Regime finanziario dell interesse semplice: formule inverse

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Regime finanziario dell interesse semplice: formule inverse"

Transcript

1 Regime finanziario dell interesse semplice: formule inverse Il valore attuale di K è il prodotto del capitale M disponibile al tempo t per il fattore di sconto 1/(1+it). 20

2 Regime finanziario dell interesse semplice: formule inverse 21

3 Regime finanziario dell interesse semplice: formule inverse 22

4 Regime finanziario dell interesse semplice: formule inverse 23

5 Regime finanziario dell interesse semplice: formule inverse 24

6 Regime finanziario dell interesse semplice: formule inverse 25

7 Regime finanziario dell interesse semplice Nel grafico è rappresentato l andamento nel tempo del Montante e dell interesse nel regime dell interesse semplice (linea continua: i=0,12 ; linea tratteggiata: i=0,18) M,I M = M(t) C I = I(t) t 26

8 Osservazioni sul grafico Montante ed interesse hanno andamento lineare rispetto al tempo (t); Per t=0 l interesse è nullo e il montante è pari al capitale inizialmente investito; Le semirette derivanti dall andamento nel tempo di interesse e montante sono parallele e in ogni istante t la loro differenza è pari al capitale investito; Il coefficiente angolare delle semirette (ic) cresce al crescere di I e/o C. 27

9 Tasso di sconto e fattore di attualizzazione nel regime dell interesse semplice Ricordiamo che: K M 0 t i(t) i t d(t) = = 1+i(t) 1+i t 1 1 v(t) = = r(t) 1+i t i t D(t) = M d(t) = M 1+i t 1 K = M v(t) = M 1+i t Sconto Valore Attuale 28

10 Sconto e Valore Attuale nel regime dell interesse semplice Nel grafico è rappresentato l andamento nel tempo del valore attuale e dello sconto nel regime dell interesse semplice (linea continua: i=0,12 ; linea tratteggiata: i=0,18) K,D M D= D(t) K t 29

11 Relazioni di base Riassumiamo le relazioni fondamentali del regime dell interesse semplice I(t) = K i t M(t) = K(1+i t) r(t) =1+i t i(t) = i t i t d(t) = 1+i t 1 v(t) = 1+i t 30

12 Esercizi ESERCIZIO 1 Un capitale disponibile tra sei mesi ammonta ad Calcolare il suo valore attuale considerando un tasso di interesse annuo del 14%. M K = M v(t) = = = 2.803,74 1+i t ,

13 Esercizi ESERCIZIO 2 Calcolare il valore attuale di un capitale disponibile tra nove mesi pari a sapendo che il tasso di sconto annuo (d) è del 9%. d 0,09 i = = = 0, d 1-0,09 K = M v(t) = M 1+i t = , = 1.629,15 32

14 Esercizi ESERCIZIO 3 Viene stipulato un prestito per da restituire dopo 9 mesi con l interesse annuo del 12%. Calcolare il valore attuale dopo 6 mesi della somma dovuta usando un tasso di interesse annuo del 10%. 33

15 Esercizi M =K r(t) =K (1+i t) = (1+0, ) =5.450 K6 mesi M = M v(t) = = = 5.317,07 1+i t 1+0, i =12% i =10% ,

16 Regime finanziario dell interesse composto Il regime dell interesse composto si caratterizza per la capitalizzazione periodica degli interessi che genera ulteriori interessi. La differenza rispetto al regime dell interesse semplice che non consente capitalizzazione è dunque chiara. 35

17 Regime finanziario dell interesse composto Regime dell interesse semplice t=0 t=1 t=2 K M Fattore di montante = [1+i(2)] Regime dell interesse composto t=0 t=1 t=2 K M M(1) = K(1+i) M = M(1)(1+i) = K(1+i) 2 36

18 Regime finanziario dell interesse composto 2 37

19 Regime finanziario dell interesse composto 2 38

20 Regime finanziario dell interesse composto: formule inverse t=0 t=1 t=2 K M K= M(1)/(1+i) M(1) = M/(1+i) M 39

21 Regime finanziario dell interesse composto: formule inverse Un semplice esempio può essere d aiuto. Il capitale disponibile tra due anni (m) è 108,64, il tasso di attualizzazione è l 8%, il valore attuale in regime di capitalizzazione composta (K) è 100. t=0 t1=1 t2=2 M 118,64 M(1) 108=118,64/(1+0,08) K 100=108/(1+0,08) 40

22 Regime finanziario dell interesse composto: formule inverse 41

23 Regime finanziario dell interesse composto: formule inverse 42

24 Regime finanziario dell interesse composto: formule inverse 43

25 Regime finanziario dell interesse composto: formule inverse Se l incognita è il tasso di interesse, i: Dati i valori del capital K, del montante M e del tempo t, è possibile stimare il tasso i: Esempio Dati: M=130; K=99,92; t=3 anni e 5 mesi; i=? 44

26 Montante ed Interesse Avendo ottenuto il montante unitario e l interesse unitario è semplice definire le leggi di formazione del montante e dell interesse. M,I K M=M(t) I=I(t) Nel grafico è rappresentato l andamento nel tempo del Montante e dell interesse nel regime dell interesse composto (linea continua: i=0,12 ; linea tratteggiata: i=0,18). t 45

27 Sconto e Valore attuale In base alle relazioni intercorrenti tra le grandezze equivalenti si possono ricavare: Fattore di attualizzazione (o valore attuale unitario) Sconto unitario Inoltre possiamo ottenere: Valore attuale Sconto 46

28 Sconto e Valore attuale Nel grafico è rappresentato l andamento nel tempo del valore attuale e dello sconto nel regime dell interesse composto (linea continua: i=0,12 ; linea tratteggiata: i=0,18). K,D M D(t) K t 47

29 Sconto e Valore attuale M Per durate inferiori all anno gli interessi prodotti dall investimenton nel regime dell interesse semplice sono maggiori di quelli prodotti nel regime dell interesse composto. 1+i 1 Per durate superiori all anno gli interessi prodotti nel regime dell interesse semplice sono minori di quelli prodotti nel regime dell interesse composto. Per durate pari ad 1 anno i due regimi Finanziari producono lo stesso ammontare di interesse unitario (1+i). 0,0 1,0 2,0 t 48

30 I TASSI EQUIVALENTI Argomenti Tassi equivalenti, tasso nominale, tasso istantaneo 49

31 I Tassi equivalenti In un assegnato regime finanziario, due tassi di interesse, riferiti ad orizzonti temporali diversi, si dicono equivalenti se i corrispondenti fattori di capitalizzazione per un operazione finanziaria della stessa durata t risultano uguali. i i 1/m Tasso di interesse annuo Tasso di interesse periodale (riferito ad 1/m di anno) Esempio i 1/2 i 1/4 i 1/12 Tasso di interesse semestrale Tasso di interesse trimestrale Tasso di interesse mensile 0 1 Anni m 1 m Periodi 50

32 Tassi equivalenti Se in corrispondenza del tasso di interesse annuo consideriamo la durata di una determinata operazione t espressa in anni, allora, in corrispondenza di un tasso periodale i 1/m la durata della medesima operazione sarà pari a m t, espressa in frazioni di anno. ESEMPIO: Operazione finanziaria di durata pari ad 1 anno 51

33 Tassi equivalenti Regime dell interesse semplice 1+ i t = 1+ i m t 1 m i = i m i = 1 m 1 m con m 0 i m 52

34 Tassi equivalenti Regime dell interesse composto t (1 + i) = (1 + i ) m 1 + i = (1 + i ) i = (1 + i ) 1 m (1 + i) = 1 + i i = (1 + i) 1 1 m 1 1 m 1 m 1 m m t m 1 m 1 m 53

35 Esercizi ESERCIZIO 1 Dato un tasso di interesse quadrimestrale (i 1/3 ) pari a 4,65%, nel regime dell interesse composto, calcolare i tassi di interesse annuo (i) e mensile (i 1/12 ) ad esso corrispondenti. (1 + i ) = (1 + i ) i = (1 + i ) i = (1 + i1 3) 1 i 1 12 = + = = 0,25 (1 0, 0465) 1 0, ,14% (1 + i) = (1 + i ) i = (1 + i13) 1 i = + = = 3 (1 0, 0465) 1 0, , 61% 54

36 Esercizi Riprendendo i dati dell esercizio precedente calcoliamo gli stessi tassi incogniti ipotizzando di trovarci nel regime dell interesse semplice. 1+ i 12 = 1+ i i1 12 = i1 3 i1 12 = 0,0465 0,25 = 1,16% i= 1+ i i = i 3 i = 0, = 13,95% 55

37 Tasso di interesse nominale Ipotizziamo di trovarci nel regime dell interesse composto e che il capitale iniziale (K) sia investito ad un tasso annuo di interesse (i). L interesse via via generato viene però corrisposto all investitore a periodicità prefissate, ad esempio m volte l anno. Dopo la prima frazione (1/m) di anno verrà quindi reso disponibile all investitore l interesse maturato. Questo interesse non viene automaticamente capitalizzato, al termine della seconda frazione di anno (2/m) il capitale fruttifero sarà ancora pari a K, di conseguenza anche alla fine di questo periodo l investitore riceverà una cedola di interesse pari a: 56

38 Tasso di interesse nominale Graficamente la situazione può essere così rappresentata M K+Ki 1/m K 1/m 2/m 3/m 4/m t Ipotizzando che l investimento duri un anno, alla fine di questo periodo l investitore avrà ricevuto per ogni euro investito m cedole di pari importo (i 1/m ). 57

39 Tasso di interesse nominale TASSO DI INTERESSE NOMINALE Il tasso nominale annuo di interesse convertibile m volte nell anno equivalente al tasso di interesse annuo effettivo (i), indicato con j(m), è la somma aritmetica delle cedole corrisposte all investitore per ogni euro investito. j m mi m i 1/ m ( ) = 1/ m = (1 + ) 1 Non ha un significato finanziario diretto, in quanto somma aritmetica di capitali disponibili ad epoche diverse. i 1/ m 1 = j ( m ) m m jm ( ) i = 1+ 1 m 58

40 Esercizi ESERCIZIO 1 Dato un tasso di interesse annuo effettivo (i) del 10,25%, nel regime dell interesse composto, determinare l equivalente tasso di interesse nominale convertibile 3 volte l anno (j(3)). j( m) = m (1 + i 1) j 1 m 13 (3) = 3 (1 + 0,1025) 1 = 0,99185 = 9,92%

41 Tasso di interesse istantaneo Se il tasso di interesse nominale j(m) è convertibile infinite volte nell anno, ossia è convertibile istante per istante, si può giungere al seguente risultato tramite le proprietà dei limiti notevoli. 1/ lim j( m) = lim m (1 + i) m 1 = = ln(1 + i) m + m + Dove la quantità = ln(1 +i) è definita tasso istantaneo di interesse corrispondente al tasso di interesse effettivo annuo (i). Ricavando il tasso di interesse effettivo annuo dalla relazione appena enunciata si avrà: i = exp( ) 1 60

42 Confronto tra tassi equivalenti jm ( ) Il tasso di interesse nominale annuo è: i Minore di quello effettivo annuo se m>1; Maggiore di quello effettivo annuo se m<1 Uguale a quello effettivo annuo se m=1 Al crescere di m tende al valore del tasso di interesse istantaneo m 61

43 Confronto tra tassi equivalenti L andamento dei tassi equivalenti rappresentato graficamente è validato dalla seguente tabella dove sono evidenziati i valori dei tassi equivalenti a determinati tassi di interesse effettivi annui per diversi valori di m, nonché i relativi tassi istantanei di interesse. 62

44 Alcune relazioni notevoli = ln(1 + i) e = e ln(1 + i) e = 1+ i t e = (1 + i) = r( t) r( t) = (1 + i) = e t t t 63

45 Tasso istantaneo di interesse -Capitalizzazione- Dalle relazioni precedenti risulta evidente che, nell operazione di capitalizzazione, utilizzare il tasso effettivo annuo (i) o il corrispondente tasso istantaneo (δ) conduce agli stessi risultati. ESEMPIO Dato un capitale iniziale di 100 investito nel regime dell interesse composto ad un tasso di interesse effettivo annuo del 20% determinare il montante generato alla fine del terzo anno di investimento. = ln(1 + i) = ln(1, 20) = 0,

46 Tasso istantaneo di interesse -Attualizzazione- Ricordando che: vt () = 1 rt () Allora possiamo esprimere anche il fattore di attualizzazione tramite il tasso istantaneo di interesse: t v( t) = (1 + i) = exp( t) Si può di conseguenza affermare che anche per quanto riguarda l operazione di attualizzazione è indifferente che essa venga svolta per mezzo del tasso effettivo di interesse annuale o tramite il tasso di interesse istantaneo corrispondente. 65

47 Tasso istantaneo di interesse -Attualizzazione- ESEMPIO Dato un tasso di interesse effettivo annuo del 15% determinare il valore attuale di un capitale finale di 100 disponibile tra due anni. = ln(1 + i) = ln(1,15) = 0,1398 CK = M (1 + i) t = 100 (1,15) = 75,61 2 K C = M exp( t) = 100 exp( 0,1398 2) = 75,61 66

48 Esercizi ESERCIZIO 1 Determinare il valore attuale di un capitale di 3000 disponibile tra un anno e mezzo investito nel regime dell interesse composto ad un tasso nominale convertibile semestralmente (j(2)) pari al 15%. K C = M (1 + i) 2 m jm ( ) i = 1+ 1 m 0,15 i = 1+ 1 = 0, K C t = + = 1, (1 0,155625) 2414,88 67

49 Esercizi ESERCIZIO 2 Determinare il valore attuale di un capitale di 5000 disponibile tra due anni e nove mesi investito nel regime dell interesse composto ad un tasso di interesse istantaneo (δ) pari al 12,5%. K C = M exp( t) C K = 5000 exp( 0, ) = 3545,53 68

50 Esercizi ESERCIZIO 3 Determinare il tasso di interesse istantaneo (δ) in base al quale un capitale di 2400 genera un montante di 3000 dopo un anno e mezzo. M M = CK exp( t) = exp( t) K C M ln = ln exp( t) C K M 1 M ln = t = ln K C t K C = ln = 0,1488 = 14,88% 1,

51 Esercizi ESERCIZIO 4 Dato un tasso istantaneo di interesse (δ) pari al 10% calcolare il tasso semestrale di interesse equivalente (i 1/2 ). exp( ) = 1+ i i= i i i = + 12 (1 i) 1 = + exp( ) 1 12 (1 exp( ) 1) 1 = exp( 2) 1 = exp(0,10 2) 1 = 0,

Regime finanziario dell interesse composto

Regime finanziario dell interesse composto Regime finanziario dell interesse composto Il regime dell interesse composto si caratterizza per la capitalizzazione periodica degli interessi che genera ulteriori interessi. La differenza rispetto al

Dettagli

Regimi finanziari: interesse semplice. S. Corsaro Matematica Finanziaria a.a. 2007/08 1

Regimi finanziari: interesse semplice. S. Corsaro Matematica Finanziaria a.a. 2007/08 1 Regimi finanziari: interesse semplice S. Corsaro Matematica Finanziaria a.a. 2007/08 1 Legge finanziaria TASSO PERIODALE tasso riferito all unità di tempo interesse i(1), oppure sconto d(1) REGIME FINANZIARIO

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

Operazioni finanziarie composte

Operazioni finanziarie composte Operazioni finanziarie composte Consideriamo due operazioni finanziarie: {S, -(S+I)}/{0,1} e {S, -(S+I+J})}/{0,2} La seconda può essere intesa come la composizione di due operazioni elementari: {S, -(S+I)}/{0,1},

Dettagli

Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015

Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015 Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015 Esercizio 1 Si consideri la funzione f(t) := 2t/10 1 + 0, 04t, t 0. 1. Verificare che essa rappresenta il fattore

Dettagli

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti 1 MODULO 1 1.1 Principali grandezze finanziarie 1. Si consideri una operazione finanziaria di provvista che prevede di ottenere

Dettagli

1 Esercizi di Riepilogo sulla Capitalizzazione Semplice e Composta

1 Esercizi di Riepilogo sulla Capitalizzazione Semplice e Composta 1 Esercizi di Riepilogo sulla Capitalizzazione Semplice e Composta 1. Un capitale C = 15 000 euro viene investito in RIC per anni al tasso di interesse trimestrale i 1 = 0.03. Il montante che si ottiene

Dettagli

Corso di Economia degli Intermediari Finanziari

Corso di Economia degli Intermediari Finanziari Corso di Economia degli Intermediari Finanziari Elementi di matematica finanziaria utili alla comprensione di alcune parti del Corso Definizione di operazione finanziaria Successione di importi di segno

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti 1. Un capitale d ammontare 100 viene investito, in regime di interesse semplice, al tasso annuo

Dettagli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli MATEMATICA FINANZIARIA Appello del 13 06 2008 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Confronto tra i regimi finanziari

Confronto tra i regimi finanziari Confronto tra i regimi finanziari Consideriamo i tre regimi finanziari Quale è il regime più conveniente? Per misurare la convenienza, paragoniamo i fattori di capitalizzazione: r s (t) = f. cap. interesse

Dettagli

Capitolo 1. Leggi di capitalizzazione. 1.1 Introduzione. 1.2 Richiami di teoria

Capitolo 1. Leggi di capitalizzazione. 1.1 Introduzione. 1.2 Richiami di teoria Indice 1 Leggi di capitalizzazione 5 1.1 Introduzione............................ 5 1.2 Richiami di teoria......................... 5 1.2.1 Regimi notevoli...................... 6 1.2.2 Tassi equivalenti.....................

Dettagli

Fondamenti e didattica di Matematica Finanziaria. Unità 2. Regime finanziario della capitalizzazione semplice

Fondamenti e didattica di Matematica Finanziaria. Unità 2. Regime finanziario della capitalizzazione semplice Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo - 6 MILANO U6-368 silvana.stefani@unimib.it SILSIS Unità Capitalizzazione semplice Capitalizzazione composta in

Dettagli

1. I Tassi di interesse. Stefano Di Colli

1. I Tassi di interesse. Stefano Di Colli 1. I Tassi di interesse Metodi Statistici per il Credito e la Finanza Stefano Di Colli Strumenti (in generale) Un titolo rappresenta un diritto sui redditi futuri dell emittente o sulle sue attività Un

Dettagli

Formulario. Legge di capitalizzazione dell Interesse semplice (CS)

Formulario. Legge di capitalizzazione dell Interesse semplice (CS) Formulario Legge di capitalizzazione dell Interesse semplice (CS) Il montante M è una funzione lineare del capitale iniziale P. Di conseguenza M cresce proporzionalmente rispetto al tempo. M = P*(1+i*t)

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIARIA Introduzione Definizione. La matematica finanziaria studia le operazioni finanziarie. Definizione. Una operazione finanziaria è un contratto che prevede scambi di danaro (tra i contraenti)

Dettagli

1 MATEMATICA FINANZIARIA

1 MATEMATICA FINANZIARIA 1 MATEMATICA FINANZIARIA 1.1 26.6.2000 Data la seguente operazione finanziaria: k = 0 1 2 3 4 F k = -800 200 300 300 400 a. determinare il TIR b. detreminare il VAN corrispondente ad un interesse periodale

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

Leggi di capitalizzazione

Leggi di capitalizzazione Leggi di capitalizzazione Introduzione Nel capitolo precedente abbiamo introdotto la definizione di fattore montante M(t,s)=V(s)/V(t) Quando M(t,s) viene vista come funzione di t e di s, si chiama legge

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Calcolo Finanziario Esercizi proposti Gli esercizi contrassegnati con (*) è consigliato svolgerli con il foglio elettronico, quelli

Dettagli

Questo materiale è reso disponibile sul web, esclusivamente nella pagina personale

Questo materiale è reso disponibile sul web, esclusivamente nella pagina personale Università degli studi di Milano Bicocca Scuola di Economia e Statistica Metodi Matematici (parte di Finanziaria) Esercizi con risoluzione dettagliata Autrice: Prof.ssa G.Carcano Questo materiale è reso

Dettagli

IV Esercitazione di Matematica Finanziaria

IV Esercitazione di Matematica Finanziaria IV Esercitazione di Matematica Finanziaria 28 Ottobre 2010 Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 85 giorni, prezzo di acquisto (lordo) P = 97.40 euro e

Dettagli

Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie

Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie Economia degli Intermediari Finanziari 29 aprile 2009 A.A. 2008-2009 Agenda 1. Il calcolo

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Matematica Finanziaria Un utile premessa Negli esercizi di questo capitolo, tutti gli importi in euro sono opportunamente arrotondati al centesimo. Ad esempio,e2 589.23658 e2 589.24 (con un

Dettagli

3. Determinare il numero di mesi m > 0 tale che i montanti generati dai due impieghi coincidano. M = 1000 1 + 0.1 9 ) = 1075 12

3. Determinare il numero di mesi m > 0 tale che i montanti generati dai due impieghi coincidano. M = 1000 1 + 0.1 9 ) = 1075 12 Esercizi di matematica finanziaria 1 Leggi finanziarie in una variabile Esercizio 1.1. Un soggetto può impiegare C o a interessi semplici con tasso annuo i oppure a interessi semplici anticipati con tasso

Dettagli

Equivalenza economica

Equivalenza economica Equivalenza economica Calcolo dell equivalenza economica [Thuesen, Economia per ingegneri, capitolo 4] Negli studi tecnico-economici molti calcoli richiedono che le entrate e le uscite previste per due

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Università degli Studi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli I-IV del testo Claudio Pacati a.a. 1998 99 c Claudio Pacati tutti i diritti riservati. Il presente

Dettagli

Sommario. Alcuni esercizi. Stefania Ragni. Dipartimento di Economia & Management - Università di Ferrara

Sommario. Alcuni esercizi. Stefania Ragni. Dipartimento di Economia & Management - Università di Ferrara Sommario Dipartimento di Economia & Management - Università di Ferrara Sommario Parte I: Capitalizzazione semplice e composta Parte II: Capitalizzazione mista Parte III: Capitalizzazione frazionata e tassi

Dettagli

TRACCE DI MATEMATICA FINANZIARIA

TRACCE DI MATEMATICA FINANZIARIA TRACCE DI MATEMATICA FINANZIARIA 1. Determinare il capitale da investire tra tre mesi per ottenere, nel regime dello sconto commerciale, un montante di 2800 tra tre anni e tre mesi sapendo che il tasso

Dettagli

APPUNTI DELLE LEZIONI DI MATEMATICA FINANZIARIA. Corso M-Z. Prof. Silvana Musti

APPUNTI DELLE LEZIONI DI MATEMATICA FINANZIARIA. Corso M-Z. Prof. Silvana Musti UNIVERSITÀ DEGLI STUDI DI FOGGIA FACOLTÀ DI ECONOMIA APPUNTI DELLE LEZIONI DI MATEMATICA FINANZIARIA Corso M-Z Prof. Silvana Musti Indice 1 OPERAZIONI FINANZIARIE 2 2 RIS - REGIME DELL INTERESSE SEMPLICE

Dettagli

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA Risolvere le seguenti disequazioni: 0 ) x x ) x x x 0 CLASSE TERZA - COMPITI DELLE VACANZE A.S. 04/ MATEMATICA x 6 x x x x 4) x x x x x 4 ) 6) x x x ( x) 0 x x x x x x 6 0 7) x x x EQUAZIONI CON I MODULI

Dettagli

Esercizi svolti durante le lezioni del 2 dicembre 2015

Esercizi svolti durante le lezioni del 2 dicembre 2015 Esercizi svolti durante le lezioni del 2 dicembre 205 Sconto commerciale ed attualizzazione. Lo sconto commerciale è proporzionale al capitale scontato ed al tempo che intercorre tra oggi e l'epoca in

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 7 Costituzione di un capitale Classificazione Fondo di

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 9 Contenuti della lezione Operazioni finanziarie, criterio

Dettagli

Esercizi svolti di Matematica Finanziaria

Esercizi svolti di Matematica Finanziaria Esercizi svolti di Matematica Finanziaria Anno Accademico 2007/2008 Rossana Riccardi Dipartimento di Statistica e Matematica Applicata all Economia Facoltà di Economia, Università di Pisa, Via Cosimo Ridolfi

Dettagli

PERCORSI ABILITANTI SPECIALI 2014 DIDATTICA DELL ECONOMIA DEGLI INTERMEDIARI FINANZIARI

PERCORSI ABILITANTI SPECIALI 2014 DIDATTICA DELL ECONOMIA DEGLI INTERMEDIARI FINANZIARI PERCORSI ABILITANTI SPECIALI 014 DIDATTICA DELL ECONOMIA DEGLI INTERMEDIARI FINANZIARI A cura Dott.ssa Federica Miglietta ESERCITAZIONE CALCOLO FINANZIARIO: Nel caso degli investimenti si parla genericamente

Dettagli

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza Università degli Studi di Ferrara 2014-2015 Corso TFA - A048 Matematica applicata Didattica della matematica applicata all economia e alla finanza 18 febbraio 2015 Appunti di didattica della Matematica

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elementi di matematica finanziaria 09.XI.2009 La matematica finanziaria e l estimo Nell ambito di numerosi procedimenti di stima si rende necessario operare con valori che presentano scadenze temporali

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

CAPITALIZZAZIONE, VALORE ATTUALE, RENDITE

CAPITALIZZAZIONE, VALORE ATTUALE, RENDITE Esercitazione Finanza Aziendale n 1 : CAPITALIZZAZIONE, VALORE ATTUALE, RENDITE 1 Capitalizzazione: QUANTO VALE DOMANI IL CAPITALE CHE INVESTO OGGI? (determinazione del Montante) Attualizzazione: QUANTO

Dettagli

LA CASSETTA DEGLI ATTREZZI

LA CASSETTA DEGLI ATTREZZI LA CASSETTA DEGLI ATTREZZI I TASSI DI INTERESSE TASSO DI RENDIMENTO EFFETTIVO ALLA SCADENZA (TRES) O YIELD-TO- MATURITY (YTM) Lezione 3 1 I PUNTI PRINCIPALI DELLA LEZIONE o o Misurazione dei tassi di interesse

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 09/10/2015

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 09/10/2015 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 09/10/2015 Regimi semplice e composto Esercizio 1. Dopo quanti mesi un capitale C, impiegato

Dettagli

Cognome Nome Matricola

Cognome Nome Matricola Sede di SULMONA Prova scritta di esame del 01 02-2011 Cognome Nome Matricola Esercizio 1 (punti 5) Nel regime dell interesse iperbolico e dell interesse composto, calcolare il tasso semestrale di interesse

Dettagli

1 2 3 4 Prefazione Il presente volume raccoglie testi proposti dagli autori nell ambito dei vari appelli d esame per il corso di Matematica Finanziaria tenuto presso la Facoltà di Economia dell Università

Dettagli

Soluzioni del Capitolo 5

Soluzioni del Capitolo 5 Soluzioni del Capitolo 5 5. Tizio contrae un prestito di 5.000 al cui rimborso provvede mediante il pagamento di cinque rate annue; le prime quattro rate sono ciascuna di importo.00. Determinare l importo

Dettagli

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A prova d esame del 21 Aprile 2010 modalità A 1. Un tizio ha bisogno di 600 euro che può chiedere, in alternativa, a due banche: A e B. La banca A propone un rimborso a quote capitale costanti mediante tre

Dettagli

Matematica Finanziaria Soluzione della prova scritta del 15/05/09

Matematica Finanziaria Soluzione della prova scritta del 15/05/09 Matematica Finanziaria Soluzione della prova scritta del 15/05/09 ESERCIZIO 1 Il valore in t = 60 semestri dei versamenti effettuati dall individuo è W (m) = R(1 + i 2 ) m + R(1 + i 2 ) m 1 +... R(1 +

Dettagli

II Esercitazione di Matematica Finanziaria

II Esercitazione di Matematica Finanziaria II Esercitazione di Matematica Finanziaria Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 90 giorni, prezzo di acquisto (lordo) P = 98.50 euro e valore facciale

Dettagli

Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009

Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009 Le obbligazioni: misure di rendimento e rischio Economia degli Intermediari Finanziari 4 maggio 009 A.A. 008-009 Agenda 1. Introduzione ai concetti di rendimento e rischio. Il rendimento delle obbligazioni

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIARIA E. Michetti Esercitazioni in aula MOD. 2 E. Michetti (Esercitazioni in aula MOD. 2) MATEMATICA FINANZIARIA 1 / 18 Rendite Esercizi 2.1 1. Un flusso di cassa prevede la riscossione

Dettagli

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Esercizio + 0,05 (1 0,05) 1. Calcolare la rata annua necessaria per costituire in 11 anni al tasso del 5% il capitale di 9800. 7-1

Esercizio + 0,05 (1 0,05) 1. Calcolare la rata annua necessaria per costituire in 11 anni al tasso del 5% il capitale di 9800. 7-1 Esercizio Calcolare la rata annua necessaria per costituire in anni al tasso del 5% il capitale di 9800. ( 0,05) + 9800 = R 4,2068R 0,05 R 689,8 7- Esercizio Calcolare la rata di una rendita semestrale

Dettagli

Elementi di Matematica Finanziaria. Mercati e operazioni finanziarie

Elementi di Matematica Finanziaria. Mercati e operazioni finanziarie Elementi di Matematica Finanziaria Mercati e operazioni finanziarie Mercati finanziari Punti di vista 1. Tipologie dei beni scambiati; 2. Partecipanti; 3. Ubicazione; 4. Regole e modalità contrattuali.

Dettagli

IL VALORE FINANZIARIO DEL TEMPO. Docente: Prof. Massimo Mariani

IL VALORE FINANZIARIO DEL TEMPO. Docente: Prof. Massimo Mariani IL VALORE FINANZIARIO DEL TEMPO Docente: Prof. Massimo Mariani 1 SOMMARIO Il concetto di tempo Il valore finanziario del tempo Le determinanti del tasso di interesse La formula di Fisher I flussi di cassa

Dettagli

Esercizi svolti in aula

Esercizi svolti in aula Esercizi svolti in aula 23 maggio 2012 Esercizio 1 (Esercizio 1 del compito di matematica finanziaria 1 (CdL EA) del 16-02-10) Un individuo vuole accumulare su un conto corrente la somma di 10.000 Euro

Dettagli

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce A. Peretti Svolgimento dei temi d esame di MDEF A.A. 015/16 1 PROVA CONCLUSIVA DI MATEMATICA per le DECISIONI ECONOMICO-FINANZIARIE Vicenza, 9/01/016 ESERCIZIO 1. Data l obbligazione con le seguenti caratteristiche:

Dettagli

Tempo e rischio Tempo Rischio

Tempo e rischio Tempo Rischio Il Valore Attuale Tempo e rischio Tempo: i 100 euro di oggi valgono di meno dei 100 euro di domani perché i primi possono essere investiti nel mercato dei capitali e fruttare un tasso di interesse r. Rischio:

Dettagli

Matematica applicata

Matematica applicata TFA Matematica applicata Esercizi commentati Accedi ai servizi riservati Il codice personale contenuto nel riquadro dà diritto a servizi esclusivi riservati ai nostri clienti. Registrandosi al sito, dalla

Dettagli

OPERAZIONI DI PRESTITO

OPERAZIONI DI PRESTITO APPUNTI DI ESTIMO La matematica finanziaria si occupa delle operazioni finanziarie, delle loro valutazioni, nonché del loro confronto. Si definisce operazione finanziaria, qualsiasi operazione che prevede

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO

UNIVERSITÀ DEGLI STUDI DI BERGAMO UNIVERSITÀ DEGLI STUDI DI BERGAMO Corso di prof.ssa Maria Sole Brioschi TAN, TAE e TAEG DLP-L Addendum Corso 20085 Corso di Laurea Triennale in Ingegneria Edile Anno Accademico 2012/2013 TAN, TAE e TAEG

Dettagli

Appunti di Calcolo finanziario. Mauro Pagliacci

Appunti di Calcolo finanziario. Mauro Pagliacci Appunti di Calcolo finanziario Mauro Pagliacci c Draft date 4 maggio 2010 Premessa In questo fascicolo sono riportati gli appunti dalle lezioni del corso di Elaborazioni automatica dei dati per le applicazioni

Dettagli

Maria Elena De Giuli Cesare Zuccotti E S E R C I Z I R I S O L T I d i M A T E M A T I C A F I N A N Z I A R I A

Maria Elena De Giuli Cesare Zuccotti E S E R C I Z I R I S O L T I d i M A T E M A T I C A F I N A N Z I A R I A Maria Elena De Giuli Cesare Zuccotti ESERCIZI RISOLTI di MATEMATICA FINANZIARIA INDICE PARTE I TESTO DEGLI ESERCIZI pag. 1 LE LEGGI DI CAPITALIZZAZIONE 1 2 LA CAPITALIZZAZIONE SEMPLICE 4 3 LA CAPITALIZZAZIONE

Dettagli

Il calcolo finanziario è utilizzato per rendere epoche diverse.

Il calcolo finanziario è utilizzato per rendere epoche diverse. Economia delle Risorse Naturali A COSA SERVE? Il calcolo finanziario è utilizzato per rendere omogenei tra loro valori che si verificano in epoche diverse. L interesse è il prezzo d uso del capitale. Il

Dettagli

Il piano d ammortamento (francese) prevede un totale di 20 rate semestrali pari a: D 300.000 a 14, 2888 Il debito residuo dopo 10 semestri sarà:

Il piano d ammortamento (francese) prevede un totale di 20 rate semestrali pari a: D 300.000 a 14, 2888 Il debito residuo dopo 10 semestri sarà: Gli esercizi sono suddivisi per argomenti. A) Piani d ammortamento. ) I esonero 003. Un individuo si accorda per restituire un importo di 300 mila euro mediante il versamento di rate costanti semestrali

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elementi di matematica finanziaria Venezia, 12 maggio 2010 Il problema La matematica finanziaria fornisce gli strumenti necessari per il confronto di flussi di moneta o capitali che si verificano in momenti

Dettagli

Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto)

Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto) Matematica finanziaria: svolgimento prova di esame del giugno 5 (con esercizio corretto). [6 punti cleai, 6 punti altri] Si possiede un capitale di e e lo si vuole impiegare per anni. Supponendo che eventuali

Dettagli

Marco Tolotti - Corso di Esercitazioni di Matematica 12 Cfu - A.A. 2010/2011 1

Marco Tolotti - Corso di Esercitazioni di Matematica 12 Cfu - A.A. 2010/2011 1 Marco Tolotti - Corso di Esercitazioni di Matematica 1 Cfu - A.A. 010/011 1 Esercitazione 1: 4/09/010 1. Determinare il dominio delle seguenti funzioni: log a) f() = 5 ( 1). b) g() = log 3 (3 6) log 13.

Dettagli

Determinare l ammontare x da versare per centrare l obiettivo di costituzione.

Determinare l ammontare x da versare per centrare l obiettivo di costituzione. Esercizi di matematica finanziaria 1 VAN - DCF - TIR Esercizio 1.1. Un investitore desidera disporre tra 3 anni d un capitale M = 10000 euro. Investe subito la somma c 0 pari a 1/4 di M. Farà poi un ulteriore

Dettagli

(Come noto, il risultato finale dell importo dei capitali, espresso in euro, deve essere arrotondato al centesimo più prossimo)

(Come noto, il risultato finale dell importo dei capitali, espresso in euro, deve essere arrotondato al centesimo più prossimo) MATEMATICA FINANZIARIA ISTITUZIONI L - Z) Pavia 11/ 11/004 COGNOME e NOME:... n.dimatricola:... CODICE ESAME:... Come noto, il risultato finale dell importo dei capitali, espresso in euro, deve essere

Dettagli

MATEMATICA FINANZIARIA Appello del 16 giugno 2014

MATEMATICA FINANZIARIA Appello del 16 giugno 2014 MATEMATICA FINANZIARIA Appello del 16 giugno 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Matematica finanziaria

Matematica finanziaria Matematica finanziaria La matematica finanziaria studia le cosiddette operazioni finanziarie Le operazioni finanziarie sono situazioni nelle quali una persona cede denaro in condizioni di certezza e per

Dettagli

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

i = ˆ i = 0,02007 i = 0,0201 ˆ "3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo

i = ˆ i = 0,02007 i = 0,0201 ˆ 3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo 1 Appello sessione estiva 2009/ 2010 (tassi equivalenti - ammortamento) 1 Parte Rispondere ai seguenti distinti quesiti in A) e in B). A) Il capitale C=10000 è stato impiegato in capitalizzazione composta

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2000

MATEMATICA FINANZIARIA Appello del 10 luglio 2000 MATEMATICA FINANZIARIA Appello del 10 luglio 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

COMPITO DI MATEMATICA FINANZIARIA 8 Febbraio 2013. - Come cambia il REA atteso se l'obbligazione sarà ancora in vita dopo le prime tre estrazioni?

COMPITO DI MATEMATICA FINANZIARIA 8 Febbraio 2013. - Come cambia il REA atteso se l'obbligazione sarà ancora in vita dopo le prime tre estrazioni? UNIVERSITA DEGLI STUDI DI URBINO (Sede di Fano) COMPITO DI MATEMATICA FINANZIARIA 8 Febbraio 2013 1) L'impresa Gamma emette 250 obbligazioni il cui VN unitario è pari a 100. Il rimborso avverrà tramite

Dettagli

COMPLEMENTI SULLE LEGGI FINANZIARIE

COMPLEMENTI SULLE LEGGI FINANZIARIE COMPLEMENI SULLE LEGGI FINANZIARIE asso di rendimento di operazioni finanziarie in valuta estera La normativa vigente consente di effettuare operazioni finanziarie, sia di investimento che di finanziamento,

Dettagli

ESERCIZI DA SVOLGERE PER IL 23/05/08 (la parte in verde, il resto lo dovreste avere già svolto).

ESERCIZI DA SVOLGERE PER IL 23/05/08 (la parte in verde, il resto lo dovreste avere già svolto). ESERCIZI DA SVOLGERE PER IL 23/05/08 (la parte in verde, il resto lo dovreste avere già svolto). 1. Data la funzione : f x =x 2 e x minimo e di massimo. Determinare inoltre gli eventuali flessi e gli intervalli

Dettagli

Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014

Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014 Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014 Avvertenze Durante lo svolgimento degli esercizi tenere

Dettagli

Corso di Estimo Elementi di Matematica Finanziaria

Corso di Estimo Elementi di Matematica Finanziaria Corso di Estimo Elementi di Matematica Finanziaria Corso di Scienze e Tecnologie Agrarie Indice argomenti Capitale e Interesse Interesse semplice Interesse composto Annualità Poliannualità r nominale e

Dettagli

a) È più conveniente acquistare 3 paia di calzini a dicembre che a gennaio

a) È più conveniente acquistare 3 paia di calzini a dicembre che a gennaio RB0001B Un negozio offre a dicembre in promozione tre paia di calzini al prezzo di due. A gennaio questa offerta è stata sostituita da uno sconto del 35% su ogni singolo prezzo. Sapendo che il prezzo di

Dettagli

Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di

Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di Capitalizzazione e attualizzazione finanziaria Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di interesse rappresenta quella quota di una certa somma presa

Dettagli

2 RIS - REGIME DELL INTERESSE SEMPLICE 13 3 RIA - REGIME DELL INTERESSE ANTICIPATO 24 4 RIC - REGIME AD INTERESSE COMPOSTO 28

2 RIS - REGIME DELL INTERESSE SEMPLICE 13 3 RIA - REGIME DELL INTERESSE ANTICIPATO 24 4 RIC - REGIME AD INTERESSE COMPOSTO 28 Indice 1 OPERAZIONI FINANZIARIE 2 2 RIS - REGIME DELL INTERESSE SEMPLICE 13 3 RIA - REGIME DELL INTERESSE ANTICIPATO 24 4 RIC - REGIME AD INTERESSE COMPOSTO 28 5 INTENSITA ISTANTANEA DI INTERESSE ( NEI

Dettagli

Anatocismo e capitalizzazione: logica finanziaria e basi di calcolo

Anatocismo e capitalizzazione: logica finanziaria e basi di calcolo IL NUOVO ART. 120 DEL TUB ALL ESAME DELLA GIURISPRUDENZA DI MERITO: RICOSTRUZIONI E POSSIBILI SOLUZIONI OPERATIVE Milano, 27 maggio 2015 Anatocismo e capitalizzazione: logica finanziaria e basi di calcolo

Dettagli

Appunti di Matematica Finanziaria

Appunti di Matematica Finanziaria Appunti di Matematica Finanziaria Giovanni Masala - Marco Micocci Facoltà di Economia - Università di Cagliari Agosto 2006 1 Regimi Finanziari. 4 1.1 Considerazioni introduttive.....................................

Dettagli

COSA STUDIA LA MATEMATICA FINANZIARIA?

COSA STUDIA LA MATEMATICA FINANZIARIA? COSA STUDIA LA MATEMATICA FINANZIARIA? STUDIA LE RELAZIONI CHE INTERCORRONO FRA IL CAPITALE E IL TEMPO IN QUANTO IL CAPITALE NEL TEMPO PRODUCE UN INTERESSE CHE COSA É L INTERESSE? È IL PREZZO D USO DEL

Dettagli

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

Matematica (prof. Paolo Pellizzari) Corso di laurea COMES 3 Novembre 2011 A

Matematica (prof. Paolo Pellizzari) Corso di laurea COMES 3 Novembre 2011 A Novembre 2011 A f (x) = ( 6 + 8 x ) x + 4. (2) Sia f definita in [0,5] come segue (x 2) 2 + 1 se 0 x x + 5 se < x 5 (c) Enunciate il teorema di Weierstrass. () Sia f (x) = log(2 + e x 4 ). (a) Calcolate

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 10 Contenuti della lezione Valutazione di titoli obbligazionari

Dettagli

Montante (C n ) La somma di capitale ed interesse, disponibile alla fine dell'anno, viene chiamata montante:

Montante (C n ) La somma di capitale ed interesse, disponibile alla fine dell'anno, viene chiamata montante: NOZIONI DI CALCOLO FINANZIARIO: a cura del dr. Renato Fucito 1 Introduzione La matematica finanziaria studia i problemi relativi al trasferimento nel tempo di valori. In particolare essa si occupa dei

Dettagli

Calcolo economico e finanziario: Esercizi da svolgere. A) Capitalizzazione semplice

Calcolo economico e finanziario: Esercizi da svolgere. A) Capitalizzazione semplice Calcolo economico e finanziario: Esercizi da svolgere A) Capitalizzazione semplice A.1) Il capitale di 3.000 viene impiegato al tasso i=0,07 per 4 anni. Calcolare il montante. A.2) Il capitale di 3.500

Dettagli

VI Esercitazione di Matematica Finanziaria

VI Esercitazione di Matematica Finanziaria VI Esercitazione di Matematica Finanziaria 2 Dicembre 200 Esercizio. Verificare la proprietà di scindibilità delle leggi del prezzo { v(t, s) = exp } 2 (s2 t 2 ) e v(t, s) = e t(s t) Soluzione. Possiamo

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Valutazione Economica del Progetto Corso del prof. Stefano Stanghellini Elementi di matematica Contributo didattico: prof. Sergio Copiello Spostamento di capitali nel tempo Non è possibile addizionare,

Dettagli

MATEMATICA FINANZIARIA Appello del 18 marzo 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 18 marzo 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 18 marzo 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

Capitalizzazione composta, rendite, ammortamento

Capitalizzazione composta, rendite, ammortamento Capitalizzazione composta, rendite, ammortamento Paolo Malinconico 2 dicembre 2014 Montante Composto dove: C(t) = C(1+i) t C(t) = montante (o valore del capitale) al tempo t C = capitale impiegato (corrispondente

Dettagli

Vincenzo Ciancio Armando Ciancio. Metodi matematici per le applicazioni finanaziarie

Vincenzo Ciancio Armando Ciancio. Metodi matematici per le applicazioni finanaziarie A01 73 Vincenzo Ciancio Armando Ciancio Metodi matematici per le applicazioni finanaziarie Copyright MMV ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133

Dettagli

I titoli obbligazionari

I titoli obbligazionari I titoli obbligazionari 1 Tipologie di titoli La relazione di equivalenza consente di attribuire un valore oggi ad importi monetari disponibili ad una data futura. In particolare permettono di determinare

Dettagli

FINANZA AZIENDALE. Lezione n. 7

FINANZA AZIENDALE. Lezione n. 7 FINANZA AZIENDALE Lezione n. 7 Valutare i titoli obbligazionari 1 SCOPO DELLA LEZIONE L obbligazione è il titolo più semplice che si possa trovare sul mercato. Il suo valore dipende da due elementi: i

Dettagli

per Mara a) 16% b) 12% c) 11% d) 15% d 3.200, se aspetti 5mesi ci vogliono 200 in più. Che tasso annuo ha applicato il creditore?

per Mara a) 16% b) 12% c) 11% d) 15% d 3.200, se aspetti 5mesi ci vogliono 200 in più. Che tasso annuo ha applicato il creditore? RA00001 Quanti d interesse producono, in capitalizzazione a) 326,4 b) 412,5 c) 132,8 d) 210 a composta, 4000 impiegati al 4% dopo 2 anni? RA00002 Investendo per 6 anni un capitale di 32000, si sono a)

Dettagli

Esercizio 1 Calcolare il montante F di 10.000 con un interesse semplice del 15% annuo, dopo 4 anni. [16.000 ]

Esercizio 1 Calcolare il montante F di 10.000 con un interesse semplice del 15% annuo, dopo 4 anni. [16.000 ] Esercizio 1 Calcolare il montante F di 10.000 con un interesse semplice del 15% annuo, dopo 4 anni. [16.000 ] Esercizio 2 Del precedente esercizio calcolare il montante in regime di capitalizzazione composta.

Dettagli