Esercitazione VIII - Lavoro ed energia II

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazione VIII - Lavoro ed energia II"

Transcript

1 Esercitazione VIII - Lavoro ed energia II Forze conservative Esercizio Una pallina di massa m = 00g viene lanciata tramite una molla di costante elastica = 0N/m come in figura. Ammesso che ogni attrito sia trascurabile, calcolare Di quanto deve essere compressa la molla perchè la pallina raggiunga la quota massima h = 2m. La velocità della pallina lungo il piano (dopo che si è staccata dalla molla) Le forze in gioco sono la forza elastica della molla, la forza peso e la reazione vincolare del piano. La reazione vincolare non è una forza conservativa ma non compie lavoro durante lo spostamento della pallina in quanto è sempre ortogonale allo spostamento. Perciò l energia totale del sistema si conserva, E = 0. Scegliamo il livello del piano come riferimento per l energia potenziale della forza peso. L energia iniziale E 0 della pallina coincide con l energia potenziale della molla compressa di un tratto x, E 0 = 2 ( x)2. Quando la molla si è decompressa e la pallina si stacca da essa e corre lungo il piano, l energia della pallina E è puramente cinetica E = 2 mv2. Quando la pallina arriva all apice della sua traiettoria la sua energia E 3 è puramente potenziale della forza peso

2 E 3 = mgh. Poiché l energia si conserva deve valere E 0 = E = E 3. Imponendo che E 0 = E 3 si ha 2mgh 2 ( x)2 = mgh x = = 0.63m. Si ricordi che la massa m va convertita in g, 00g = 0.g. Imponendo che E 0 = E e sfruttando la conoscenza di x si ha 2 ( x)2 = 2 mv2 v = x m = 6.3m/s. Forze non conservative Esercizio 2 Una pallina di massa m = 0.2g viene lanciata verticalmente verso il suolo da un altezza iniziale h 0 =.4m e con una velocità iniziale il cui modulo è v 0 = 5m/s. Calcolare a quale altezza h arriva la pallina dopo aver rimbalzato se nell urto col suolo perde 2J. L energia iniziale della pallina è E 0 = 2 mv2 0 + mgh 0 = 5.244J. L energia finale della pallina, quando arriva all apice della sua traiettoria dopo aver rimbalzato, è E = mgh. A causa dell urto col suolo l energia della pallina non si conserva e la variazione dell energia è E = 2J (si osservi il segno meno) E = E E 0 = mgh 2 mv2 0 mgh 0 h = h 0 + v2 0 2g + E mg =.7m. Si osservi che se l energia si fosse conservata (urto elastico, E = 0) si avrebbe avuto h = h 0 + v2 0 2g = 2.7m. Si osservi infine che se la pallina fosse stata fatta cadere da ferma (v 0 = 0) e l urto fosse stato elastico si avrebbe avuto h = h 0. 2

3 Esercizio 3 Un corpo di massa m = 4g è sottoposto ad una forza costante di modulo F = 35N la quale forma con l orizzontale un angolo ϑ = 25. Ammesso che il corpo parta da fermo e che percorra inizialmente un tratto orizzontale liscio di lunghezza l = 5m e poi un tratto orizzontale scabro di lunghezza s = 3m e µ = 0.2, si calcoli la velocità finale del corpo. La variazione di energia cinetica del corpo è data dal lavoro di tutte le forze in gioco, K = W. In quanto v 0 = 0 si ha 2 v f = m W. Nel tratto liscio le forze in gioco sono: la forza peso P, la reazione vincolare del piano N e la forza F. Nel tratto scabro le forze in gioco sono: la forza peso P, la reazione vincolare del piano N, la forza F e la forza d attrito F a. La forza d attrito è una forza costante, diretta in maniera opposta al moto e di modulo F a = µ(mg F sin ϑ). Dato che sia la forza peso che la reazione vincolare del piano non compiono lavoro, il lavoro delle forze è da cui Esercizio 4 v f = W = F (l + s) cos ϑ µ(mg F sin ϑ)s = 239J, 2 [F (l + s) cos ϑ µ(mg F sin ϑ)s] = 0.9m/s. m Una pallina di massa m = 00g viene lanciata tramite una molla di costante elastica = 0N/m compressa di x = 0.65m, come in figura. Per un tratto di piano lungo s = 0.7m fra la pallina e il piano c è attrito con µ = 0.2. Calcolare La velocità v con cui la pallina giunge nella zona in cui c è attrito. La velocità v 2 con cui la pallina esce dalla zona in cui c è attrito. La quota massima h raggiunta dalla pallina. L energia si conserva nel tratto che va dalla molla alla zona in cui c è attrito (tratto 0-) e nel tratto successivo alla zona in cui c è attrito (tratto 2-3). Nella zona in cui c è attrito (tratto -2) l energia non si conserva. 3

4 Introduciamo un sistema di coordinate come in figura. L energia all istante iniziale in cui la molla è compressa è E 0 = 2 ( x)2, in quanto la pallina è ferma, v 0 = 0, e per il livello di riferimento scelto anche y 0 = 0. Prima che la pallina entri nella zona in cui c è attrito la sua energia è E = 2 mv2. Poiché l energia si conserva nel tratto 0- la velocità v si trova imponendo E 0 = E, 2 ( x)2 = 2 mv2 v = x m = 6.5m/s. Si ricordi di convertire la massa in g! All inizio del tratto in cui c è attrito l energia cinetica della pallina è K = 2 mv2 = 2 ( x)2. Al termine del tratto in cui c è attrito l energia cinetica della pallina è K 2 = 2 mv2 2. La variazione di energia cinetica K = K 2 K coincide con il lavoro di tutte le forze in gioco nel tratto in cui c è attrito. Dato che l unica forza che compie lavoro in questo tratto è la forza d attrito, F a = µmg, si ha 2 mv2 2 2 ( x)2 = µmgs v 2 = m ( x)2 2µgs = 6.2m/s. L energia della pallina uscita dalla zona in cui c è attrito è E 2 = 2 mv2 2 = 2 ( x)2 µmgs. 4

5 Quando la pallina arriva alla quota massima y 3 = h la sua energia è E 3 = mgh, in quanto all apice della sua traiettoria la pallina è ferma. Nel tratto 2-3 l energia si conserva, imponendo E 2 = E 3 si ha Esercizio 5 2 ( x)2 µmgs = mgh h = ( x)2 µs = 2m. 2mg Una pallina di massa m = 0.2g viene lanciata da una molla di costante elastica = 5N/m compressa di x = 0.m. La pallina viaggia su un piano orizzontale passando su di una zona lunga s = 0.05m con cui ha un attrito µ = 0.3 e comprime infine una seconda molla con costante elastica 2 = 20N/m. Calcolare di quanto si comprime la seconda molla. Scegliamo come livello di riferimento del potenziale quello del piano su cui si muove la pallina: in questo modo l energia potenziale della forza peso della pallina è costantemente zero. L energia iniziale della pallina coincide con l energia della prima molla compressa, E 0 = 2 ( x ) 2 = 0.075J. L energia finale della pallina coincide con l energia della seconda molla compressa, E = 2 2( x 2 ) 2. A causa del passaggio sulla zona con attrito l energia della pallina non si conserva ma varia di una quantità pari al lavoro compiuto dalla forza d attrito lungo lo spostamento s, da cui E = 2 2( x 2 ) 2 2 ( x ) 2 = F a s = µmgs = J, x 2 = 2 ( x ) 2 2µmgs 2 = 0.07m. 5

6 Si osservi che se si elimina la zona in cui c è attrito (s = 0) si ottiene x 2 = x 2 = 0.09m. Si osservi infine che in assenza di attrito e nell ipotesi in cui le due molle siano uguali ( = 2 ) si ottiene x 2 = x. 6

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA

GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA 8. LA CONSERVAZIONE DELL ENERGIA MECCANICA IL LAVORO E L ENERGIA 4 GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA Il «giro della morte» è una delle parti più eccitanti di una corsa sulle montagne russe. Per

Dettagli

percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto.

percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto. Esercizio 1 Una pietra viene lanciata con una velocità iniziale di 20.0 m/s contro una pigna all'altezza di 5.0 m rispetto al punto di lancio. Trascurando ogni resistenza, calcolare la velocità della pietra

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Seconda Legge DINAMICA: F = ma

Seconda Legge DINAMICA: F = ma Seconda Legge DINAMICA: F = ma (Le grandezze vettoriali sono indicate in grassetto e anche in arancione) Fisica con Elementi di Matematica 1 Unità di misura: Massa m si misura in kg, Accelerazione a si

Dettagli

Corso di Fisica tecnica e ambientale a.a. 2011/2012 - Docente: Prof. Carlo Isetti

Corso di Fisica tecnica e ambientale a.a. 2011/2012 - Docente: Prof. Carlo Isetti Corso di Fisica tecnica e ambientale a.a. 0/0 - Docente: Prof. Carlo Isetti LAVORO D NRGIA 5. GNRALITÀ In questo capitolo si farà riferimento a concetto quali lavoro ed energia termini che hanno nella

Dettagli

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg. Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,

Dettagli

Per vedere quando è che una forza compie lavoro e come si calcola questo lavoro facciamo i seguenti casi.

Per vedere quando è che una forza compie lavoro e come si calcola questo lavoro facciamo i seguenti casi. LAVORO ED ENERGIA TORNA ALL'INDICE Quando una forza, applicata ad un corpo, è la causa di un suo spostamento, detta forza compie un lavoro sul corpo. In genere quando un corpo riceve lavoro, ce n è un

Dettagli

Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo.

Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo. Lavoro ed energia 1. Forze conservative 2. Energia potenziale 3. Conservazione dell energia meccanica 4. Conservazione dell energia nel moto del pendolo 5. Esempio: energia potenziale gravitazionale 6.

Dettagli

L=F x s lavoro motore massimo

L=F x s lavoro motore massimo 1 IL LAVORO Nel linguaggio scientifico la parola lavoro indica una grandezza fisica ben determinata. Un uomo che sposta un libro da uno scaffale basso ad uno più alto è un fenomeno in cui c è una forza

Dettagli

Sistemi materiali e quantità di moto

Sistemi materiali e quantità di moto Capitolo 4 Sistemi materiali e quantità di moto 4.1 Impulso e quantità di moto 4.1.1 Forze impulsive Data la forza costante F agente su un punto materiale per un intervallo di tempo t, si dice impulso

Dettagli

LAVORO, ENERGIA E POTENZA

LAVORO, ENERGIA E POTENZA LAVORO, ENERGIA E POTENZA Nel linguaggio comune, la parola lavoro è applicata a qualsiasi forma di attività, fisica o mentale, che sia in grado di produrre un risultato. In fisica la parola lavoro ha un

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME 6. IL CONDNSATOR FNOMNI DI LTTROSTATICA MOTO DI UNA CARICA IN UN CAMPO LTTRICO UNIFORM Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice

Dettagli

Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. 1 Quantità di moto.

Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. 1 Quantità di moto. Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. Indice 1 Quantità di moto. 1 1.1 Quantità di moto di una particella.............................. 1 1.2 Quantità

Dettagli

GIRO DELLA MORTE PER UN CORPO CHE ROTOLA

GIRO DELLA MORTE PER UN CORPO CHE ROTOLA 0. IL OETO D IERZIA GIRO DELLA ORTE ER U CORO CHE ROTOLA ell approfondimento «Giro della morte per un corpo che scivola» si esamina il comportamento di un punto materiale che supera il giro della morte

Dettagli

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0 1 ) Un veicolo che viaggia inizialmente alla velocità di 1 Km / h frena con decelerazione costante sino a fermarsi nello spazio di m. La sua decelerazione è di circa: A. 5 m / s. B. 3 m / s. C. 9 m / s.

Dettagli

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 00 Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Esercizio. Un corpo parte da fermo con accelerazione

Dettagli

Esercizi sul moto rettilineo uniformemente accelerato

Esercizi sul moto rettilineo uniformemente accelerato Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 010 Esercizi sul moto rettilineo uniformemente accelerato Esercizio 1. Un corpo parte da fermo con accelerazione pari a

Dettagli

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj 61- Quand è che volumi uguali di gas perfetti diversi possono contenere lo stesso numero di molecole? A) Quando hanno uguale pressione e temperatura diversa B) Quando hanno uguale temperatura e pressione

Dettagli

La dinamica delle collisioni

La dinamica delle collisioni La dinamica delle collisioni Un video: clic Un altro video: clic Analisi di un crash test (I) I filmati delle prove d impatto distruttive degli autoveicoli, dato l elevato numero dei fotogrammi al secondo,

Dettagli

LA DINAMICA LE LEGGI DI NEWTON

LA DINAMICA LE LEGGI DI NEWTON LA DINAMICA LE LEGGI DI NEWTON ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA 1. La Forza Exercise 1. Se un chilogrammo campione subisce un accelerazione di 2.00 m/s 2 nella direzione dell angolo formante

Dettagli

b) quando la biglia si ferma tutta la sua energia cinetica sara stata trasformata in energia potenziale della molla. Quindi

b) quando la biglia si ferma tutta la sua energia cinetica sara stata trasformata in energia potenziale della molla. Quindi B C:\Didattica\SBAC_Fisica\Esercizi esame\sbac - problemi risolti-18jan2008.doc problema 1 Una biglia di massa m = 2 kg viene lasciata cadere (da ferma) da un'altezza h = 40 cm su di una molla avente una

Dettagli

IL MOTO. 1 - Il moto dipende dal riferimento.

IL MOTO. 1 - Il moto dipende dal riferimento. 1 IL MOTO. 1 - Il moto dipende dal riferimento. Quando un corpo è in movimento? Osservando la figura precedente appare chiaro che ELISA è ferma rispetto a DAVIDE, che è insieme a lei sul treno; mentre

Dettagli

Esercizi e Problemi di Termodinamica.

Esercizi e Problemi di Termodinamica. Esercizi e Problemi di Termodinamica. Dr. Yves Gaspar March 18, 2009 1 Problemi sulla termologia e sull equilibrio termico. Problema 1. Un pezzetto di ghiaccio di massa m e alla temperatura di = 250K viene

Dettagli

Precorsi 2014. Fisica. parte 1

Precorsi 2014. Fisica. parte 1 Precorsi 2014 Fisica parte 1 Programma ministeriale per il test Grandezze fisiche Una grandezza fisica è una caratteristica misurabile di un entità fisica. Sono grandezze fisiche: velocità, energia di

Dettagli

IL FENOMENO DELLA RISONANZA

IL FENOMENO DELLA RISONANZA IL FENOMENO DELLA RISONANZA Premessa Pur non essendo possibile effettuare una trattazione rigorosa alle scuole superiori ritengo possa essere didatticamente utile far scoprire agli studenti il fenomeno

Dettagli

PROBLEMI SUL MOTO RETTILINEO UNIFORMEMENTE ACCELERATO

PROBLEMI SUL MOTO RETTILINEO UNIFORMEMENTE ACCELERATO PROBLEMI SUL MOTO RETTILINEO UNIFORMEMENTE ACCELERATO 1. Un auto lanciata alla velocità di 108 Km/h inizia a frenare. Supposto che durante la frenata il moto sia uniformemente ritardato con decelerazione

Dettagli

Appunti di fisica generale a cura di Claudio Cereda test Olimpiadi della Fisica divisi per argomento

Appunti di fisica generale a cura di Claudio Cereda test Olimpiadi della Fisica divisi per argomento Grandezze fisiche 1. Un amperometro può essere usato con diverse portate. In una misura con la portata di 0.5 A l'indice risulta deviato di 15 divisioni. Quale delle seguenti portate ci darà la misura

Dettagli

Esercitazione IX - Calorimetria

Esercitazione IX - Calorimetria Esercitazione IX - Calorimetria Esercizio 1 Un blocco di rame di massa m Cu = 5g si trova a una temperatura iniziale T i = 25 C. Al blocco viene fornito un calore Q = 120J. Determinare la temperatura finale

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica Potenziale Elettrico Q V 4pe 0 R Q 4pe 0 r C R R R r r B q B r A A independenza dal cammino Superfici Equipotenziali Due modi per analizzare i problemi Con le forze o i campi (vettori) per determinare

Dettagli

Studio sperimentale della propagazione di un onda meccanica in una corda

Studio sperimentale della propagazione di un onda meccanica in una corda Studio sperimentale della propagazione di un onda meccanica in una corda Figura 1: Foto dell apparato sperimentale. 1 Premessa 1.1 Velocità delle onde trasversali in una corda E esperienza comune che quando

Dettagli

Dinamica e Misura delle Vibrazioni

Dinamica e Misura delle Vibrazioni Dinamica e Misura delle Vibrazioni Prof. Giovanni Moschioni Politecnico di Milano, Dipartimento di Meccanica Sezione di Misure e Tecniche Sperimentali giovanni.moschioni@polimi.it VibrazionI 2 Il termine

Dettagli

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA ANALISI EDIANTE LO SPETTRO DI RISPOSTA arco BOZZA * * Ingegnere Strutturale, già Direttore della Federazione regionale degli Ordini degli Ingegneri del Veneto (FOIV), Amministratore di ADEPRON DINAICA

Dettagli

TRAVE SU SUOLO ELASTICO

TRAVE SU SUOLO ELASTICO Capitolo 3 TRAVE SU SUOLO ELASTICO (3.1) Combinando la (3.1) con la (3.2) si ottiene: (3.2) L equazione differenziale può essere così riscritta: (3.3) La soluzione dell equazione differenziale di ordine

Dettagli

1^A - Esercitazione recupero n 4

1^A - Esercitazione recupero n 4 1^A - Esercitazione recupero n 4 1 In un cartone animato, un gatto scocca una freccia per colpire un topo, mentre questi cerca di raggiungere la sua tana che si trova a 5,0 m di distanza Il topo corre

Dettagli

SCHEMA SETTIMANA TIPO CON TRE SEDUTE DI ALLENAMENTO

SCHEMA SETTIMANA TIPO CON TRE SEDUTE DI ALLENAMENTO U.S. ALESSANDRIA CALCIO 1912 SETTORE GIOVANILE ALLENAMENTO PORTIERI SCHEDA TIPO DELLA SETTIMANA ALLENATORE ANDREA CAROZZO GRUPPO PORTIERI STAGIONE 2009/2010 GIOVANISSIMI NAZIONALI 1995 ALLIEVI REGIONALI

Dettagli

Corrente elettrica (regime stazionario)

Corrente elettrica (regime stazionario) Corrente elettrica (regime stazionario) Metalli Corrente elettrica Legge di Ohm Resistori Collegamento di resistori Generatori di forza elettromotrice Metalli Struttura cristallina: ripetizione di unita`

Dettagli

Quantità di moto. Per un corpo puntiforme possiamo definire la grandezza vettoriale quantità di moto come il prodotto m v.

Quantità di moto. Per un corpo puntiforme possiamo definire la grandezza vettoriale quantità di moto come il prodotto m v. Quantità di moto Per un corpo puntiforme possiamo definire la grandezza vettoriale quantità di moto come il prodotto m v. La seconda legge di Newton può essere scritta con la quantità di moto: d Q F =

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

Elaborato di Meccanica delle Strutture

Elaborato di Meccanica delle Strutture Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Dipartimento di Meccanica ed Aeronautica Corso di Laurea Triennale in Ingegneria Meccanica Elaborato di Meccanica delle Strutture Docente

Dettagli

MODELLO ELASTICO (Legge di Hooke)

MODELLO ELASTICO (Legge di Hooke) MODELLO ELASTICO (Legge di Hooke) σ= Eε E=modulo elastico molla applicazioni determinazione delle tensioni indotte nel terreno calcolo cedimenti MODELLO PLASTICO T N modello plastico perfetto T* non dipende

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione 1. L elettrone ha una massa di 9.1 10-31 kg ed una carica elettrica di -1.6 10-19 C. Ricordando che la forza gravitazionale

Dettagli

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE a cura di G. SIMONELLI Nel motore a corrente continua si distinguono un sistema di eccitazione o sistema induttore che è fisicamente

Dettagli

AUTOLIVELLI (orizzontalità ottenuta in maniera automatica); LIVELLI DIGITALI (orizzontalità e lettura alla stadia ottenute in maniera automatica).

AUTOLIVELLI (orizzontalità ottenuta in maniera automatica); LIVELLI DIGITALI (orizzontalità e lettura alla stadia ottenute in maniera automatica). 3.4. I LIVELLI I livelli sono strumenti a cannocchiale orizzontale, con i quali si realizza una linea di mira orizzontale. Vengono utilizzati per misurare dislivelli con la tecnica di livellazione geometrica

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca Trascrizione del testo e redazione delle soluzioni di Paolo Cavallo. La prova Il candidato svolga una relazione

Dettagli

1) IL MOMENTO DI UNA FORZA

1) IL MOMENTO DI UNA FORZA 1) IL MOMENTO DI UNA FORZA Nell ambito dello studio dei sistemi di forze, diamo una definizione di momento: il momento è un ente statico che provoca la rotazione dei corpi. Le forze producono momenti se

Dettagli

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A.

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A. Travature reticolari piane : esercizi svolti e omenico., Fuschi., isano., Sofi. SRZO n. ata la travatura reticolare piana triangolata semplice illustrata in Figura, determinare gli sforzi normali nelle

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

Livellazione Geometrica Strumenti per la misura dei dislivelli

Livellazione Geometrica Strumenti per la misura dei dislivelli Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento Livellazione Geometrica Strumenti per la misura dei dislivelli Nota bene: Questo documento rappresenta unicamente

Dettagli

4capitolo. Le leggi che governano il moto dei corpi. sommario. 4.1 La prima legge della dinamica. 4.4 La legge di gravitazione universale

4capitolo. Le leggi che governano il moto dei corpi. sommario. 4.1 La prima legge della dinamica. 4.4 La legge di gravitazione universale 4capitolo Le leggi che governano il moto dei corpi sommario 4.1 La prima legge della dinamica 4.1.1 La Terra è un riferimento inerziale? 4.2 La seconda legge della dinamica 4.2.1 La massa 4.2.2 Forza risultante

Dettagli

1 Introduzione alla dinamica dei telai

1 Introduzione alla dinamica dei telai 1 Introduzione alla dinamica dei telai 1.1 Rigidezza di un telaio elementare Il telaio della figura 1.1 ha un piano solo e i telai che hanno un piano solo, sono chiamati, in questo testo, telai elementari.

Dettagli

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA ANDREA USAI Dipartimento di Informatica e Sistemistica Antonio Ruberti Andrea Usai (D.I.S. Antonio Ruberti ) Laboratorio di Automatica

Dettagli

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello.

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. CURVE DI LIVELLO Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. Definizione. Si chiama insieme di livello k della funzione f

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

Lezione del 28-11-2006. Teoria dei vettori ordinari

Lezione del 28-11-2006. Teoria dei vettori ordinari Lezione del 8--006 Teoria dei vettori ordinari. Esercizio Sia B = {i, j, k} una base ortonormale fissata. ) Determinare le coordinate dei vettori v V 3 complanari a v =,, 0) e v =, 0, ), aventi lunghezza

Dettagli

I modelli atomici da Dalton a Bohr

I modelli atomici da Dalton a Bohr 1 Espansione 2.1 I modelli atomici da Dalton a Bohr Modello atomico di Dalton: l atomo è una particella indivisibile. Modello atomico di Dalton Nel 1808 John Dalton (Eaglesfield, 1766 Manchester, 1844)

Dettagli

Derivazione elementare dell espressione della quantità di moto e dell energia in relativività ristretta

Derivazione elementare dell espressione della quantità di moto e dell energia in relativività ristretta Derivazione elementare dell espressione della quantità di moto e dell energia in relativività ristretta L. P. 22 Aprile 2015 Sommario L espressione della quantità di moto e dell energia in relatività ristretta

Dettagli

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente 1.1 Il motore a corrente continua Il motore a corrente continua, chiamato così perché per funzionare deve essere alimentato con tensione e corrente costante, è costituito, come gli altri motori da due

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

Esercitazioni di Meccanica Applicata alle Macchine

Esercitazioni di Meccanica Applicata alle Macchine Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Dipartimento di Meccanica ed Aeronautica Corso di Laurea Triennale in Ingegneria Meccanica Esercitazioni di Meccanica Applicata alle Macchine

Dettagli

RISCHIO CADUTA DALL ALTO

RISCHIO CADUTA DALL ALTO MICHELE SANGINISI RISCHIO CADUTA DALL ALTO DAI PONTEGGI METALLICI FISSI @ SERVIZI GRATUITI ON LINE Questo libro dispone dei seguenti servizi gratuiti disponibili on line: filodiretto con gli autori le

Dettagli

Svolgimento della prova

Svolgimento della prova Svolgimento della prova D1. Il seguente grafico rappresenta la distribuzione dei lavoratori precari in Italia suddivisi per età nell anno 2012. a. Quanti sono in totale i precari? A. Circa due milioni

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

Elettronica I Grandezze elettriche e unità di misura

Elettronica I Grandezze elettriche e unità di misura Elettronica I Grandezze elettriche e unità di misura Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

5 LAVORO ED ENERGIA. 5.1 Lavoro di una forza

5 LAVORO ED ENERGIA. 5.1 Lavoro di una forza 5 LAVR ED ENERGIA La valutazione dell equazione del moto di una articella a artire dalla forza agente su di essa risulta articolarmente semlice qualora la forza è costante; in tal caso è ossibile stabilire

Dettagli

L OSCILLOSCOPIO. L oscilloscopio è il più utile e versatile strumento di misura per il test delle apparecchiature e dei

L OSCILLOSCOPIO. L oscilloscopio è il più utile e versatile strumento di misura per il test delle apparecchiature e dei L OSCILLOSCOPIO L oscilloscopio è il più utile e versatile strumento di misura per il test delle apparecchiature e dei circuiti elettronici. Nel suo uso abituale esso ci consente di vedere le forme d onda

Dettagli

8. Il radar ad apertura sintetica

8. Il radar ad apertura sintetica 8. Il radar ad apertura sintetica Il radar ad apertura sintetica (SAR Synthetic Aperture Radar) è stato sviluppato a partire dal 1951 in seguito alle osservazioni effettuate da Carl Wiley della Goodyear

Dettagli

OPERE DI SOSTEGNO determinare le azioni esercitate dal terreno sulla struttura di sostegno;

OPERE DI SOSTEGNO determinare le azioni esercitate dal terreno sulla struttura di sostegno; OPERE DI SOSTEGNO Occorre: determinare le azioni esercitate dal terreno sulla struttura di sostegno; regolare il regime delle acque a tergo del muro; determinare le azioni esercitate in fondazione; verificare

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso Esercizio 1 Data la funzione di domanda: ELASTICITÀ Dire se partendo da un livello di prezzo p 1 = 1.5, al produttore converrà aumentare il prezzo fino al livello p 2 = 2. Sarebbe conveniente per il produttore

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

Esempi introduttivi Variabili casuali Eventi casuali e probabilità

Esempi introduttivi Variabili casuali Eventi casuali e probabilità Esempi introduttivi Esempio tipico di problema della meccanica razionale: traiettoria di un proiettile. Esempio tipico di problema idraulico: altezza d'acqua corrispondente a una portata assegnata. Come

Dettagli

Corso di Informatica Industriale

Corso di Informatica Industriale Corso di Informatica Industriale Prof. Giorgio Buttazzo Dipartimento di Informatica e Sistemistica Università di Pavia E-mail: buttazzo@unipv.it Informazioni varie Telefono: 0382-505.755 Email: Dispense:

Dettagli

Elettronica Circuiti nel dominio del tempo

Elettronica Circuiti nel dominio del tempo Elettronica Circuiti nel dominio del tempo Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Circuiti nel dominio del tempo 14 aprile 211

Dettagli

Le prossime 6 domande fanno riferimento alla seguente tavola di orario ferroviario

Le prossime 6 domande fanno riferimento alla seguente tavola di orario ferroviario Esercizi lezioni 00_05 Pag.1 Esercizi relativi alle lezioni dalla 0 alla 5. 1. Qual è il fattore di conversione da miglia a chilometri? 2. Un tempo si correva in Italia una famosa gara automobilistica:

Dettagli

RELAZIONE TECNICA 1. 1 - DESCRIZIONE GENERALE DELLE LAVORAZIONI

RELAZIONE TECNICA 1. 1 - DESCRIZIONE GENERALE DELLE LAVORAZIONI RELAZIONE TECNICA 1. 1 - DESCRIZIONE GENERALE DELLE LAVORAZIONI Le lavorazioni oggetto della presente relazione sono rappresentate dalla demolizione di n 14 edifici costruiti tra gli anni 1978 ed il 1980

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

La corrente elettrica

La corrente elettrica Unità didattica 8 La corrente elettrica Competenze Costruire semplici circuiti elettrici e spiegare il modello di spostamento delle cariche elettriche. Definire l intensità di corrente, la resistenza e

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

Analogia tra il circuito elettrico e il circuito idraulico

Analogia tra il circuito elettrico e il circuito idraulico UNIVERSITÁ DEGLI STUDI DELL AQUILA Scuola di Specializzazione per la Formazione degli Insegnanti nella Scuola Secondaria Analogia tra il circuito elettrico e il circuito idraulico Prof. Umberto Buontempo

Dettagli

Capitolo Ventitrè. Offerta nel breve. Offerta dell industria. Offerta di un industria concorrenziale Offerta impresa 1 Offerta impresa 2 p

Capitolo Ventitrè. Offerta nel breve. Offerta dell industria. Offerta di un industria concorrenziale Offerta impresa 1 Offerta impresa 2 p Caitolo Ventitrè Offerta dell industria Offerta dell industria concorrenziale Come si combinano le decisioni di offerta di molte imrese singole in un industria concorrenziale er costituire l offerta di

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997 1 RAPPRESENTAZIONE BINARIA DEI NUMERI Andrea Bobbio Anno Accademico 1996-1997 Numeri Binari 2 Sistemi di Numerazione Il valore di un numero può essere espresso con diverse rappresentazioni. non posizionali:

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano PPUNTI DI SCIENZ DEE COSTRUZIONI Giulio lfano nno ccademico 004-005 ii Indice 1 TRVTURE PINE 1 1.1 Geometria, equilibrio e vincoli...................... 1 1.1.1 Piani di simmetria........................

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

IN BASSO NELLA FINESTRA C È LA BARRA DI DISEGNO. SE NON È VISIBILE, FARE CLIC SUL MENU IN ALTO: VISUALIZZA / BARRE DEGLI STRUMENTI / DISEGNO

IN BASSO NELLA FINESTRA C È LA BARRA DI DISEGNO. SE NON È VISIBILE, FARE CLIC SUL MENU IN ALTO: VISUALIZZA / BARRE DEGLI STRUMENTI / DISEGNO FARE UNA MAPPA CON OPENOFFICE IMPRESS START/PROGRAMMI APRIRE IMPRESS SCEGLIERE PRESENTAZIONE VUOTA. POI CLIC SU AVANTI E DI NUOVO SU AVANTI. QUANDO AVANTI NON COMPARE PIÙ, FARE CLIC SU CREA CHIUDERE LE

Dettagli

Appunti sull orientamento con carta e bussola

Appunti sull orientamento con carta e bussola Appunti sull orientamento con carta e bussola Indice Materiale necessario... 2 Orientiamo la carta topografica con l'aiuto della bussola... 2 Azimut... 2 La definizione di Azimut... 2 Come misurare l azimut...

Dettagli

OBIETTIVI DELL ATTIVITA FISICA DEI BAMBINI DAI 6 AGLI 11 ANNI SECONDA PARTE LA CORSA

OBIETTIVI DELL ATTIVITA FISICA DEI BAMBINI DAI 6 AGLI 11 ANNI SECONDA PARTE LA CORSA OBIETTIVI DELL ATTIVITA FISICA DEI BAMBINI DAI 6 AGLI 11 ANNI SECONDA PARTE LA CORSA Dopo avere visto e valutato le capacità fisiche di base che occorrono alla prestazione sportiva e cioè Capacità Condizionali

Dettagli

TERMODINAMICA DI UNA REAZIONE DI CELLA

TERMODINAMICA DI UNA REAZIONE DI CELLA TERMODINAMICA DI UNA REAZIONE DI CELLA INTRODUZIONE Lo scopo dell esperienza è ricavare le grandezze termodinamiche per la reazione che avviene in una cella galvanica, attraverso misure di f.e.m. effettuate

Dettagli