Un modello di ricerca operativa per le scommesse sportive

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Un modello di ricerca operativa per le scommesse sportive"

Transcript

1 Un modello di iceca opeativa pe le commee potive Di Citiano Amellini Supponiamo di dove giocae una ceta omma di denao (eempio euo ulla patita MILAN- JUVE Le quote SNAI ono quelle ipotate nella tabella qui otto al iultato pagato volte la puntata il paaggio paga volte mente il iultato è pagato volte la pota MILAN JUVE X Quote Come viluppae un modello matematico che aei il ichio del gioco? Va detto che in geneale un itema icuo può non eitee Tuttavia agioneemo in queto modo è la omma che iamo dipoti a invetie ne gioco e ono gli impoti che giocheemo ipettivamente nei iultati X (un iultato deve ucie pe oa Quindi Se vincee il MILAN (iultato alloa il noto icavo aà e ci oe un paeggio (iultato X alloa il noto icavo aà mente e vincee la JUVE (iultato avemo ovviamente In tutti i te i cai non vogliamo pedee il che equivale che i noti icavi non dovanno mai eee negativi Quindi il modello matematico aà va o e voglio imiae S < va ( Oppue e voglio impotae una vincita con un impoto imo tenendo ia la omma da giocae

2 va Un alta inteeante vaiante (dove imio la omma da giocae e impoto una quota ima da vincee è < va imo( Dove è il valoe imo di guadagni che vogliamo comunque ottenee Da notae che nei modelli abbiamo poto le quote X_i ma più agionevolmente potevamo mettele come X_i impoto_imo_giocabile come pue poiamo conideae olo X_i intei Fiate le quote e iato l impoto compleivo che iamo dipoti a giocae il poblema è deteae i ingoli impoti da invetie nei ingoli iultati pe in modo tale da non pedee mai qualiai iultato eca Come abbiamo detto è un tipico poblema di iceca opeativa che può eee impotato e iolto con il iolutoe di Micoot Ecel o di Open Oice oppue uando pogammi più oiticati non alla potata di tutti come il GAMS il LINGO o il LINDO Non è detto peò che il poblema ammetta empe oluioni peché ciò dipende dall impoto che iamo dipoti a giocae ma opattutto dalle quote che vengono aegnate ai iultati delle ingole patite Un metodo combinatoio potebbe eee quello di conideae le i va intee poitive ( empliicaione del modello pogammaione lineae intea e contollae ta tutte le combinaioni poibili quella che più i avvicina alla oluione cecata Una poibile vaiante più complea al poblema è

3 va ma( Oppue va ma( In queti ultimi due cai i può pendee anche in eame la poibilità di otituie la unione ma( con ma( S è il valoe imo di guadagni che vogliamo comunque ottenee Ovveo maimio la omma delle poibili vincite è veo che può capitae olo un cao u te ma i vincoli del modello anno ì che le oluioni tovate avanno la caatteitica di a vincee poco o nulla nei cai di maggioe pobabilità (quelli che hanno un moltiplicatoe dell impoto giocato bao ma potanno gaantie guadagni più elevati del modello pecedente nei cai in cui capiti l evento meno pobabile è ovviamente il valoe maimo che iamo diponibili a giocae (i può comunque impotae S Il modello eclude la poibilità che tutta la omma giocata pe eetto della maimiaione vada ul iultato meno pobabile peché in queto modo non tutti i vincoli di poitività veanno ipettati

4 Pe aumentae le quote e quindi gli impoti della vincita poiamo conideae tutti i iultati due patite la pima (X con quote K_ pe K_ pe X K_ pe mente la econda (X; con quote K_ pe K_ pe X K_ pe Lo paio degli eventi aà cotituito da ben 9 poibilità con le quote che ono il podotto delle quote dei ingoli iultati delle ingole patite La quote quindi ono più alte ma ono maggioi i iultati da conideae (ben 9 tuttavia poiamo applicae gli algoitmi pecedenti adattandoli ai 9 poibili iultati dello paio campionaio pe veiicae e i ono maggioi poibilità di guadagno Un modello matematico pe la chedina totocalcio Di Citiano Amellini Supponiamo di dove giocae una del totocalcio in modo intelligente ovveo in modo da maimiae le pobabilità di vincita Un modello potebbe eee ab a b ma P ( ( ( a numeo di doppie b numeo di tipe v coto delle doppie v coto delle tiple S v a v b v S omma da giocae v coto chedina ena doppie né tiple S < valoe maimo da invetie < a < a intege < b < b intege S 4

5 Ovveo tabilito l impoto maimo da giocae il itema ci dice quante doppie tiple e ingole dobbiamo ineie nel itema pe ottimiae la pobabilità di vincita (nel modello i può comunque impotae S Se invece aveimo impotato il modello (vedi otto con la unione pai alla omma da invetie avemmo olo ottenuto quante doppie tiple ingole avemmo potuto giocae con un deteato impoto Ancoa una volta uggeiamo di uae il iolutoe delle equaioni o la unione di EXCEL Open Oice o LibeOice ma anche il GAMS il LINGO o il LINDO come otwae pela pogammaione lineae e non lineae nell ambito dei poblemi (come queti di iceca opeativa S va vb v a numeo di doppie b numeo di tipe v coto delle doppie v coto delle tiple S v a v b v S omma da giocae v coto chedina ena doppie né tiple S < valoe maimo da invetie < a < a intege < b < b intege S In Ecel 5

6 In Open Oice (o Libe Oice GnuNumeic 6

7 7

Capitolo 16. La teoria dell equilibrio generale. Soluzioni delle Domande di ripasso

Capitolo 16. La teoria dell equilibrio generale. Soluzioni delle Domande di ripasso eanko & aeutigam icoeconomia anuale delle oluzioni Capitolo 16 La teoia dell equilibio geneale Soluzioni delle Domande di ipao 1. L analii di equilibio paziale tudia la deteminazione del pezzo e della

Dettagli

MODELLI DI SCELTA DEL PERCORSO PER RETI DI TRASPORTO COLLETTIVO

MODELLI DI SCELTA DEL PERCORSO PER RETI DI TRASPORTO COLLETTIVO IPARTIMENTO INENERIA CIVILE UNIVERSITÀ I ROMA TOR VERATA coo di Pianificazione dei tapoti 2 MOELLI I SCELTA EL PERCORSO PER RETI I TRASPORTO COLLETTIVO 1 CLASSIFICAZIONE EI COMPORTAMENTI I SCELTA celta

Dettagli

CAPITOLO 10 La domanda aggregata I: il modello IS-LM

CAPITOLO 10 La domanda aggregata I: il modello IS-LM CAPITOLO 10 La domanda aggegata I: il modello IS-LM Domande di ipasso 1. La coce keynesiana ci dice che la politica fiscale ha un effetto moltiplicato sul eddito. Infatti, secondo la funzione di consumo,

Dettagli

Il moto circolare uniforme

Il moto circolare uniforme Il moto cicolae unifome Il moto cicolae unifome: peiodo e fequenza Un copo che i muoe lungo una taiettoia cicolae con elocità calae cotante ipaa pe la poizione iniziale a intealli fii di tempo. Definiamo

Dettagli

Trasformata di Laplace unilatera Teoria

Trasformata di Laplace unilatera Teoria Definizione Tafomaa di Laplace unilaea Teoia L[f()] = f() $ e ($) d = F() Dove: f() = funzione eale afomabile. E nulla pe

Dettagli

Note su alcuni principi fondamentali di macroeconomia Versione parziale e provvisoria. Claudio Sardoni Sapienza Università di Roma

Note su alcuni principi fondamentali di macroeconomia Versione parziale e provvisoria. Claudio Sardoni Sapienza Università di Roma Note u alcuni principi fondamentali di macroeconomia Verione parziale e provvioria Claudio Sardoni Sapienza Univerità di Roma Anno accademico 2010-2011 ii Indice Premea v I Il breve periodo 1 1 Il fluo

Dettagli

5. CAMBIO. 5.1. descrizione

5. CAMBIO. 5.1. descrizione ambio powe - shift 5. AMBIO 5.. descizione Tattasi di cambio meccanico a te velocità avanti e te velocità indieto, ealizzate mediante cinque iduttoi epicicloidali vaiamente collegati ta loo. Tutte le cinque

Dettagli

Approfondimento 7.5 - Altri tipi di coefficienti di correlazione

Approfondimento 7.5 - Altri tipi di coefficienti di correlazione Appofondimento 7.5 - Alti tipi di coefficienti di coelazione Il coefficiente di coelazione tetacoico e policoico Nel 900 Peason si pose anche il poblema di come misuae la coelazione fa caatteistiche non

Dettagli

Sintesi tramite il luogo delle radici

Sintesi tramite il luogo delle radici Sintei tramite il luogo delle radici Può eere utilizzata anche per progettare itemi di controllo per itemi intabili Le pecifiche devono eere ricondotte a opportuni limiti u %, ta, t di W(), oltre quelle

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MDELLI SCHEDA DI LAVR La clessida ad acqua Ipotizziamo che la clessida ad acqua mostata in figua sia fomata da due coni pefetti sovapposti La clessida impiega,5 minuti pe svuotasi e supponiamo

Dettagli

Corso di Microonde II

Corso di Microonde II POITECNICO DI MIANO Coro di Microonde II ezi n. 3: Generalità ugli amplificatori ineari Coro di aurea pecialitica in Ingegneria delle Telecomunicazi Circuiti attivi a microonde (Amplificatori) V in Z g

Dettagli

CAPITOLO 11 La domanda aggregata II: applicare il modello IS-LM

CAPITOLO 11 La domanda aggregata II: applicare il modello IS-LM CPITOLO 11 La domanda aggegata II: applicae il modello - Domande di ipasso 1. La cuva di domanda aggegata appesenta la elazione invesa ta il livello dei pezzi e il livello del eddito nazionale. Nel capitolo

Dettagli

SPECIALISTI DELL AUTOMOTIVE

SPECIALISTI DELL AUTOMOTIVE 80_84_147do5 d Pagina 80 o di MILA MOLINARI i e SPECIALISTI DELL AUTOMOTIVE Eperti nella lavorazione di prototipi e particolari detinati al ettore automobilitico, CMG Cofeva da oltre 30 anni opera nel

Dettagli

Valore finanziario del tempo

Valore finanziario del tempo Finanza Aziendale Analisi e valutazioni pe le decisioni aziendali Valoe finanziaio del tempo Capitolo 3 Indice degli agomenti. Concetto di valoe finanziaio del tempo 2. Attualizzazione di flussi futui

Dettagli

Materiale didattico. Organizzazione del modulo IL CALCOLO FINANZIARIARIO. Programma Struttura logica

Materiale didattico. Organizzazione del modulo IL CALCOLO FINANZIARIARIO. Programma Struttura logica IL CALCOLO FINANZIARIARIO You do not eally undestand something unless you can explain it to you gandmothe (A.Einstein) Calcolo finanziaio Intoduzione Economia dell impesa foestale: Bilancio Pianificazione

Dettagli

CAPITOLO 3 Il reddito nazionale: da dove viene e dove va

CAPITOLO 3 Il reddito nazionale: da dove viene e dove va CAPITOLO Il eddito nazionale: da dove viene e dove va Domande di ipasso. I fattoi di poduzione e la tecnologia di poduzione deteminano il livello della poduzione aggegata di un sistema economico. I fattoi

Dettagli

V. SEPARAZIONE DELLE VARIABILI

V. SEPARAZIONE DELLE VARIABILI V SEPARAZIONE DEE VARIABII 1 Tasfomazioni Otogonali Sia u = u 1, u 2, u 3 una tasfomazione delle vaiabili in R 3, dove x = x 1, x 2, x 3 sono le coodinate catesiane, u j = u j x 1, x 2, x 3 j = 1, 2, 3

Dettagli

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè:

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè: LEZIONI N 44 E 45 CALCOLO A ROTTURA DELLA SEZIONE PRESSOINFLESSA PROBLEMI DI VERIFICA La procedura di verifica dei pilatri di c.a., ottopoti a forzo normale e momento flettente, è baata ulla cotruzione

Dettagli

Sezioni in c.a. La flessione composta. Catania, 16 marzo 2004 Marco Muratore

Sezioni in c.a. La flessione composta. Catania, 16 marzo 2004 Marco Muratore Sezioni in c.a. La fleione compota Catania, 16 marzo 004 arco uratore Per chi non c era 1. Compreione: verifica Tenioni ammiibili α cd Ac f 1.5 f yd A 0.7 σ ( A max c c n A ) Riultati comparabili per il

Dettagli

LaborCare. Care. protection plan

LaborCare. Care. protection plan Cae potection plan ocae Il Potection Plan è stato studiato pe gaantie la massima efficienza di oview e pe questo i clienti che non vogliono avee poblemi nel futuo, si affidano al nosto pogamma di potezione

Dettagli

Investimento. 1 Scelte individuali. Micoreconomia classica

Investimento. 1 Scelte individuali. Micoreconomia classica Investimento L investimento è l aumento della dotazione di capitale fisico dell impesa. Viene effettuato pe aumentae la capacità poduttiva. ECONOMIA MONETARIA E FINANZIARIA (5) L investimento In queste

Dettagli

Capitolo IV L n-polo

Capitolo IV L n-polo Capitolo IV L n-polo Abbiamo oervato che una qualiai rete, vita da due nodi, diventa, a tutti gli effetti eterni, un bipolo unico e queto è in qualche miura ovvio e abbiamo anche motrato come cotruire

Dettagli

Lezione 12. Regolatori PID

Lezione 12. Regolatori PID Lezione 1 Regolatori PD Legge di controllo PD Conideriamo un regolatore che eercita un azione di controllo dipendente dall errore attravero la eguente legge: t ut = K et K e d K de t P + τ τ+ D. dt La

Dettagli

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità Capitolo 6 Il comportamento dei itemi di controllo in regime permanente 6. Claificazione dei itemi di controllo 6. Errore tatico: generalità 6. Calcolo dell errore a regime 6.4 Eercizi - Errori a regime

Dettagli

SCHEDA TECNICA DI VALUTAZIONE

SCHEDA TECNICA DI VALUTAZIONE CHEDA TECNICA DI VALUTAZIONE L aggiudicazione avverà a favore del oferta economicamente più vantaggioa, valutata econdo i eguenti criteri: Al integrale accetazione del capitolato tecnico peciale veranno

Dettagli

Lezione 11. Equilibrio dei mercati del credito e della moneta bancaria. domanda di credito delle imprese = offerta delle banche;

Lezione 11. Equilibrio dei mercati del credito e della moneta bancaria. domanda di credito delle imprese = offerta delle banche; Lezione 11. Equilibrio dei mercati del credito e della moneta bancaria L E d = L domanda di credito delle impree = offerta delle banche; M d H = M M domanda di moneta (legale e bancaria) delle famiglie

Dettagli

ELETTRONICA ANALOGICA INDUSTRIALE PARTE 4. Retroazione

ELETTRONICA ANALOGICA INDUSTRIALE PARTE 4. Retroazione Retroazione Eetto della retroazione ul guadagno Riduzione della ditorione Impedenze di ingreo e di ucita Reti di retroazione Ripota in requenza Eetto della retroazione ui poli Margini di guadagno e di

Dettagli

Lezioni di Ricerca Operativa 2 Dott. F. Carrabs

Lezioni di Ricerca Operativa 2 Dott. F. Carrabs Lezioni di Ricerca Operativa Dott. F. Carrab.. 009/00 Lezione in Laboratorio: - Eercizi di modellazione Lezione 7: Eempio: Invetimenti Un cliente affida ad un aenzia finanziaria un milione di euro da impieare

Dettagli

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE PROCEDIMENTI DI ANTITRASFORMAZIONE L'operazione di paaggio invero dal dominio della frequenza complea al dominio del tempo F() f(t) è detta antitraformata o traformazione invera di Laplace. Data una funzione

Dettagli

Cap. 4 Mercati finanziari

Cap. 4 Mercati finanziari Cap. 4 ercati finanziari Tao interee (i): importante per invetimenti e celte i conumo intertemporali. Noi iamo intereati principalmente ai primi. Come i etermina i? Attori: Banca Centrale (BC), banche,

Dettagli

3. Catene di Misura e Funzioni di Trasferimento

3. Catene di Misura e Funzioni di Trasferimento 3.. Generalità 3. Catene di Miura e Funzioni di Traferimento 3.. Generalità Il egnale che rappreenta la grandezza da miurare viene trattato in modo da poter eprimere quet ultima con uno o più valori numerici

Dettagli

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 11: 13-14 Maggio 2010. Meccanismi per la Condivisione dei Costi

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 11: 13-14 Maggio 2010. Meccanismi per la Condivisione dei Costi Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/0 Lecture : 3-4 Maggio 200 Meccanimi per la Condiviione dei Coti Docente Paolo Penna Note redatte da: Paolo Penna Primo Eempio Vogliamo vendere

Dettagli

Controllore Processo. Le principali componenti del sistema sono: il rivelatore di errore, il controllore che ha il compito di trasformare il segnale

Controllore Processo. Le principali componenti del sistema sono: il rivelatore di errore, il controllore che ha il compito di trasformare il segnale CONTROLLORI DI TIO ID rincipi di funzionamento Il termine controllo definice l azione volta per portare e mantenere ad un valore prefiato un parametro fiico di un impianto o di un proceo (ad eempio, la

Dettagli

1 I prodotti finanziari di riferimento

1 I prodotti finanziari di riferimento UN MODELLO PER L ANALISI DELLO STILE DI GESTIONE DEI FONDI COMUNI DI INVESTIMENTO Domenico Vitocco 1+, Claudio Converano 1 1 Dipartimento di Economia e Territorio, Univerità di Caino, Via Mazzaroppi, I-03043

Dettagli

d y d u + u y des C(s) F(s) Esercizio 1 Si consideri lo schema di controllo riportato in figura:

d y d u + u y des C(s) F(s) Esercizio 1 Si consideri lo schema di controllo riportato in figura: Eercizio Si conideri lo chema di controllo riportato in figura: y de e C() d u u F() d y y Applicando le regole di algebra dei blocchi, calcolare le eguenti funzioni di traferimento: y() a) W y,dy() =

Dettagli

Francesca Sanna-Randaccio Lezione 8. SCELTA INTERTEMPORALE (continua)

Francesca Sanna-Randaccio Lezione 8. SCELTA INTERTEMPORALE (continua) Fancesca Sanna-Randaccio Lezione 8 SELTA INTERTEMPORALE (continua Valoe attuale nel caso di più peiodi Valoe di un titolo di cedito Obbligazioni Obbligazioni emesse dalla Stato. Relazione ta deficit e

Dettagli

Energia potenziale e dinamica del punto materiale

Energia potenziale e dinamica del punto materiale Enegia potenziale e dinamica del punto mateiale Definizione geneale di enegia potenziale (facoltativo) In modo geneale, la definizione di enegia potenziale può esee pesentata come segue. Sia un punto di

Dettagli

6) Stati di cedimento 6.1) Introduzione all analisi delle costruzioni in muratura nel loro stato attuale

6) Stati di cedimento 6.1) Introduzione all analisi delle costruzioni in muratura nel loro stato attuale 6) tati di cedimento 6.1) Introduzione all analii delle cotruzioni in muratura nel loro tato attuale Nel conteto del modello di materiale rigido non reitente a trazione, la valutazione delle capacità portanti

Dettagli

Le Misure. 2 ottobre 2007

Le Misure. 2 ottobre 2007 Le Miure ottobre 007 In tutte le oluzioni i farà ricoro alla notazione cientifica dei numeri, baata ul ignificato del itema decimale e poizionale. (piegare il ignificato) 1 Lunghezza 1.0.1 Una navetta

Dettagli

La seconda prova scritta dell esame di stato 2007 Indirizzo: GEOMETRI Tema di TOPOGRAFIA

La seconda prova scritta dell esame di stato 2007 Indirizzo: GEOMETRI Tema di TOPOGRAFIA La seconda pova scitta dell esame di stato 007 Indiizzo: OMTRI Tema di TOPORI Claudio Pigato Membo del Comitato Scientiico SIT Società Italiana di otogammetia e Topogaia Istituto Tecnico Statale pe eometi

Dettagli

MOTORE SINCRONO A MAGNETI PERMANENTI

MOTORE SINCRONO A MAGNETI PERMANENTI MOTORE SINCRONO A MAGNETI PERMANENTI L. SALVATORE . Il motoe incono a magneti pemanenti In paato il motoe incono ea conideato un motoe a velocità cotante (la velocità di inconimo), dipendente dalla fequenza

Dettagli

Definizione delle specifiche per un sistema di controllo a retroazione unitaria

Definizione delle specifiche per un sistema di controllo a retroazione unitaria Definizione delle pecifiche per un itema di controllo a retroazione unitaria Obiettivi del controllo Il itema di controllo deve eere progettato in modo da garantire un buon ineguimento dei egnali di riferimento

Dettagli

La spesa per assistenza

La spesa per assistenza Obiettivo della lezione La spesa pe assistenza Studiae le motivazioni teoiche che cecano di spiegae gli inteventi di edistibuzione vei e popi (ad es. contasto della povetà) mediante stumenti monetai nell

Dettagli

Teorema del Limite Centrale

Teorema del Limite Centrale Teorema del Limite Centrale Una combinazione lineare W = a 1 X + a Y + a 3 Z +., di variabili aleatorie indipendenti X,Y,Z, ciacuna avente una legge di ditribuzione qualiai ma con valori attei comparabili

Dettagli

LA GESTIONE DELLO STRESS

LA GESTIONE DELLO STRESS LA GESTIONE DELLO STRESS Stre è enza alcun dubbio una delle parole più uate (o abuate) nel mondo, almeno in quello occidentale. Vi ono molti ignificati dati a queto termine, alcuni ne ottolineano primariamente

Dettagli

AZIONAMENTI ELETTRICI 2. Modello del motore asincrono trifase ed osservatori di flusso

AZIONAMENTI ELETTRICI 2. Modello del motore asincrono trifase ed osservatori di flusso Poltecnco d ono CeeM ZIONMENI EERICI 4 Motoe ancono tfae Modello del motoe ancono tfae ed oeato d fluo S conde la macchna chematzzata con aolgment tatoc pot a π/ ta loo e f nello pazo e aolgment otoc,

Dettagli

www.scuolainweb.altervista.org Problemi di Fisica La Statica

www.scuolainweb.altervista.org Problemi di Fisica La Statica www.cuolainweb.altevita.og oblemi di iica ROBLEA N. Un libo che ha peo 4 N viene mantenuto in equilibio u un piano inclinato alto,4 m e lungo,8 m. Tacuando l attito, detemina la foza neceaia a mantenee

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 003 Il candidato riolva uno dei due problemi e 5 dei 0 queiti in cui i articola il quetionario. PROLEMA Si conideri un tetraedro regolare T di vertici

Dettagli

HyperCoat CTPM125 IT

HyperCoat CTPM125 IT HypeCoat IT CEATIZIT secets of success Secets of success CEATIZIT è il patne ideale pe le soluzioni più idonee con podotti di metallo duo. Podotti in metallo duo e utensili CEATIZIT - soluzioni complesse

Dettagli

Walter Cut Per eseguire gole con semplicità.

Walter Cut Per eseguire gole con semplicità. Competenza nei podotti Eecuzione di gole, toncatua e canalatua _COMPETENZA NELL ASPORTAZIONE DEL TRUCIOLO Walte Cut Pe eeguie gole con emplicità. Walte Cut Pe eeguie gole con emplicità Indice 2 Decizione

Dettagli

La manutenzione. Definizioni. Evoluzione storica. Manutenzione: Manutenibilità: Dott.ssa Brunella Caroleo

La manutenzione. Definizioni. Evoluzione storica. Manutenzione: Manutenibilità: Dott.ssa Brunella Caroleo La Dott.a Brunella Caroleo Definizioni Manutenzione: È il controllo cotante degli impianti e l inieme dei lavori di riparazione e otituzione neceari ad aicurare il funzionamento regolare e a mantenere

Dettagli

Un modello attuariale per il Fair Value del rischio calamità naturali in agricoltura

Un modello attuariale per il Fair Value del rischio calamità naturali in agricoltura Un modello attuaiale pe il Fai Value del ichio calamità natuali in agicoltua Mazo 0 Realizzazione a cua di Imea Reponabile della Riceca Egidio Sado Reponabile Scientifico Giovanni Razeto Redazione Paolo

Dettagli

Cinematica: soluzioni. Scheda 4. Ripetizioni Cagliari di Manuele Atzeni - 3497702002 - info@ripetizionicagliari.it

Cinematica: soluzioni. Scheda 4. Ripetizioni Cagliari di Manuele Atzeni - 3497702002 - info@ripetizionicagliari.it Cinematica: oluzioni Problema di: Cinematica - C0015ban Teto [C0015ban] Eercizi banali di Cinematica: 1. Moto rettilineo uniforme (a) Quanto pazio percorre in un tempo t = 70 un oggetto che i muove con

Dettagli

Lezione 2. Campionamento e Aliasing. F. Previdi - Controlli Automatici - Lez. 2 1

Lezione 2. Campionamento e Aliasing. F. Previdi - Controlli Automatici - Lez. 2 1 Lezione 2. Campionamento e Aliaing F. Previdi - Controlli Automatici - Lez. 2 1 Schema della lezione 1. Introduzione 2. Il campionatore ideale 3. Traformata di un egnale campionato 4. Teorema del campionamento

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Il problema Laboratorio di Algoritmi e Strutture Dati Docenti: M. Goldwurm, S. Aguzzoli Appello del 5 Aprile 005 Progetto Recinti Conegna entro il Aprile 005 Si tudia la reitenza di alcune pecie di piante

Dettagli

2. In un mercato concorrenziale senza intervento pubblico non si ha perdita di benessere sociale netto.

2. In un mercato concorrenziale senza intervento pubblico non si ha perdita di benessere sociale netto. Beanko & Breautigam Microeconomia Manuale elle oluzioni Capitolo 10 Mercati concorrenziali: applicazioni Soluzioni elle Domane i ripao 1. In corriponenza ell equilibrio i lungo perioo, un mercato concorrenziale

Dettagli

Esercizi sul moto del proiettile

Esercizi sul moto del proiettile Eercizi ul moto del proiettile Riolvi li eercizi ul quaderno utilizzando la oluzione olo per controllare il tuo riultato. 1 Un fucile è puntato orizzontalmente contro un beralio alla ditanza di 30 m. Il

Dettagli

C8. Teoremi di Euclide e di Pitagora

C8. Teoremi di Euclide e di Pitagora 8. Teoemi di uclide e di Pitagoa 8.1 igue equiscomponibili ue poligoni sono equiscomponibili se è possibile suddivideli nello stesso numeo di poligoni a due a due conguenti. Il ettangolo e il tiangolo

Dettagli

Lezione 22. Fattorizzazione di ideali.

Lezione 22. Fattorizzazione di ideali. Lezioe Peequisiti: Lezioi 0, Fattoizzazioe di ideali Teoema Sia A u domiio di Dedekid, e sia I u suo ideale popio o ullo Alloa esistoo uici ideali pimi o ulli P,, P a due a due distiti ed uici umei itei

Dettagli

3. La velocità v di un satellite in un orbita circolare di raggio r intorno alla Terra è v = e,

3. La velocità v di un satellite in un orbita circolare di raggio r intorno alla Terra è v = e, Capitolo 10 La gavitazione Domande 1. La massa di un oggetto è una misua quantitativa della sua inezia ed è una popietà intinseca dell oggetto, indipendentemente dal luogo in cui esso si tova. Il peso

Dettagli

VALORI PERIODICI O RENDITE

VALORI PERIODICI O RENDITE VALORI PERIODICI O RENDITE LE RENDITE SONO VALORI PERIODICI CHE SI RIPETONO AD INTERVALLI REGOLARI DI TEMPO POSSONO ESSERE: ATTIVE: I I PRODOTTI DI DI UNA AZIENDA IL IL CANONE DI DI AFFITTO GLI STIPENDI

Dettagli

2 I METODI DI ANALISI DEI SISTEMI DI CONTROLLO AD ANELLO CHIUSO LINEARI 12

2 I METODI DI ANALISI DEI SISTEMI DI CONTROLLO AD ANELLO CHIUSO LINEARI 12 COSO DI SISTEMI Sommario 1 I SISTEMI DI CONTOLLO...4 1.1 Introduzione...4 1.1.1 Sitemi di controllo ad anello aperto...5 1.1.2 Sitemi di controllo a previione...7 1.1.3 Sitemi di controllo ad anello chiuo

Dettagli

Filtri analogici. 1915 Primi filtri elettrici per ripetitori. dei segnali. Un filtro è un calcolatore analogico

Filtri analogici. 1915 Primi filtri elettrici per ripetitori. dei segnali. Un filtro è un calcolatore analogico Filtri analogici 95 Primi filtri elettrici per ripetitori Tutte le applicazioni di trattamento e tramiione dei egnali Un filtro è un calcolatore analogico componenti poco precii, oggetti a variazioni di

Dettagli

Trasformata di Laplace ESEMPI DI MODELLIZZAZIONE

Trasformata di Laplace ESEMPI DI MODELLIZZAZIONE Traformata di Laplace ESEMPI DI MODELLIZZAZIONE Introduzione La traformata di Laplace i utilizza nel momento in cui è tata individuata la funzione di traferimento La F.d.T è una equazione differenziale

Dettagli

SERS (surface enhanced raman scattering)

SERS (surface enhanced raman scattering) a pettrocopia aman tradizionale SS (urface enhanced raman cattering) a pettrocopia aman è una tecnica di indagine uperficiale che i baa ul principio di eccitazione dei livelli energetici della materia.

Dettagli

ERRORE STATICO. G (s) H(s) Y(s) E(s) X (s) YRET(s)

ERRORE STATICO. G (s) H(s) Y(s) E(s) X (s) YRET(s) Preciione a regime: errore tatico ERRORE STATICO Alimentazione di potenza E() YRET() G() Y() H() Per errore tatico i intende lo cotamento, a regime, della variabile controllata Y() dal valore deiderato.

Dettagli

GRANDEZZE MAGNETICHE Prof. Chirizzi Marco www.elettrone.altervista.org marco.chirizzi@libero.it

GRANDEZZE MAGNETICHE Prof. Chirizzi Marco www.elettrone.altervista.org marco.chirizzi@libero.it Soenoide GRANDEZZE MAGNETICHE Pof. Chiizzi Maco www.eettone.atevista.og maco.chiizzi@ibeo.it PREMESSA La pesente dispensa ha come obiettivo queo di gaantie agi aievi de coso di Fisica de biennio, ad indiizzo

Dettagli

E opportuno fare precedere questa lezione e quelle che seguiranno da tre considerazioni.

E opportuno fare precedere questa lezione e quelle che seguiranno da tre considerazioni. Capitolo 6 Teorie e modelli di crecita economica E opportuno fare precedere queta lezione e quelle che eguiranno da tre coniderazioni. 1. Qui affronteremo dei modelli teorici che i rifericono oprattutto

Dettagli

Il criterio media varianza. Ordinamenti totali e parziali

Il criterio media varianza. Ordinamenti totali e parziali Il citeio media vaianza Il citeio media vaianza è un alto esemio di odinamento aziale ta lotteie definito da a M b se la lotteia b domina la lotteia a se ha media sueioe e vaianza infeioe a b eσ a σ b

Dettagli

IL TEOREMA DI UNICITA PER 1 FLUIDI INCOMPRESSIBILI, PERFETTI,ETEROGENEI

IL TEOREMA DI UNICITA PER 1 FLUIDI INCOMPRESSIBILI, PERFETTI,ETEROGENEI IL TEOREMA DI UNICITA PER 1 FLUIDI INCOMPRESSIBILI, PERFETTI,ETEROGENEI di DARIO GRAFFI, Bologna (Italia) 1. In una Nota pubblicata due anni fa (1) ho tabilito il teorema di unicitil per le'equazioni dei

Dettagli

1 Generalità sui sistemi di controllo

1 Generalità sui sistemi di controllo 1 Generalità ui itemi di controllo Col termine proceo nell impiantitica chimica i intende un inieme di operazioni eeguite u una certa quantità di materia allo copo di modificarne in tutto o in parte alcune

Dettagli

STAFFE ROTANTI. Programma generale. Pressione d esercizio fino a 500 bar. A semplice e doppio effetto. 7 differenti tipi di corpo

STAFFE ROTANTI. Programma generale. Pressione d esercizio fino a 500 bar. A semplice e doppio effetto. 7 differenti tipi di corpo Programma generale STAFFE ROTANTI Preione d eercizio fino a A emplice e doppio effetto 7 differenti tipi di corpo Forza di bloccaggio maima da 0,6 a 41 kn Cora di bloccaggio maima da 7 a 50 mm Sicurezza

Dettagli

Lavoro e potenza. s, F r compie il lavoro elementare L, dato

Lavoro e potenza. s, F r compie il lavoro elementare L, dato Lavoo e potenza Definizione di lavoo Quando il punto di applicazione di una foza i muove, i dice che la foza compie un lavoo. Il lavoo è una nuova gandezza fiica, pe la quale è neceaio intodue una definizione

Dettagli

Il grigliato Keller, nelle realizzazioni di piani di lavoro, offre il più elevato rapporto tra carico sopportabile e peso proprio, oltre ad una

Il grigliato Keller, nelle realizzazioni di piani di lavoro, offre il più elevato rapporto tra carico sopportabile e peso proprio, oltre ad una Il grigliato Keller, nelle realizzazioni di piani di lavoro, offre il più elevato rapporto tra carico opportabile e peo proprio, oltre ad una elevata permeabilità alla luce e all aria. Tali caratteritice

Dettagli

Messa a punto avanzata più semplice utilizzando Funzione Load Observer

Messa a punto avanzata più semplice utilizzando Funzione Load Observer Mea a punto avanzata più emplice utilizzando Funzione Load Oberver EMEA Speed & Poition CE Team AUL 34 Copyright 0 Rockwell Automation, Inc. All right reerved. Co è l inerzia? Tutti comprendiamo il concetto

Dettagli

Sensori di contatto. Sensori magnetici. Sensori potenziometrici. Urto Fine corsa motori Baffi di contatto. V cc. Data Acquisition Board. V s.

Sensori di contatto. Sensori magnetici. Sensori potenziometrici. Urto Fine corsa motori Baffi di contatto. V cc. Data Acquisition Board. V s. Senori di contatto Data Acquiition Board V Urto Fine cora motori Baffi di contatto witch = 5V open V = 5 V = 47K cloed V = 0 V Senori magnetici Data Acquiition Board V Ampolla eed magnete ilevazione paaggio

Dettagli

Corrente elettrica. Definizione. dq i = dt. Unità di misura. 1Coulomb 1 Ampere = 1secondo. Verso della corrente

Corrente elettrica. Definizione. dq i = dt. Unità di misura. 1Coulomb 1 Ampere = 1secondo. Verso della corrente Nome file j:\scuola\cosi\coso fisica\elettomagnetismo\coente continua\coenti elettiche.doc Ceato il 05/1/003 3.07.00 Dimensione file: 48640 byte Elaboato il 15/01/004 alle oe.37.13, salvato il 10/01/04

Dettagli

Prot. N 1223/C14 Montegalda, 18 Giugno 2014

Prot. N 1223/C14 Montegalda, 18 Giugno 2014 ISTITUTO COMPRENSIVO STATALE G. Toaldo di MONTEGALDA Via Cattaneo 51 3 6 0 4 7 M O N T E G A L D A ( V i c e n z a ) 0444 636064 fax 0444 737054 Codice ficale 80015890249 Codice Itituto VIIC826007 Sito

Dettagli

FAST FOURIER TRASFORM-FFT

FAST FOURIER TRASFORM-FFT A p p e n d i c e B FAST FOURIER TRASFORM-FFT La tasfomata disceta di Fouie svolge un uolo molto impotante nello studio, nell analisi e nell implementazione di algoitmi dei segnali in tempo disceto. Come

Dettagli

Compito A Tempo a disposizione un'oa e tenta minuti. Libi chiusi. Consideae una elazione RèA; B; C; D; Eè. Indicae quali delle seguenti poiezioni hanno cetamente lo stesso numeo di ennuple di R: 1. ç ABCD

Dettagli

2. Politiche di gestione delle scorte

2. Politiche di gestione delle scorte Gestione ell Inventaio. Politiche i gestione elle scote.. Moelli singolo punto, singolo pootto, omana eteministica costante Gli appovvigionamenti sono peioici e l obiettivo è minimizzae il costo meio nel

Dettagli

corso di formazione ed aggiornamento

corso di formazione ed aggiornamento coro di ormazione ed aggiornamento NUOVE NORME TECNICHE IN ZONA SISMICA di cui all ordinanza n. 374 del P.C.M. del 0.03.003 pubblicata ulla Gazzetta Uiciale in data 08.05.003 ARGOMENTO DELLA LEZIONE: LA

Dettagli

Disequazioni. 21.1 Intervalli sulla retta reale

Disequazioni. 21.1 Intervalli sulla retta reale Disequazioni 1 11 Intevalli sulla etta eale Definizione 11 Dati due numei eali a e b, con a < b, si chiamano intevalli, i seguenti sottoinsiemi di R: a, b) = {x R/a < x < b} intevallo limitato apeto, a

Dettagli

Il candidato risolva uno dei due problemi e 4 degli 8 quesiti scelti nel questionario.

Il candidato risolva uno dei due problemi e 4 degli 8 quesiti scelti nel questionario. LICEO SCIENTIFICO SCUOLE ITALIANE ALL ESTERO (AMERICHE) SESSIONE ORDINARIA Il candidato isolva uno dei due poblemi e degli 8 quesiti scelti nel questionaio. N. De Rosa, La pova di matematica pe il liceo

Dettagli

EX 1 Una cassa di massa m=15kg è ferma su una superficie orizzontale scabra. Il coefficiente di attrito statico è µ s

EX 1 Una cassa di massa m=15kg è ferma su una superficie orizzontale scabra. Il coefficiente di attrito statico è µ s STATICA EX Una cassa di massa m=5kg è fema su una supeficie oizzontale scaba. Il coefficiente di attito statico è µ s = 3. Supponendo che sulla cassa agisca una foza F fomante un angolo di 30 ispetto al

Dettagli

Corso di Elettrotecnica 1 - Cod. 9200 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria

Corso di Elettrotecnica 1 - Cod. 9200 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria Schede di lettotecnica Coso di lettotecnica - Cod. 900 N Diploma Univesitaio Teledidattico in Ingegneia Infomatica ed utomatica Polo Tecnologico di lessandia cua di Luca FRRRIS Scheda N Sistemi tifase:

Dettagli

Obiettivi in Alta Definizione e gestione delle Aberrazioni Cromatiche 1 parte

Obiettivi in Alta Definizione e gestione delle Aberrazioni Cromatiche 1 parte HD ACADEMY a cura dell Ing. Sergio Brighel* Obiettivi in Alta Definizione e getione delle Aberrazioni Cromatiche 1 parte Il fenomeno delle aberrazioni cromatiche è tra le caue più importanti di decadimento

Dettagli

DOCUMENTO PER LA CONSULTAZIONE 509/2015/R/COM

DOCUMENTO PER LA CONSULTAZIONE 509/2015/R/COM DOCUMENTO PER LA CONSULTAZIONE 509/2015/R/COM CRITERI PER LA DETERMINAZIONE E L AGGIORNAMENTO DEL TASSO DI REMUNERAZIONE DEL CAPITALE INVESTITO PER LE REGOLAZIONI INFRASTRUTTURALI DEI SETTORI ELETTRICO

Dettagli

sistema isolamento a cappotto

sistema isolamento a cappotto itema iolamento a cappotto BASTIA UMBRA / PERUGIA da empe La Coloi ecoa S..l. è da empe enibile alle tematiche ambientali. Infatti è tata la pima azienda a livello nazionale ad utilizzae venici a bae di

Dettagli

Teoria delle decisioni in condizione di certezza e rischio

Teoria delle decisioni in condizione di certezza e rischio Teoria delle deciioni in condizione di certezza e richio Appunti di Fioravante PATRONE http://www.fioravante.patrone.name/default.htm Deciori (razionali) interagenti verione del 16 giugno 2010 Indice 1

Dettagli

Sistemi inerziali Forza centripeta e forze apparenti Forza gravitazionale. 03/11/2011 G. Pagnoni 1

Sistemi inerziali Forza centripeta e forze apparenti Forza gravitazionale. 03/11/2011 G. Pagnoni 1 Sistemi ineziali Foza centipeta e foze appaenti Foza gavitazionale 03/11/011 G. Pagnoni 1 Sistemi ineziali Sistema di ifeimento ineziale: un sistema in cui è valida la pima legge di Newton (I legge della

Dettagli

CLASSIFICAZIONE DEI MATERIALI GEOTECNICI

CLASSIFICAZIONE DEI MATERIALI GEOTECNICI CLASSIFICAZIONE DEI MATERIALI GEOTECNICI 1.1 Rocce lapidee e rocce ciolte I geomateriali ono uddivii nell Ingegneria Civile (ia pure in modo alquanto arbitrario) in rocce e terreni. Rocce lapidee Aggregato

Dettagli

Lezione 9. Equilibrio del mercato finanziario e tasso d interesse

Lezione 9. Equilibrio del mercato finanziario e tasso d interesse Lezione 9. Equilibrio el mercato finanziario e tao interee Ipotei: Il itema finanziario: la truttura ei mercati (a) eite un unico mercato ei titoli (); (b) la anca centrale crea ecluivamente attravero

Dettagli

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr 4. Lavoo ed enegia Definizione di lavoo di una foza Si considea un copo di massa m in moto lungo una ceta taiettoia. Si definisce lavoo infinitesimo fatto dalla foza F duante lo spostamento infinitesimo

Dettagli

Il lavoro è quindi una grandezza scalare le cui unita di misura sono: = Joule = J

Il lavoro è quindi una grandezza scalare le cui unita di misura sono: = Joule = J Ve. el 9/0/09 Lvoo e Eneg Denzone lvoo pe un oz cotnte Se un oz cotnte gce u un copo che eettu uno potmento ce che l oz compe un lvoo ento come: co ( co ) ove è l componente ell oz pllel llo potmento.

Dettagli

Statica del corpo rigido: esercizi svolti dai compitini degli anni precedenti

Statica del corpo rigido: esercizi svolti dai compitini degli anni precedenti Statica de corpo riido: eercizi voti dai compitini dei anni precedenti II COMPITIO 00 003 Un ae di eno orizzontae omoenea, di maa M0 k e unhezza L m, è appoiata u due cavaetti. L ae pore di 60 cm otre

Dettagli

SIMULAZIONE - 22 APRILE 2015 - QUESITI

SIMULAZIONE - 22 APRILE 2015 - QUESITI www.matefilia.it Assegnata la funzione y = f(x) = e x 8 SIMULAZIONE - APRILE 5 - QUESITI ) veificae che è invetibile; ) stabilie se la funzione invesa f è deivabile in ogni punto del suo dominio di definizione,

Dettagli

La macchina sincrona (3 parte): raffreddamento, eccitatrici, impedenza sincrona, curve di prestazione limite, motore sincrono

La macchina sincrona (3 parte): raffreddamento, eccitatrici, impedenza sincrona, curve di prestazione limite, motore sincrono La macchina incrona (3 parte): raffreddamento, eccitatrici, impedenza incrona, curve di pretazione limite, motore incrono Lucia FROSINI Dipartimento di Ingegneria Indutriale e dell Informazione Univerità

Dettagli