearmente dipendenti e non possono far parte della base B ( assurdo).

30 Geometria della programmazione lineare p. 30/39 2) x è un vertice x è soluzione di base (l ammissibilità deriva ovviamente dall ipotesi x P ). Supponiamo per assurdo che x non sia soluzione base del sistema Ax = b. Scrivendo come prima si ha che x = [x 1,...,x }{{ k, 0...,0] } >0 x P Ax = b A 1 x A k x k = b

31 Geometria della programmazione lineare p. 31/39 Se le colonne A 1,...,A k fossero linearmente indipendenti, allora selezionandone in modo arbitrario altre m k linearmente indipendenti si potrebbe ottenere una base B a cui corrisponderebbe proprio la soluzione x (che soddisfa Ax = b ed ha componenti fuori base nulle). Ma stiamo supponendo che x non sia soluzione di base, quindi si ha necessariamente che A 1,...,A k sono linearmente dipendenti α 1 A α k A k = 0 dove α 1,...,α k sono opportuni coefficienti non tutti nulli.

32 Geometria della programmazione lineare p. 32/39 Moltiplichiamo la precedente equazione per ε > 0: εα 1 A εα k A k = 0 e sommiamo ad essa l equazione A 1 x A k x k = b. Si ottiene (x 1 + εα 1 )A (x k + εα k )A k = b Sottraendo le due equazioni si ottiene invece (x 1 εα 1 )A (x k εα k )A k = b

33 Geometria della programmazione lineare p. 33/39 Si definiscano ora i punti y = [x 1 εα 1,...,x k εα k, 0,...,0] T z = [x 1 + εα 1,...,x k + εα k, 0,...,0] T per i quali vale ancora Ay = b, Az = b Scegliendo ε sufficientemente piccolo si ha y,z 0, e quindi y,z P, con y z.

34 Geometria della programmazione lineare p. 34/39 Si ha pure: x 1 = y 1 + εα 1 x 1 = z 1 εα 1 x 1 = 1 2 y z 1. x k = y k + εα k x k = z k εα k x k = 1 2 y k z k cioè x = 1 2 y z Questo vuol dire che il vertice x si può esprimere come combinazione convessa di altri due punti di P ( assurdo).

35 Geometria della programmazione lineare p. 35/39 COROLLARIO. Ogni problema min{c T x : Ax = b,x 0} definito su un polítopo P = {x R n : Ax = b,x 0} ha almeno una soluzione ottima coincidente con una base ammissibile. Dim. In virtù dei teoremi dimostrati si ha: esiste sempre una soluzione ottima coincidente con un vertice di P i vertici di P corrispondono a soluzioni di base ammissibili e dunque la tesi è immediata.

36 Geometria della programmazione lineare p. 36/39 Soluzione grafica dei problemi di PL I problemi di PL in R 2 o in R 3 possono essere rappresentati e risolti per via grafica (anche se non vi è nessuna reale utilità pratica). Per poter risolvere per via grafica un problema di PL in R 2 si può iniziare dalla rappresentazione grafica dell insieme ammissibile; successivamente si possono aggiungere al grafico alcune curve di livello della funzione obiettivo. In generale, per i problemi di PL la funzione obiettivo ha curve di livello esprimibili come H l = {x R n : c T x = l}. Tali curve sono quindi iperpiani, tutti paralleli fra loro, aventi il vettore dei costi c come normale.

37 Geometria della programmazione lineare p. 37/39 Il vettore normale c è orientato nella direzione del semispazio c T x l, cioè in direzione crescente della funzione obiettivo. Per risolvere graficamente un problema di PL si può quindi rappresentare il vettore dei costi c e disegnare una retta che abbia c come normale. Facendo scivolare tale retta parallelamente a se stessa fino ad incontrare l ultimo punto di P in direzione opposta a quella indicata da c si ottiene l ottimo del problema di PL.

38 Geometria della programmazione lineare p. 38/39 Esempio min x 1 2 y x + y 0 x + y 1 x + 2y 6 y 4 x 2 x 0,y 0. Le curve di livello sono quelle di equazione y = 2x 2l

39 Geometria della programmazione lineare p. 39/39 5 l= 2 l= 3 4 l= 1 3 C 2 D l=0 1 B A 0 c O Sono rappresentate le curve di livello a livello l = 0, 1, 2, 3. La curva a livello 3 è quella di livello minimo tra quelle che intersecano P. Si deduce quindi che il punto D è la soluzione ottimale del problema di PL dato.

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi, poliedri Sia a un vettore non nullo

Dettagli

Teoria della Programmazione Lineare. Teoria della Programmazione Lineare p. 1/8

Teoria della Programmazione Lineare. Teoria della Programmazione Lineare p. 1/8 Teoria della Programmazione Lineare Teoria della Programmazione Lineare p. 1/8 I problemi di PL in forma canonica In forma scalare: max n j=1 c jx j n j=1 a ijx j b i x j 0 i = 1,...,m j = 1,...,n Teoria

Dettagli

PROGRAMMAZIONE LINEARE E DUALITA'

PROGRAMMAZIONE LINEARE E DUALITA' PROGRAMMAZIONE LINEARE E DUALITA' 1) Dati i punti di R 2 (1, 2), (1, 4), (2, 3), (3, 5), (4, 1), (4, 2), (5, 5), (6, 2), (6, 5). Determinare graficamente: A - L'involucro convesso di tali punti. B - Quali

Dettagli

Ricerca Operativa. Ricerca Operativa p. 1/6

Ricerca Operativa. Ricerca Operativa p. 1/6 Ricerca Operativa Ricerca Operativa p. 1/6 Ricerca Operativa Disciplina basata sulla modellizzazione e la risoluzione tramite strumenti automatici di problemi di decisione complessi. In tali problemi la

Dettagli

Teoria della Programmazione Lineare

Teoria della Programmazione Lineare 6 Teoria della Programmazione Lineare In questo capitolo iniziamo lo studio formale dei problemi di Programmazione Lineare e, in particolare, dimostriamo il Teorema fondamentale della Programmazione Lineare.

Dettagli

Programmazione Lineare

Programmazione Lineare Programmazione Lineare Andrea Scozzari a.a. 2012-2013 March 14, 2013 Andrea Scozzari (a.a. 2012-2013) Programmazione Lineare March 14, 2013 1 / 18 Metodo del Simplesso Dato un problema di PL in forma standard

Dettagli

Geometria della Programmazione Lineare

Geometria della Programmazione Lineare Capitolo 2 Geometria della Programmazione Lineare In questo capitolo verranno introdotte alcune nozioni della teoria dei poliedri che permetteranno di cogliere gli aspetti geometrici della Programmazione

Dettagli

Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Università degli Studi di L Aquila

Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Università degli Studi di L Aquila Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Università degli Studi di L Aquila Sommario 1. Sistemi di disequazioni lineari e poliedri 2. Poliedri e insiemi convessi 3. Disequazioni

Dettagli

Dim. Usare la chiusura rispetto al prodotto esterno (vedi appunti lezione o libri di testo).

Dim. Usare la chiusura rispetto al prodotto esterno (vedi appunti lezione o libri di testo). ESERCIZI PER CASA di GEOMETRIA per il Corso di Laurea di Scienze dei Materiali, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 28 maggio 29 Sottospazi di uno spazio vettoriale, sistemi

Dettagli

14 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

14 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Rango di una matrice e teorema di Rouché-Capelli

Rango di una matrice e teorema di Rouché-Capelli Rango di una matrice e teorema di Rouché-Capelli Sappiamo che a una matrice m n, A, è associata l applicazione lineare L A : R n R m, L A (X) = AX, X R n. Definizione 1. Lo spazio nullo di A, N (A), è

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema

Dettagli

LA GRAN PARTE DI QUESTI ELEMENTI DOVREBBE ESSERE GIÀ NOTA

LA GRAN PARTE DI QUESTI ELEMENTI DOVREBBE ESSERE GIÀ NOTA I PRESUPPOSTI DELL ALGORITMO DEL SIMPLESSO CONSISTONO IN UN INSIEME DI ELEMENTI TEORICI LEGATI ALLO STUDIO DEGLI INSIEMI CONVESSI ED UN ALTRO INSIEME DI ELEMENTI TEORICI LEGATI ALLO STUDIO DEI SISTEMI

Dettagli

Sviluppando ancora per colonna sulla prima colonna della prima matrice e sulla seconda della seconda matrice si ottiene:

Sviluppando ancora per colonna sulla prima colonna della prima matrice e sulla seconda della seconda matrice si ottiene: M. CARAMIA, S. GIORDANI, F. GUERRIERO, R. MUSMANNO, D. PACCIARELLI RICERCA OPERATIVA Isedi Esercizi proposti nel Cap. 5 - Soluzioni Esercizio 5. - La norma Euclidea di è 9 6 5 - Il versore corrispondente

Dettagli

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli

Programmazione lineare: basi e soluzioni di base

Programmazione lineare: basi e soluzioni di base Programmazione lineare:basi e soluzioni di base p. 1/33 Programmazione lineare: basi e soluzioni di base Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 9 Marzo Programmazione Matematica Geometria di R n Esempi Teoria della PL Forma Standard. logo.

Ricerca Operativa. G. Liuzzi. Lunedí 9 Marzo Programmazione Matematica Geometria di R n Esempi Teoria della PL Forma Standard. logo. 1 Lunedí 9 Marzo 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Problema di Ottimizzazione min(o max) f (x) con la restrizione x S dove f (x) : R n R è detta funzione obiettivo S R n

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

Soluzione dei Problemi di Programmazione Lineare

Soluzione dei Problemi di Programmazione Lineare Soluzione dei Problemi di Programmazione Lineare Consideriamo un problema di Programmazione Lineare (PL) con m vincoli ed n variabili in Forma Standard dove: ma 0 c A b ( ) 0 ( 2) R è il vettore n delle

Dettagli

0.1 Complemento diretto

0.1 Complemento diretto 1 0.1 Complemento diretto Dato U V, un complemento diretto di U é un sottospazio W V tale che U W = {0} U + W = V cioé la somma di U con il suo complemento diretto é diretta, e dá tutto lo spazio vettoriale

Dettagli

19 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

19 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

GEOMETRIA 1 seconda parte

GEOMETRIA 1 seconda parte GEOMETRIA 1 seconda parte Cristina Turrini C. di L. in Fisica - 2014/2015 Cristina Turrini (C. di L. in Fisica - 2014/2015) GEOMETRIA 1 1 / 40 index Spazi vettoriali 1 Spazi vettoriali 2 Sottospazi 3 Sistemi

Dettagli

3) Quali delle seguenti applicazioni sono prodotti scalari? B) f : R R. D) f : R R R

3) Quali delle seguenti applicazioni sono prodotti scalari? B) f : R R. D) f : R R R 1) In uno spazio euclideo E 3 di dimensione 3 siano A un punto, r una retta e Π un piano non ortogonale ad r.allora A) esiste ed e unica la retta s passante per A, parallela ad r e ortogonale a Π. B) esiste

Dettagli

Esercizi di geometria per Fisica / Fisica e Astrofisica

Esercizi di geometria per Fisica / Fisica e Astrofisica Esercizi di geometria per Fisica / Fisica e Astrofisica Foglio 3 - Soluzioni Esercizio. Stabilire se i seguenti sottoinsiemi di R 3 sono sottospazi vettoriali: (a) S = {(x y z) R 3 : x + y + z = }. (b)

Dettagli

Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare

Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare 1. Quali dei seguenti sottoinsiemi sono sottospazi di R 3? Motivare la risposta. (a) {(x, y, 1) x, y R} (b) {(0, y, 0) y R} (c)

Dettagli

Il teorema di dualità forte

Il teorema di dualità forte Complementi di Algoritmi e Strutture Dati Il teorema di dualità forte Docente: Nicolò Cesa-Bianchi versione 13 maggio 2018 Ricordiamo la formulazione del problema di programmazione lineare nella sua forma

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Esercizio. Sono dati i seguenti sistemi lineari omogenei nelle incognite x, y, z: { x + y z = x + y z = x + y z = S : x y + z =, S :, S 3 : x 3y =,

Dettagli

Teoria della Programmazione Lineare

Teoria della Programmazione Lineare 5 Teoria della Programmazione Lineare In questo capitolo iniziamo lo studio formale dei problemi di Programmazione Lineare e, in particolare, dimostriamo il Teorema fondamentale della Programmazione Lineare.

Dettagli

21. (cenni di) Geometria analitica del piano.

21. (cenni di) Geometria analitica del piano. . (cenni di) Geometria analitica del piano... Definizione. Sia π un piano e sia O un suo punto. Siano i e j due versori ortogonali tra loro e paralleli al piano π. Diremo che la terna ordinata (O, i, j)

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014 DOCENTE: MATTEO LONGO Rispondere alle domande di Teoria in modo esauriente e completo. Svolgere il maggior numero di esercizi

Dettagli

Soluzione grafica di problemi PM in 2 variabili

Soluzione grafica di problemi PM in 2 variabili Capitolo 4 Soluzione grafica di problemi PM in 2 variabili In questo paragrafo si vuole fornire una interpretazione geometrica di un problema di Programmazione matematica. In particolare, quando un problema

Dettagli

5.2 IL TEOREMA FONDAMENTALE DELLA PROGRAMMAZIONE LINEARE

5.2 IL TEOREMA FONDAMENTALE DELLA PROGRAMMAZIONE LINEARE 94 TEORIA DELLA PROGRAMMAZIONE LINEARE 5.2 IL TEOREMA FONDAMENTALE DELLA PROGRAMMAZIONE LINEARE Quanto fino ad ora esaminato permette di enunciare e dimostrare un risultato di fondamentale importanza che

Dettagli

21 marzo Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

21 marzo Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

17 luglio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI

17 luglio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 ette e piani nello spazio Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it ette e piani nello spazio. 9 Gennaio

Dettagli

Facsimile di prova d esame Esempio di svolgimento

Facsimile di prova d esame Esempio di svolgimento Geometria analitica 18 marzo 009 Facsimile di prova d esame Esempio di svolgimento 1 Nello spazio, riferito a coordinate cartesiane ortogonali e monometriche x,y,z, è assegnata la retta r di equazioni

Dettagli

Facoltà di Scienze. Appello A

Facoltà di Scienze. Appello A Facoltà di Scienze Appello -2-28-A SOLUZIONI Esercizio. Discutere e risolvere almeno 3 dei seguenti esercizi. Giustificare sempre le risposte, fornendo una dimostrazione nel caso l affermazione sia vera

Dettagli

Esercizi svolti. delle matrici

Esercizi svolti. delle matrici Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa

Dettagli

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi. A1. Siano u, v, w vettori. Quali tra le seguenti operazioni hanno senso?

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi. A1. Siano u, v, w vettori. Quali tra le seguenti operazioni hanno senso? A. Languasco - Esercizi Matematica B - 4. Geometria 1 A: Vettori geometrici Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A1. Siano u, v, w vettori. Quali tra le seguenti operazioni

Dettagli

Risoluzione di sistemi lineari

Risoluzione di sistemi lineari Risoluzione di sistemi lineari Teorema (Rouché-Capelli) Dato il sistema di m equazioni in n incognite Ax = b, con A M at(m, n) b R n x R n [A b] si ha che: matrice dei coefficienti, vettore dei termini

Dettagli

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Avvertenze In quanto segue tutti i vettori hanno il medesimo punto d origine O l origine dello spazio cartesiano. Possiamo

Dettagli

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 19 GIUGNO 2012

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 19 GIUGNO 2012 INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 19 GIUGNO 2012 MATTEO LONGO Esercizio 1. Al variare del parametro a R, si consideri l applicazione lineare L a : R R definita dalle

Dettagli

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi:

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi: Nucleo, immagine e loro proprietà [Abate, 5.2] Data una applicazione lineare f : V W, chiamiamo nucleo di f l insieme N(f) := { v V : f(v) = 0 W } Se S V è un sottoinsieme del dominio, indichiamo con f(s)

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

5 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

5 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 5 febbraio 015 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 014-15 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore.

Dettagli

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof.

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof. Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A. 2015-2016 ESERCIZI DA CONSEGNARE prof. Cigliola Consegna per Martedì 6 Ottobre Esercizio 1. Una matrice quadrata A si

Dettagli

Sistemi compatibili (Il metodo di Fourier-Motzkin)

Sistemi compatibili (Il metodo di Fourier-Motzkin) Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Universitàdegli Studi di L Aquila Sommario 1. Poliedri 2. Diseguaglianze implicate 3. Poliedri compatibili 4. Proiezione di un poliedro

Dettagli

3.3 Problemi di PLI facili

3.3 Problemi di PLI facili 3.3 Problemi di PLI facili Consideriamo un generico problema di PLI espresso in forma standard min{c t x : Ax = b, x Z n +} (1) dove A Z m n con n m, e b Z m. Supponiamo che A sia di rango pieno. Sia P

Dettagli

Lezione 10 27/11/09. = 0 = x y + 2z = 0. Le componenti del vettore v devono essere quindi soluzione del sistema linere omogeneo. { x y +2z = 0 x z = 0

Lezione 10 27/11/09. = 0 = x y + 2z = 0. Le componenti del vettore v devono essere quindi soluzione del sistema linere omogeneo. { x y +2z = 0 x z = 0 Lezione 10 7/11/09 Esercizio 1 Nello spazio vettoriale euclideo V 3 sia W il sottospazio generato dai vettori v 1 = 1, 1, 1), v = 0,, 1) Determinare un vettore di W di modulo 3 ortogonale al vettore v

Dettagli

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) PRODOTTO VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI R 3. FASCI E STELLE. FORMULE

Dettagli

Soluzione dei problemi di Programmazione Lineare Intera

Soluzione dei problemi di Programmazione Lineare Intera Fondamenti di Ricerca Operativa T-A a.a. 2014-2015 Soluzione dei problemi di Programmazione Lineare Intera Andrea Lodi, Enrico Malaguti, Daniele Vigo rev. 1.1.a ottobre 2014 Fondamenti di Ricerca Operativa

Dettagli

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 Problemi di programmazione matematica: min f () s.v. X n insieme delle soluzioni ammissibili con funzione obiettivo

Dettagli

La dualità nella Programmazione Lineare

La dualità nella Programmazione Lineare Capitolo 3 La dualità nella Programmazione Lineare 3.1 Teoria della dualità Esercizio 3.1.1 Scrivere il problema duale del seguente problema di Programmazione Lineare: min x 1 x 2 + x 3 2x 1 +3x 2 3 x

Dettagli

Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio

Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio Nozioni di geometria Definizione: Un vettore y R n è combinazione conica dei vettori { 1,, k } se esistono k coefficienti reali λ

Dettagli

Programmazione Matematica / A.A Soluzioni di alcuni esercizi

Programmazione Matematica / A.A Soluzioni di alcuni esercizi Programmazione Matematica / A.A. 7-8 Soluzioni di alcuni esercizi Esercizi - I. Aggiungiamo al problema una variabile v, e richiediamo che v soddisfi v n a ij x j b i. j= Fissato x, il minimo v che soddisfa

Dettagli

Esempi. In R 2, le coppia (2, 5) è combinazione lineare dei vettori (0, 1) e (1, 1). Infatti:

Esempi. In R 2, le coppia (2, 5) è combinazione lineare dei vettori (0, 1) e (1, 1). Infatti: Combinazioni lineari [Abate, 4.2] Sia V uno spazio vettoriale e v 1, v 2,..., v n dei vettori di V. Diremo che un vettore w V è combinazione lineare dei vettori v 1,..., v n se esistono a 1, a 2,..., a

Dettagli

Capitolo 2: Preliminari ed elementi di analisi convessa. E. Amaldi DEIB, Politecnico di Milano

Capitolo 2: Preliminari ed elementi di analisi convessa. E. Amaldi DEIB, Politecnico di Milano Capitolo 2: Preliminari ed elementi di analisi convessa E. Amaldi DEIB, Politecnico di Milano 2.1 Concetti di base In R n con norma euclidea x S R n è un punto interno di S se ε > 0 tale che B ε (x) =

Dettagli

Ricerca Operativa. Programmazione Lineare. Università Mediterranea di Reggio Calabria Decisions Lab

Ricerca Operativa. Programmazione Lineare. Università Mediterranea di Reggio Calabria Decisions Lab Ricerca Operativa Programmazione Lineare Università Mediterranea di Reggio Calabria Decisions Lab Ottimizzazione In un problema di ottimizzazione si cerca di massimizzare o minimizzare una quantità specifica,

Dettagli

Analisi Vettoriale A.A Soluzioni del Foglio 2

Analisi Vettoriale A.A Soluzioni del Foglio 2 Analisi Vettoriale A.A. 2006-2007 - Soluzioni del Foglio 2 2.1 Esercizio Assegnato il sistema e y + z + x 2 = 0 x 2 + y 2 + z 2 + y 1 = 0 dimostrare che in un intorno del punto (0,0,1) il sistema definisce

Dettagli

24 giugno Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

24 giugno Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 4 giugno 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore.

Dettagli

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono

Dettagli

Proposizione (relazione fra V, opposti in R e opposti in V ).

Proposizione (relazione fra V, opposti in R e opposti in V ). Lezione del 20.03. Ci sono vari tipi di strutture che conducono al concetto di spazio vettoriale, in particolare quelle sugli insiemi R n di ennuple di numeri reali (n = 1, 2, 3,...) e quelle sugli insiemi

Dettagli

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Corsi dei Proff. M. BORDONI, A.

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Corsi dei Proff. M. BORDONI, A. CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A. - PROVA SCRITTA DI GEOMETRIA DEL -- Corsi dei Proff. M. BORDONI, A. FOSCHI Esercizio. E data l applicazione lineare L : R 4 R 3 definita dalla matrice A = 3

Dettagli

Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Università degli Studi di L Aquila

Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Università degli Studi di L Aquila Sistemi compatibili (Il metodo di Fourier-Motzkin) Claudio Arbib Università degli Studi di L Aquila Sommario Poliedri Poliedri compatibili Diseguaglianzeimplicate Proiezione di un poliedro Definizione

Dettagli

Soluzione grafica di problemi PM in 2 variabili

Soluzione grafica di problemi PM in 2 variabili Capitolo 4 Soluzione grafica di problemi PM in 2 variabili In questo paragrafo si vuole fornire una interpretazione geometrica di un problema di Programmazione matematica. In particolare, quando un problema

Dettagli

Elementi di Algebra Lineare Spazi Vettoriali

Elementi di Algebra Lineare Spazi Vettoriali Elementi di Algebra Lineare Spazi Vettoriali Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra Lineare 1 / 41 index Spazi vettoriali

Dettagli

25 ottobre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

25 ottobre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Introduzione alla programmazione lineare

Introduzione alla programmazione lineare Introduzione alla programmazione lineare struttura del problema di PL forme equivalenti rappresentazione e soluzione grafica rif. Fi 1.2; BT 1.1, 1.4 Problema di programmazione lineare Dati: un vettore

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2011-2012 Prova scritta del 28-1-2013 TESTO E SOLUZIONI 1. Per k R considerare il sistema lineare X 1 X 2 + kx 3 =

Dettagli

Programmazione Matematica / A.A Soluzioni di alcuni esercizi

Programmazione Matematica / A.A Soluzioni di alcuni esercizi Programmazione Matematica / A.A. 8-9 Soluzioni di alcuni esercizi Esercizi - I 3. Aggiungiamo al problema una variabile v, e richiediamo che v soddisfi v n a ij x j b i. j= Fissato x, il minimo v che soddisfa

Dettagli

28 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI

28 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry)

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) SISTEMA DI RIFERIMENTO NELLO SPAZIO La geometria analitica dello spazio è molto simile alla geometria analitica del piano. Per questo motivo le formule sono

Dettagli

Esercizi di Geometria e Algebra Lineare

Esercizi di Geometria e Algebra Lineare Esercizi di Geometria e Algebra Lineare 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}) 2) Nello spazio vettoriale R 3 sul campo R, sia

Dettagli

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 Problemi di programmazione matematica: min s.v. f () X n dove X è la regione delle soluzioni ammissibili con funzione

Dettagli

Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio

Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio Algebra lineare Laboratorio di programmazione e calcolo CdL in Chimica Pierluigi Amodio Dipartimento di Matematica Università di Bari pierluigi.amodio@uniba.it http://dm.uniba.it/ amodio A.A. 2016/17 P.

Dettagli

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2 Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA SCRITTA DI GEOMETRIA A del 27 giugno 2011 ISTRUZIONI PER LO SVOLGIMENTO. Scrivere cognome, nome, numero di matricola in alto a destra

Dettagli

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Compito A Corso del Prof.

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Compito A Corso del Prof. CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A. 202-203 PROVA SCRITTA DI GEOMETRIA DEL 8-02-3 Compito A Corso del Prof. Manlio BORDONI Esercizio. Sia W il sottospazio vettoriale di R 4 generato dai vettori

Dettagli

Spazi vettoriali euclidei.

Spazi vettoriali euclidei. Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti

Dettagli

Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale)

Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale) Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale). Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = C = 2 2 0 0 2 D = ( 0

Dettagli

(V) (FX) L unione di due basi di uno spazio vettoriale è ancora una base dello spazio vettoriale.

(V) (FX) L unione di due basi di uno spazio vettoriale è ancora una base dello spazio vettoriale. 8 gennaio 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a Questo documento riporta commenti, approfondimenti o metodi di soluzione alternativi per alcuni esercizi dell esame Ovviamente alcuni esercizi potevano essere risolti utilizzando metodi ancora diversi

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 7 GIUGNO 06 MATTEO LONGO Ogni versione del compito contiene solo due tra i quattro esercizi 6-7-8-9. Esercizio. Considerare

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Appendice A Richiami di Algebra Lineare In questo capitolo sono presentati alcuni concetti di algebra lineare L algebra lineare è quella branca della matematica che si occupa dello studio di vettori, spazi

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE0 - Geometria a.a. 07-08 Prova scritta del 7-7-08 TESTO E SOLUZIONI Svolgere tutti gli esercizi.. Per R considerare il sistema lineare X

Dettagli

Spazi vettoriali. Indipendenza lineare.

Spazi vettoriali. Indipendenza lineare. Spazi vettoriali Indipendenza lineare Nel piano vettoriale G 2, fissato un punto O ed identificati i vettori con i segmenti orientati con origine in O, informalmente si puo dire che che due vettori sono

Dettagli

Soluzioni. Foglio 1. Rette e piani. n x + c = 0. (1)

Soluzioni. Foglio 1. Rette e piani. n x + c = 0. (1) Soluzioni Foglio 1. Rette e piani. Esercizio 1. Se n è la normale al piano, sia c = n x 0. Dimostriamo prima che se x π, allora x soddisfa Si ha Sostituendo dentro (1) si ottiene n x + c = 0. (1) x = x

Dettagli

Elementi di Algebra Lineare Spazi Vettoriali

Elementi di Algebra Lineare Spazi Vettoriali Elementi di Algebra Lineare Spazi Vettoriali Antonio Lanteri e Cristina Turrini UNIMI - 2015/2016 Antonio Lanteri e Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 37 index Spazi vettoriali

Dettagli

25 - Funzioni di più Variabili Introduzione

25 - Funzioni di più Variabili Introduzione Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 25 - Funzioni di più Variabili Introduzione Anno Accademico 2013/2014 M. Tumminello

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Richiami di Algebra Lineare Eduardo Rossi Università degli Studi di Pavia Corso di Econometria Marzo 2012 Rossi Algebra Lineare 2012 1 / 59 Vettori Prodotto interno a : (n 1) b : (n 1) a b = a 1 b 1 +

Dettagli

Capitolo 1 Vettori applicati e geometria dello spazio

Capitolo 1 Vettori applicati e geometria dello spazio Capitolo 1 Vettori applicati e geometria dello spazio Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Tutorato di geometria e algebra lineare Anno accademico 2014-2015 Definizione (Vettore

Dettagli

Geometria e Topologia I 22 Giugno 2005 (U1-10, 9:00 11:00) [PROVA PARZIALE]1/8

Geometria e Topologia I 22 Giugno 2005 (U1-10, 9:00 11:00) [PROVA PARZIALE]1/8 Geometria e Topologia I 22 Giugno 2005 (U-0, 9:00 :00) [PROVA PARZIALE]/8 Correzione 0 () In A 3 (R) siano dati i tre punti A =, B = 0, C =. 0 (a) A B e C sono allineati? Dipendenti? (b) Dimostrare che

Dettagli

Spazi Vettoriali ed Applicazioni Lineari

Spazi Vettoriali ed Applicazioni Lineari Spazi Vettoriali ed Applicazioni Lineari 1. Sottospazi Definizione. Sia V uno spazio vettoriale sul corpo C. Un sottoinsieme non vuoto W di V è un sottospazio vettoriale di V se è chiuso rispetto alla

Dettagli