Università Politecnica delle Marche, Facoltà di Agraria C.d.L. Scienze e Tecnologie Agrarie, A.A. 2014/2015, Fisica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Università Politecnica delle Marche, Facoltà di Agraria C.d.L. Scienze e Tecnologie Agrarie, A.A. 2014/2015, Fisica"

Transcript

1

2 Dr. Adrian MANESCU Tel , Dipartimento DISCO Sezione di Scienze Fisiche secondo piano

3 Orario delle lezioni: dal al giovedi: 11:00 13:00, aula Magna - venerdi: 09:00 11:00, aula Magna - 6 ore di esercitazioni + laboratorio Orario di ricevimento: - giovedi: 16:30 17:30 - venerdi: 11:00 12:00 - su appuntamento

4 Libro di testo: Fisica Generale: Principi e Applicazioni Giambattista, Richardson, Richardon, McGraw-Hill 2008 Fondamenti di Fisica Halliday, Resnick e Walzer CEA - sesta edizione Modalità d esame: Esame scritto 2 parziali (meccanica + fluidi&termodinamica): 3 domande di teoria non-quiz (5 punti x 3 = 15 punti): 15 min x 3 = 45 min 15 esercizi quiz (1 punto x 15 = 15 punti): 5 min x 15 = 75 min. Totale: 120 min Laboratorio didattico: orario, gruppi solo studenti del 1 anno relazione +1 / +2 punti all esame

5 Sessione straordinaria A.A. 2013/ Sessioni A.A. 2014/2015: Vacanze Natalizie dal al

6 Appelli 2015 Data Ora Aula Esame scritto - meccanica :00 Magna Esame scritto - fluidi e termodinamica :00 Magna Esame orale relazione laboratorio :00 Magna

7 Programma del corso: 1. Misurazioni. Unità di misura. Le forze. Legge I e III di Newton. Forza di gravità. Forza peso. Forza normale. Forza di attrito. Tensione dei fili. Forza elastica. Misurare le forze. 2. Posizione e spostamento. Velocità. Accelerazione. Legge II di Newton. Traiettoria. Moto rettilineo uniforme. Moto rettilineo uniformemente accelerato. Caduta dei corpi. Il moto in due dimensioni. Il moto del proiettile. Il moto circolare. 3. Lavoro ed energia. Conservazione dell'energia meccanica. Forze non conservative. 4. Urti. Quantità di moto. Conservazione della quantità di moto. 5. Centro di massa. Equilibrio di un corpo rigido. Momento di una forza. Equilibrio di un punto materiale. Dinamica rotazionale (cenni).

8 6. Meccanica dei fluidi: definizione di fluido ideale. Proprietà dei fluidi. Definizione di pressione. Legge di Stevino. 7. Principio di Archimede. Legge di Pascal. Equazione di continuità. Equazione di Bernoulli. Fluidi reali (cenni). 8. Termodinamica: principio zero della termodinamica. Definizione di temperatura assoluta. Calore specifico. Capacità termica. Trasformazioni di stato. Calore latente di trasformazione. Sistema termodinamico. Gas perfetto. 9. Calore, lavoro ed energia interna. Primo principio della termodinamica. Trasformazioni termodinamiche. Trasformazioni cicliche. Secondo principio della termodinamica. Entropia. 10. La macchina del clima. Irraggiamento. Elettromagnetismo. Microscopia (cenni).

9 Che cos'è la fisica? La Fisica (da φύσις [physis], "natura") è la scienza della Natura nel senso più ampio. Lo scopo della Fisica è descrivere e interpretare i fenomeni che si svolgono in natura. La Fisica è il campo della scienza che descrive materia, energia, spazio, tempo a livello più elementare. Es. Una pianta foglie molecole - atomi STA Fisica

10 Perché studiare fisica?

11 1. Perché è alla base di tutte le altre le scienze, è quella fondamentale La crescita di un albero biologia chimica fisica

12 2. Perché è la materia che ti insegna di più a pensare - tutte le materie ti insegnano a pensare - però la fisica lavora con i concetti di base, ha una struttura logica basata su esperimenti e osservazioni - ti offre pacchetti base di conoscenze che possono in seguito essere combinati e associati ad altre informazioni per arrivare ad un livello di conoscenze superiore - una volta appreso, troverete che questi metodi possono essere applicati tanti soggetti, compreso il mondo degli affari o anche la politica (Angela Merkel).

13 3. Perché ti aiuta a capire meglio gli oggetti ed i fenomeni L arcobaleno L'aspetto di un arcobaleno è provocato dalla dispersione ottica della luce solare che attraversa le gocce di pioggia rimaste in sospensione dopo un temporale. Il modo in cui viene rifratta la luce dipende dalla sua lunghezza d'onda, e quindi dal suo colore. La luce blu (onde più corte) viene rifratta ad un angolo più grande di quella rossa.

14 Rifrazione della luce nell'acqua. Il rettangolo scuro rappresenta la posizione vera della penna appoggiata nel bicchiere. Il rettangolo chiaro rappresenta la posizione apparente della penna.

15 I fulmini Il fulmine è una scarica elettrica di grandi dimensioni che avviene nell'atmosfera. scarica fra: - la nuvola e il suolo - 2 nuvole - 2 zone della stessa nuvola - la nuvola e un aereo

16 L aurora boreale Il fenomeno è causato dall'interazione di particelle cariche (elettroni) di origine solare (vento solare) con la ionosfera terrestre (atmosfera tra i km). Tali particelle eccitano gli atomi dell'atmosfera che diseccitandosi in seguito emettono luce di varie lunghezze d'onda.

17 Le scie degli aerei Cosa sono? ghiaccio!

18 Reattore nucleare per produrre energia elettrica

19 Spazio tra i binari dei treni - per far si che la dilatazione indotta dalle temperature estive possa avvenire lungo l'asse del binario stesso

20

21 Tomografia computerizzata ( TAC ) - l'immagine del corpo da studiare viene creata misurando l'attenuazione di un fascio di raggi X che lo attraversa - varia in modo proporzionale alla densità elettronica dei tessuti attraversati

22 Risonanza magnetica nucleare ( RMN ) - in presenza di un campo magnetico esterno gli spin dei protoni presenti nei nuclei atomici tendono a disporsi lungo una direzione preferenziale. - vengono emesse delle onde radio e gli spin subiscono delle temporanee variazioni di posizione; gli atomi emettono dei segnali captabili da un rilevatore elettronico; - più bianca l immagine = più atomi di idrogeno = più molecole d acqua

23 Aneurisma Legge di Bernoulli: P + a v 2 = costante Un aneurisma è una dilatazione progressiva di un segmento di un'arteria, causata da un'anomalia della parete del vaso sanguigno. Equazione di continuità: S v = costante

24 4. Perché è una scienza molto creativa

25 L assorbimento dell acqua nelle piante l assorbimento di D 2 O in 5 min

26 Visualizzare la struttura interna del legno utilizzando microtomografia computerizzata ricostruzione 3D del legno

27 Ricostruzione della mummia di Champollion in VGStudio Max 2.0 tomografia a raggi X Atomi di Xe su Ni at 4 K D. Eigler, IBM Almaden Dimensioni dell atomo? 1.4 Angstrom = 1.4 * m

28 Le misure e le misurazioni: Cosa significa misurare? Confrontare ciò che si vuole misurare con una quantità nota, detta Unità di Misura Nella forma più generale, misurare significa contare.

29 Unità di Misura Ad ogni grandezza è associata una specifica unità di misura. Per esempio, una superficie si misura in metri quadri (m 2 ), un volume si misura in metri cubi (m 3 ) oppure in litri (l), una lunghezza in metri (m). Spesso è utile utilizzare i multipli o i sottomultipli di tali unità di misura, espressi come potenze del 10.

30 Multipli e sottomultipli Multipli Sottomultipli Deca (da) = 10 1 Etto (h) = 10 2 Kilo (k) = 10 3 Mega (M) = 10 6 Giga (G) = 10 9 Tera (T) = Peta (P) = Exa (E) = Zetta (Z) = Yotta (Y) = Deci (d) = 10-1 Centi (c) = 10-2 Milli (m) = 10-3 Micro (m) = 10-6 Nano (n) = 10-9 Pico (p) = Femto (f) = Atto (a) = Zepto (z) = Yocto (y) = 10-24

31 Equivalenze unidimensionali Le equivalenze tra unità omogenee unidimensionali si effettuano moltiplicando (se si passa a unità più piccola) o dividendo (se si passa a unità più grande) la misura tante volte per 10 quanti sono i posti tra le due unità, considerando la tabella precedente. Esempio: 32Gb a quanti Mb corrispondono? 32Gb = 32 x 1000Mb = 32000Mb Perché 1Gb = 1000Mb (infatti tra M e G ci sono 3 posti).

32 Equivalenze bidimensionali Le equivalenze tra unità omogenee bidimensionali si effettuano moltiplicando (se si passa a unità più piccola) o dividendo (se si passa a unità più grande) la misura tante volte per 10 2 (100) quanti sono i posti tra le due unità, considerando la tabella precedente. Esempio: 125 m 2 a quanti cm 2 corrispondono? 125 m 2 = 125 x 10 2 x 10 2 cm 2 = cm 2 Perché 1 m 2 = cm 2 (infatti tra m e cm ci sono 2 posti).

33 Equivalenze tridimensionali Le equivalenze tra unità omogenee tridimensionali si effettuano moltiplicando (se si passa a unità più piccola) o dividendo (se si passa a unità più grande) la misura tante volte per 10 3 (1000) quanti sono i posti tra le due unità, considerando la tabella precedente. Esempio: 5400 dm 3 a quanti m 3 corrispondono? 5400 dm 3 = 5400 x 10-3 m 3 = 5.4 m 3 Perché 1 dm 3 = 10-3 m 3 (infatti tra dm e m c è un solo posto).

34 Quanti litri d acqua sono nella vasca? lunghezza 2 m larghezza 60 cm altezza 50 cm

35 Volumi espressi in litri Spesso risulta utile esprimere i volumi in multipli o sottomultipli del litro, piuttosto che in multipli o sottomultipli del metro cubo. Si pensi, ad esempio, ai volumi di cilindrata dei motori, espressi in litri. L equivalenza di base è la seguente: Quindi 1 litro = 1 dm 3 1 m 3 = 10 3 dm 3 = 10 3 litri = 1000 litri

36 Misure - problematiche Misure diverse della stessa grandezza devono essere compatibili e convertibili Problema di gestione di dati provenienti da misurazioni effettuate con unità diverse e poco convertibili Necessità di un unico sistema di unità di misure

37 UNITÀ DI MISURA FONDAMENTALI Grandezza Nome dell unità di misura Simbolo Lunghezza metro m Tempo secondo s Massa chilogrammo kg Temperatura assoluta kelvin K Quantità di sostanza mole mol Intensità di corrente ampere A Intensità luminosa candela cd

38 Il sistema CGS: Esiste anche il sistema CGS formato dalle prime tre grandezze del SI: lunghezza (cm), massa (g), tempo (s). Sistema C(entimetro)G(rammo)S(econdo). 1 m = 100 cm 1 kg = 1000 g Sistema britannico: 1 in (pollice) = 2.54 cm 1 ft (piede) = 12 in = cm 1 mi (miglio) = km = m

39 Il sistema tecnico (o pratico) ST: Altro sistema di unità di misura molto usato è il Sistema Tecnico (o Pratico). Le grandezze fondamentali utilizzate sono : lunghezza [L] unità di misura il metro (m ) tempo [T] unità di misura il secondo (s) temperatura [θ] unità di misura il grado centigrado ( C) forza [F] unità di misura il chilogrammo forza (kgf)

40 Cambiare unità di misura: km 1km 1000m 1000m 1000m 1 m 1 h 1h 60min 60 60s 3600s 3.6 s m = 3.4 * 10 4 m = 34 km 1 cm = 10-2 m m s 1 litro = 1 dm 3 = 10-3 m 3 1ms = 10-3 s 1MPa = 10 6 Pa

41 Il Metro Scelto come unità di misura alla fine del 1700, definito come la quarantamilionesima parte del meridiano terrestre. Il campione del metro è stato costruito tracciando due incisioni su una barra di platino e iridio, conservata al Museo dei Pesi e delle Misure di Sévres (Parigi). Dal 1983 il metro è stato ridefinito come la distanza percorsa dalla luce nel vuoto in 1/ esimo di secondo, quasi un trecentomilionesimo di secondo.

42 Il Kilogrammo Si chiama kilogrammo la massa di un cilindro costituito da una lega di platino e iridio che misura 39 mm in altezza e 39 mm in diametro. Anch esso, come nel caso del metro, si trova al Museo dei Pesi e delle Misure di Sévres, a Parigi. Esiste la copia n 62 del kilogrammo campione anche in Italia, presso l Istituto di Metrologia Gustavo Colonnetti, a Torino.

43 Il Secondo Il secondo è una frazione del giorno solare medio. In particolare esso è l esima parte del giorno solare medio. Data la variabilità del giorno solare medio, oggi il campione di tempo corrisponde al tempo di oscillazioni delle onde emesse dal Cesio 133 in una particolare transizione atomica.

44 Il Kelvin E la centesima parte della distanza termica tra il punto triplo dell acqua distillata (ghiaccio fondente) e il punto di ebollizione della stessa. Esso possiede la stessa ampiezza del grado Celsius (o centigrado). La scala Kelvin presenta lo zero assoluto, temperatura minima limite e non raggiungibile in natura.

45 L Ampere L Ampere è l intensità di corrente elettrica che circola in un conduttore quando, per una sezione di esso, passa la carica di 1 Coulomb ogni secondo.

46 La Mole La mole viene definita come la quantità di sostanza di un sistema che contiene un numero di entità elementari (atomi, molecole, ioni, radicali, elettroni, fotoni, ecc.) pari al numero di atomi presenti in 12 grammi di carbonio-12. Tale numero è noto come Numero di Avogadro, ed è pari a

47 La Candela Una candela è pari all intensità luminosa, in una data direzione, di una sorgente emettente una radiazione monocromatica di frequenza pari a hertz (Hz) e di intensità radiante in quella direzione di 1/683-esimo di watt per steradiante.

48 Grandezze Fondamentali e derivate Le sette grandezze appartenenti al SI si chiamano Grandezze Fondamentali. Da esse è possibile ricavare nuove grandezze, dette grandezze derivate, attraverso le classiche quattro operazioni matematiche, ma solo sotto opportune condizioni.

49 Alcune grandezze derivate Velocità (m/s) Accelerazione (m/s 2 ) Densità (kg/m 3 ) Forza (N = kg m/s 2 ) N sta per Newton Energia (J = N m) J sta per Joule Potenza (W = J/s) W sta per Watt Carica elettrica (C = A s) C sta per Coulomb

50 Operazioni tra grandezze Due o più grandezze, sia fondamentali che derivate, si possono sommare e/o sottrarre solo se sono omogenee, ossia uguali in tutto e per tutto (lo stesso vale per gli operatori di confronto >, <, =). Due o più grandezze, sia fondamentali che derivate, si possono moltiplicare e/o dividere anche se non sono omogenee.

51 Esempi di operazioni 3 m + 7 m = 10 m 10 s 5 m non ha senso! 42 m 2 s = 21 m/s 12 m/s 6 s = 2 m/s 2 15 m/s m/s non ha senso! 0.8 m 0.2 m = 0.16 m 2

52 Strumenti di misura Gli strumenti di misura sono oggetti che ci permettono, più o meno facilmente, di confrontare la misura di una certa grandezza con l unità di misura di riferimento. Essi devono avere quattro caratteristiche fondamentali: 1. Portata 2. Sensibilità 3. Precisione 4. Prontezza

53 La Portata La portata di uno strumento di misura indica la misura massima che lo strumento è in grado di effettuare. Per esempio, una bilancia dalla portata di 5 kg non è in grado di misurare la massa di un essere umano adulto, evidentemente maggiore di 5 kg.

54 La Sensibilità La sensibilità di uno strumento di misura indica la misura più piccola che lo strumento riesce a rivelare. Per esempio, una bilancia la cui sensibilità è di 0.1 kg non è adatta a misurazioni di precisione, per esempio di piccolissime quantità di metalli preziosi.

55 La Precisione La precisione di uno strumento di misura indica il grado di accuratezza della misura effettuata. La precisione è un parametro che indica il discostamento della misura rivelata rispetto a quella reale. Uno strumento di misura sofisticato è spesso più preciso di uno rudimentale.

56 La Prontezza La prontezza di uno strumento di misura indica il tempo impiegato dallo strumento a rivelare la misurazione. Strumenti come cronometri ad altissima precisione hanno bisogno ovviamente di una prontezza molto elevata. La prontezza non è importante quando si eseguono misurazioni grossolane con margini di errore elevati.

57 Altre proprietà degli strumenti di misura Strumenti analogici Sono quelli in cui la misura rivelata la si legge attraverso una apposita scala graduata (es. il metro del falegname oppure gli strumenti ad ago come gli amperometri analogici). Strumenti digitali Sono quelli in cui la misura rivelata la si legge sotto forma di cifre (es. strumenti con schermi a cristalli liquidi, ecc.). La parola digitale deriva dall inglese digit, che significa cifra.

58 Alcuni strumenti analogici Metro a nastro Orologio a lancette Voltmetro ad ago

59 Alcuni strumenti digitali Metro a ultrasuono Orologio al quarzo Voltmetro elettronico

60 Misure dirette e indirette Misure dirette Sono quelle misure che vengono rivelate direttamente da uno strumento di misura. Sono misure dirette quelle di lunghezze, tempi, masse, ecc. Misure indirette Sono quelle misure che risultano dopo opportuni calcoli matematici. Sono misure indirette quelle di superfici, di volumi, di accelerazioni, ecc.

61 Esempi: - misure dirette: a) lunghezza di un'asta -> il metro b) durata di un fenomeno fisico -> cronometro - misure indirette: a) pressione atmosferica misurata attraverso la lunghezza di una colonnina di mercurio b) temperatura di un ambiente misurata attraverso la resistenza di un componente elettronico. bilancia dinamometro

MODULO 1. Conoscere e misurare le grandezze

MODULO 1. Conoscere e misurare le grandezze Prof. M. C. Capizzo MODULO 1 Conoscere e misurare le grandezze Cos è la Fisica? Indagine sulla natura con gli strumenti matematici MECCANICA TERMODINAMICA ELETTROMAGNETISMO movimento dei corpi fenomeni

Dettagli

Unità di misura e formule utili

Unità di misura e formule utili Unità di misura e formule utili Lezione 7 Unità di misura Il Sistema Internazionale di unità di misura (SI) nasce dall'esigenza di utilizzare comuni unità di misura per la quantificazione e la misura delle

Dettagli

Dimensioni Unità di misura. Lezione di fisica

Dimensioni Unità di misura. Lezione di fisica Dimensioni Unità di misura Lezione di fisica Argomenti della lezione Grandezze fisiche Dimensioni Unità di misura Il sistema internazionale - SI Taratura Le misure La Fisica, dall antico greco φύσις, è

Dettagli

Misurazione di una grandezza fisica Definizione operativa: Grandezza fisica Proprietà misurabile Sensazione di caldo/freddo Temperatura NO (soggettiva, diversa per ciascuno) SI (oggettiva, uguale per tutti)

Dettagli

UNITÀ DI MISURA GRANDEZZE FONDAMENTALI, GRANDEZZE DERIVATE

UNITÀ DI MISURA GRANDEZZE FONDAMENTALI, GRANDEZZE DERIVATE UNITÀ DI MISURA GRANDEZZE FONDAMENTALI, GRANDEZZE DERIVATE Una grandezza fisica è detta fondamentale se la sua unità di misura è definita direttamente, specificando le condizioni in cui il risultato della

Dettagli

1. LE GRANDEZZE FISICHE

1. LE GRANDEZZE FISICHE 1. LE GRANDEZZE FISICHE La fisica (dal greco physis, natura ) è una scienza che ha come scopo guardare, descrivere e tentare di comprendere il mondo che ci circonda. La fisica si propone di descrivere

Dettagli

I SISTEMI DI UNITA DI MISURA

I SISTEMI DI UNITA DI MISURA Provincia di Reggio Calabria Assessorato all Ambiente Corso di Energy Manager Maggio - Luglio 2008 I SISTEMI DI UNITA DI MISURA Ilario De Marco Il sistema internazionale di unità di misura Lo studio di

Dettagli

2. E L E M E N T I S T R U T T U R A L I E T E R R I T O R I A L I D I U N A Z I E N D A A G R A R I A

2. E L E M E N T I S T R U T T U R A L I E T E R R I T O R I A L I D I U N A Z I E N D A A G R A R I A 2. E L E M E N T I S T R U T T U R A L I E T E R R I T O R I A L I D I U N A Z I E N D A A G R A R I A Capitolo 2 - Elementi strutturali e territoriali di un azienda agraria 2. 1. G r a n d e z z e e u

Dettagli

La misura: unità del SI, incertezza dei dati e cifre significative

La misura: unità del SI, incertezza dei dati e cifre significative La misura: unità del SI, incertezza dei dati e cifre significative p. 1 La misura: unità del SI, incertezza dei dati e cifre significative Sandro Fornili e Valentino Liberali Dipartimento di Tecnologie

Dettagli

CONCETTO di GRANDEZZA

CONCETTO di GRANDEZZA CONCETTO di GRANDEZZA Le GRANDEZZE FISICHE sono qualità misurabili di un corpo o di un fenomeno Esempi di grandezze Per misurare una grandezza occorre un adeguato strumento di misura GRANDEZZA Lunghezza

Dettagli

Dalla stima alla misura &!!% ""! " # $ & " ' etroina 2

Dalla stima alla misura &!!% !  # $ &  ' etroina 2 !!""!"!$!%!""!% &!!% ""!! " $ $$% & " '! etroina ( ) & & " ' - + -, -+ - $ + - ' ""' P. Amati e R. Spigarolo, L ora di scienze, Giunti 1997 [ ] Ma che cos è un ordine di grandezza? E quella valutazione

Dettagli

Lunghezza Massa Peso Volume Capacità Densità Peso specifico Superficie Pressione Forza Lavoro Potenza

Lunghezza Massa Peso Volume Capacità Densità Peso specifico Superficie Pressione Forza Lavoro Potenza Misurare una grandezza La Grandezza 1. La grandezza è una caratteristica misurabile. Lunghezza Massa Peso Volume Capacità Densità Peso specifico Superficie Pressione Forza Lavoro Potenza 2. Misurare una

Dettagli

TERMOFISICA Scambi di energia termica e loro relazioni con le proprietà fisiche delle sostanze.

TERMOFISICA Scambi di energia termica e loro relazioni con le proprietà fisiche delle sostanze. TERMOFISICA Scambi di energia termica e loro relazioni con le proprietà fisiche delle sostanze. TERMODINAMICA Utilizza alcuni principi fondamentali assunti come postulati derivati dall esperienza: corpo

Dettagli

Università Politecnica delle Marche, Facoltà di Agraria C.d.L. Scienze Forestali e Ambientali, A.A. 2012/2013, Fisica

Università Politecnica delle Marche, Facoltà di Agraria C.d.L. Scienze Forestali e Ambientali, A.A. 2012/2013, Fisica Dr. Adrian MANESCU Tel. 071-220 4603, a.manescu@alisf1.univpm.it http://www.isf.univpm.it/isf/manescu/manescu.html Dipartimento DISCO Sezione di Scienze Fisiche secondo piano Orario delle lezioni: dal

Dettagli

Grandezze fisiche e loro misura. Grandezze fisiche e loro misura

Grandezze fisiche e loro misura. Grandezze fisiche e loro misura Grandezze fisiche e loro misura Essendo la Fisica basata sul metodo scientifico-sperimentale, c è la necessità di effettuare delle misure. Le caratteristiche misurabili di un corpo prendono il nome di

Dettagli

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un CLASSE Seconda DISCIPLINA Fisica ORE SETTIMANALI 3 TIPO DI PROVA PER GIUDIZIO SOSPESO Test a risposta multipla MODULO U.D Conoscenze Abilità Competenze Enunciato del primo principio della Calcolare l accelerazione

Dettagli

Ripasso pre-requisiti di scienze per gli studenti che si iscrivono alle classi prime

Ripasso pre-requisiti di scienze per gli studenti che si iscrivono alle classi prime Ripasso pre-requisiti di scienze per gli studenti che si iscrivono alle classi prime Per seguire proficuamente i corsi di scienze della scuola superiore devi conoscere alcune definizioni e concetti di

Dettagli

Il Sistema internazionale: sistemi di misura e cifre significative

Il Sistema internazionale: sistemi di misura e cifre significative Il Sistema internazionale: sistemi di misura e cifre significative La nostra conoscenza è soddisfacente soltanto quando è possibile esprimerla numericamente. Lord Kelvin SI Sistemi di misura e cifre significative

Dettagli

PRIMO ESEMPIO DI STUDIO DI UN FENOMENO FISICO: VOGLIAMO STUDIARE IL MOTO DI UNA BICICLETTA (SU CUI C E UNA PERSONA CHE PEDALA).

PRIMO ESEMPIO DI STUDIO DI UN FENOMENO FISICO: VOGLIAMO STUDIARE IL MOTO DI UNA BICICLETTA (SU CUI C E UNA PERSONA CHE PEDALA). Grandezze Fisiche PRIMO ESEMPIO DI STUDIO DI UN FENOMENO FISICO: VOGLIAMO STUDIARE IL MOTO DI UNA BICICLETTA (SU CUI C E UNA PERSONA CHE PEDALA). Il MOVIMENTO è collegato allo SPAZIO. Le misure nello SPAZIO

Dettagli

Corso di Laurea in TECNICHE DI RADIOLOGIA MEDICA, PER IMMAGINI E RADIOTERAPIA

Corso di Laurea in TECNICHE DI RADIOLOGIA MEDICA, PER IMMAGINI E RADIOTERAPIA Corso di Laurea in TECNICHE DI RADIOLOGIA MEDICA, PER IMMAGINI E RADIOTERAPIA Anno: 1 Semestre: 1 Corso integrato: MATEMATICA, FISICA, STATISTICA ED INFORMATICA Disciplina: FISICA MEDICA Docente: Prof.

Dettagli

SINTESI 0. Grandezze e unità di misura

SINTESI 0. Grandezze e unità di misura Le grandezze fisiche Per studiare la composizione e la struttura della materia e le sue trasformazioni, la chimica e le altre scienze sperimentali si basano sulle grandezze fisiche, cioè su proprietà che

Dettagli

CLASSE: 1^ CAT. E 1^ GRA

CLASSE: 1^ CAT. E 1^ GRA ITS BANDINI - SIENA MATERIA DI INSEGNAMENTO: FISICA e LABORATORIO CLASSE: 1^ CAT. E 1^ GRA In relazione alla programmazione curricolare ci si prefigge di raggiungere i seguenti obiettivi disciplinari:

Dettagli

Corso integrato: FISICA, STATISTICA E INFORMATICA Disciplina: FISICA MEDICA Docente: Prof. Massimo MONCIARDINI Recapito: maxmonc@inwind.

Corso integrato: FISICA, STATISTICA E INFORMATICA Disciplina: FISICA MEDICA Docente: Prof. Massimo MONCIARDINI Recapito: maxmonc@inwind. Corso integrato: FISICA, STATISTICA E INFORMATICA Disciplina: FISICA MEDICA Docente: Prof. Massimo MONCIARDINI Recapito: maxmonc@inwind.it Programma: Introduzione Meccanica Cinematica Dinamica Statica

Dettagli

POLITECNICO DI MILANO CORSO DI LAUREA ON LINE IN INGEGNERIA INFORMATICA ESAME DI FISICA

POLITECNICO DI MILANO CORSO DI LAUREA ON LINE IN INGEGNERIA INFORMATICA ESAME DI FISICA 1 POLITECNICO DI MILANO CORSO DI LAUREA ON LINE IN INGEGNERIA INFORMATICA ESAME DI FISICA Per ogni punto del programma d esame vengono qui di seguito indicate le pagine corrispondenti nel testo G. Tonzig,

Dettagli

Una grandezza fisica e una classe di equivalenza di proprietà fisiche che si possono confrontare fra loro

Una grandezza fisica e una classe di equivalenza di proprietà fisiche che si possono confrontare fra loro Una grandezza fisica e una classe di equivalenza di proprietà fisiche che si possono confrontare fra loro Esempio: Il peso di un oggetto puo essere confrontato con il peso di un altro oggetto. La misura

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologie informatiche per la chimica Dr. Sergio Brutti Metodologie di analisi dei dati Dati: definizioni Consideriamo una spercifica attività sperimentale o computazionale: un dato è il risultato di

Dettagli

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2009/2010, Fisica 1

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2009/2010, Fisica 1 Dr. Adrian MANESCU Tel. 071-220 4603, a.manescu@alisf1.univpm.it http://www.isf.univpm.it/isf/manescu/manescu.html http://www.isf.univpm.it/isf/students.htm Dipartimento SAIFET Sezione di Scienze Fisiche

Dettagli

GRANDEZZE FISICHE E UNITA DI MISURA. G. Roberti

GRANDEZZE FISICHE E UNITA DI MISURA. G. Roberti GRANDEZZE FISICHE E UNITA DI MISURA G. Roberti 1. Quale dei seguenti gruppi di grandezze fisiche comprende solo grandezze fondamentali (e non derivate) del Sistema Internazionale? A) Corrente elettrica,

Dettagli

SISTEMA INTERNAZIONALE DI UNITÀ

SISTEMA INTERNAZIONALE DI UNITÀ LE MISURE DEFINIZIONI: Grandezza fisica: è una proprietà che può essere misurata (l altezza di una persona, la temperatura in una stanza, la massa di un oggetto ) Misurare: effettuare un confronto tra

Dettagli

Elettronica I Grandezze elettriche e unità di misura

Elettronica I Grandezze elettriche e unità di misura Elettronica I Grandezze elettriche e unità di misura Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Termologia Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Trasmissione del calore Legge di Wien Legge di Stefan-Boltzmann Gas

Dettagli

ISTITUTO STATALE DI ISTRUZIONE SUPERIORE EDITH STEIN.

ISTITUTO STATALE DI ISTRUZIONE SUPERIORE EDITH STEIN. PIANO DI LAVORO DELLA DISCIPLINA: FISICA CLASSI: SECONDE CORSO: LICEO SCIENTIFICO AS 2014-2015 Linee generali dell insegnamento della fisica nel liceo scientifico, da indicazioni ministeriali In particolare

Dettagli

Corso intensivo di Fisica Generale 1.

Corso intensivo di Fisica Generale 1. Corso intensivo: 52 h Corso intensivo di Fisica Generale 1. Programma medio incompleto. Lo studente dovrà eventualmente studiare alcuni alcuni capitoli di integrazione Tre tipologie di corsi (anche 4)

Dettagli

Concetti fondamentali

Concetti fondamentali Università degli Studi di Pavia Facoltà di Ingegneria Corso di Elettrotecnica Teoria dei Circuiti Concetti fondamentali UNITÀ DI MISURA Standard per la misurazione di grandezze fisiche MKSA (Giorgi) Sistema

Dettagli

Sistema Internazionale (SI)

Sistema Internazionale (SI) Unità di misura Necessità di un linguaggio comune Definizione di uno standard: Sistema Internazionale (SI) definito dalla Conferenza Generale dei Pesi e delle Misure nel 1960 Teoria dei Circuiti Prof.

Dettagli

Pressione. Esempio. Definizione di pressione. Legge di Stevino. Pressione nei fluidi EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI

Pressione. Esempio. Definizione di pressione. Legge di Stevino. Pressione nei fluidi EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI Pressione EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI Cos è la pressione? La pressione è una grandezza che lega tra di loro l intensità della forza e l aerea della superficie su cui viene esercitata

Dettagli

Spettrofotometria. Le onde luminose consistono in campi magnetici e campi elettrici oscillanti, fra loro perpendicolari.

Spettrofotometria. Le onde luminose consistono in campi magnetici e campi elettrici oscillanti, fra loro perpendicolari. Spettrofotometria. Con questo termine si intende l utilizzo della luce nella misura delle concentrazioni chimiche. Per affrontare questo argomento dovremo conoscere: Natura e proprietà della luce. Cosa

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

GRANDEZZE E UNITA DI MISURA

GRANDEZZE E UNITA DI MISURA Processo logico di un indagine sperimentale: quali grandezze misurare scegliere lo strumento di misura adatto come effettuare la misura: definire le condizioni, delineare una procedura analisi dei risultati:

Dettagli

DETERMINAZIONI SPERIMENTALI ED ERRORI. confrontare quella grandezza con un'altra di riferimento, ad essa omogenea, detta unità di misura.

DETERMINAZIONI SPERIMENTALI ED ERRORI. confrontare quella grandezza con un'altra di riferimento, ad essa omogenea, detta unità di misura. DETERMINAZIONI SPERIMENTALI ED ERRORI MISURARE UNA GRANDEZZA = confrontare quella grandezza con un'altra di riferimento, ad essa omogenea, detta unità di misura. LUNGHEZZA metro (m) distanza percorsa dalla

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

http://www.fisica.uniud.it/~soramel/fisicageneralei.html

http://www.fisica.uniud.it/~soramel/fisicageneralei.html Corso di Fisica Generale I A.A. 2004/05 Prof. Francesca Soramel e-mail soramel@fisica.uniud.it Orario ricevimento: martedì 14.00-16:00 Testo: R.Resnick, D.Halliday, Krane Fisica I (quinta edizione) Casa

Dettagli

Termodinamica: legge zero e temperatura

Termodinamica: legge zero e temperatura Termodinamica: legge zero e temperatura Affrontiamo ora lo studio della termodinamica che prende in esame l analisi dell energia termica dei sistemi e di come tale energia possa essere scambiata, assorbita

Dettagli

Unità di misura. Perché servono le unità di misura nella pratica di laboratorio e in corsia? Le unità di misura sono molto importanti

Unità di misura. Perché servono le unità di misura nella pratica di laboratorio e in corsia? Le unità di misura sono molto importanti Unità di misura Le unità di misura sono molto importanti 1000 è solo un numero 1000 lire unità di misura monetaria 1000 unità di misura monetaria ma il valore di acquisto è molto diverso 1000/mese unità

Dettagli

I.I.S. "PAOLO FRISI"

I.I.S. PAOLO FRISI I.I.S. "PAOLO FRISI" Via Otranto angolo Cittadini, 1-20157 - MILANO www.ipsfrisi.it PROGRAMMAZIONE DIDATTICA DISCIPLINARE DI FISICA Anno Scolastico:2014-15 CLASSI TUTTE III, IV E V LICEO DOCENTE : _ Rinaldi.

Dettagli

Corso di Fisica Sperimentale 1. (Laurea in Biologia, a.a. 2014-15)

Corso di Fisica Sperimentale 1. (Laurea in Biologia, a.a. 2014-15) Corso di Fisica Sperimentale 1 (Laurea in Biologia, a.a. 2014-15) La Fisica: una scienza semplice La combinazione delle varie esperienze quotidiane forma nell uomo l intuito, possiamo quindi dire che la

Dettagli

CLASSE PRIMA A. I..I.S. via Silvestri,301 Plesso A.Volta Programma di Fisica e Laboratorio Programma Attività Didattiche svolte A.S.

CLASSE PRIMA A. I..I.S. via Silvestri,301 Plesso A.Volta Programma di Fisica e Laboratorio Programma Attività Didattiche svolte A.S. CLASSE PRIMA A I..I.S. via Silvestri,301 Plesso A.Volta Programma di Fisica e Laboratorio Programma Attività Didattiche svolte Materia A.S.2014/2015 FISICA e Laboratorio di Fisica Unità 2- Strumenti matematici:

Dettagli

MODULO 1 Le grandezze fisiche

MODULO 1 Le grandezze fisiche MODULO 1 Le grandezze fisiche Quante volte, ogni giorno, utilizziamo il metro, i secondi, i kilogrammi Ma forse non sappiamo quante menti di uomini ingegnosi hanno dato un senso a quei simboli per noi

Dettagli

Grandezze fisiche. É una grandezza campione, omogenea con la grandezza data, scelta in maniera arbitraria.

Grandezze fisiche. É una grandezza campione, omogenea con la grandezza data, scelta in maniera arbitraria. Appunti a cura del Grandezze fisiche. N.1. - Grandezze e loro misura. 1. - Classe di grandezze. È un insieme di enti, omogenei fra di loro, per i quali si possano stabilire le relazioni di uguaglianza,

Dettagli

Grandezze fisiche e loro misura

Grandezze fisiche e loro misura Grandezze fisiche e loro misura Cos è la fisica? e di che cosa si occupa? - Scienza sperimentale che studia i fenomeni naturali suscettibili di sperimentazione e caratterizzati da entità o grandezze misurabili.

Dettagli

Complementi di Termologia. I parte

Complementi di Termologia. I parte Prof. Michele Giugliano (Dicembre 2) Complementi di Termologia. I parte N.. - Calorimetria. Il calore è una forma di energia, quindi la sua unità di misura, nel sistema SI, è il joule (J), tuttavia si

Dettagli

La MISURA di una grandezza è espressa da un NUMERO, che definisce quante volte un compreso nella grandezza da misurare. CAMPIONE prestabilito

La MISURA di una grandezza è espressa da un NUMERO, che definisce quante volte un compreso nella grandezza da misurare. CAMPIONE prestabilito CLASSI PRIME MISURA E UNITA DI MISURA La MISURA di una grandezza è espressa da un NUMERO, 1-2-5-10-0,001-1.000.000001-1 000 000 che definisce quante volte un CAMPIONE prestabilito è compreso nella grandezza

Dettagli

Mai memorizzare quello che puoi comodamente trovare in un libro. Albert Einstein

Mai memorizzare quello che puoi comodamente trovare in un libro. Albert Einstein Mai memorizzare quello che puoi comodamente trovare in un libro. Albert Einstein Dr. Adrian MANESCU Tel. 071-220 4603, a.manescu@univpm.it http://www.isf.univpm.it/isf/manescu/manescu.html Dipartimento

Dettagli

Ripasso sulla temperatura, i gas perfetti e il calore

Ripasso sulla temperatura, i gas perfetti e il calore Ripasso sulla temperatura, i gas perfetti e il calore Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia La temperatura Fenomeni non interpretabili con le leggi della meccanica Dilatazione

Dettagli

Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Novembre 2013

Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Novembre 2013 Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Novembre 2013 Quesito 1 Due cubi A e B costruiti con lo stesso legno vengono trascinati sullo stesso pavimento.

Dettagli

Parte Seconda La Misura

Parte Seconda La Misura Il procedimento di misura è uno dei procedimenti fondamentali della conoscenza scientifica in quanto consente di descrivere quantitativamente una proprietà di un oggetto o una caratteristica di un fenomeno.

Dettagli

Introduzione all analisi dei segnali digitali.

Introduzione all analisi dei segnali digitali. Introduzione all analisi dei segnali digitali. Lezioni per il corso di Laboratorio di Fisica IV Isidoro Ferrante A.A. 2001/2002 1 Segnali analogici Si dice segnale la variazione di una qualsiasi grandezza

Dettagli

Materia:FISICA Insegnante: ing. prof. Amato Antonio

Materia:FISICA Insegnante: ing. prof. Amato Antonio ISTITUTO ISTRUZIONE SUPERIORE DI STATO ROBERTO ROSSELLINI PROGRAMMAZIONE DIDATTICA a.s. 2012/2013 BIENNIO Materia:FISICA Insegnante: ing. prof. Amato Antonio L azione didattica ed educativa nel primo biennio

Dettagli

SCIENZE INTEGRATE FISICA

SCIENZE INTEGRATE FISICA CLASSE DISCIPLINA ORE SETTIMANALI TIPO DI PROVA PER GIUDIZIO SOSPESO MODULO 1: Il moto e l energia I concetti di sistema di riferimento e le grandezze cinematiche. I diversi tipi di rappresentazione del

Dettagli

Temperatura e Calore

Temperatura e Calore Temperatura e Calore 1 Temperatura e Calore Stati di Aggregazione Temperatura Scale Termometriche Dilatazione Termica Il Calore L Equilibrio Termico La Propagazione del Calore I Passaggi di Stato 2 Gli

Dettagli

GRANDEZZE E UNITÁ DI MISURA

GRANDEZZE E UNITÁ DI MISURA 1 GRANDEZZE E UNITÁ DI MISURA 1.1 GRANDEZZE FISICHE E UNITÀ DI MISURA Lo studio dei fenomeni fisici si basa sulla possibilità di definire e misurare quelle entità, che sono proprietà o qualità dei corpi

Dettagli

PROGRAMMAZIONE DISCIPLINARE ISTITUTO TECNICO PER IL TURISMO SCIENZE INTEGRATE FISICA CLASSE PRIMA

PROGRAMMAZIONE DISCIPLINARE ISTITUTO TECNICO PER IL TURISMO SCIENZE INTEGRATE FISICA CLASSE PRIMA PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO TECNICO PER IL TURISMO SCIENZE INTEGRATE FISICA CLASSE PRIMA 1. Competenze: le specifiche competenze di base disciplinari previste dalla

Dettagli

Fondamenti e didattica delle scienze

Fondamenti e didattica delle scienze Fondamenti e didattica delle scienze Energia Daniela Allasia Andrea De Bortoli CORSI SPECIALI - Indirizzo Scuola Primaria 73 L energia e le sue proprietà L energia e le sue proprietà La parola energia

Dettagli

La misura DEFINIZIONE OPERATIVA STRUMENTO DI MISURA. Esempio: lunghezza. strumento procedura. righello confronto

La misura DEFINIZIONE OPERATIVA STRUMENTO DI MISURA. Esempio: lunghezza. strumento procedura. righello confronto Grandezze fisiche,unità di misura, strumenti matematici La misura DEFINIZIONE OPERATIVA STRUMENTO DI MISURA PROCEDURA DI MISURA Esempio: lunghezza strumento procedura righello confronto 1 2 3 4 5 6 la

Dettagli

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA Concetti e grandezze fondamentali CAMPO ELETTRICO: è un campo vettoriale di forze,

Dettagli

Una forza, per la fisica, compie un lavoro se provoca uno spostamento.

Una forza, per la fisica, compie un lavoro se provoca uno spostamento. Lavoro La forza è la causa del cambiamento di moto di un corpo (dinamica). Se la risultante di puù forze applicate ad un corpo è nulla il corpo è in equilibrio stabile (statica). Una forza può causare

Dettagli

Corso di Chimica e Stechiometria per il corso di laurea in SCIENZE AMBIENTALI

Corso di Chimica e Stechiometria per il corso di laurea in SCIENZE AMBIENTALI Corso di Chimica e Stechiometria per il corso di laurea in SCIENZE AMBIENTALI Dott.ssa DANIELA DE VITA Orario ricevimento (previo appuntamento):lunedì 17.30-18.30 E-mail danidvd@hotmail.it daniela.devita@uniroma1.it

Dettagli

LA FORZA. Il movimento: dal come al perché

LA FORZA. Il movimento: dal come al perché LA FORZA Concetto di forza Principi della Dinamica: 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale e forza peso Accelerazione di gravità Massa, peso, densità pag.1

Dettagli

Si classifica come una grandezza intensiva

Si classifica come una grandezza intensiva CAP 13: MISURE DI TEMPERATURA La temperatura È osservata attraverso gli effetti che provoca nelle sostanze e negli oggetti Si classifica come una grandezza intensiva Può essere considerata una stima del

Dettagli

MECC 02 SISTEMI DI MISURA

MECC 02 SISTEMI DI MISURA SISTEMI DI MISURA UN SISTEMA DI MISURA PUÒ CONSIDERARSI UN RIFERIMENTO CHE OFFRE LE INDICAZIONI NECESSARIE PER IDENTIFICARE CORRETTAMENTE ED UNIVOCAMENTE LE UNITÀ DI MISURA DA ADOTTARE PER LE VARIE GRANDEZZE

Dettagli

Università Politecnica delle Marche, Facoltà di Agraria C.d.L. Scienze Forestali e Ambientali, A.A. 2013/2014, Fisica

Università Politecnica delle Marche, Facoltà di Agraria C.d.L. Scienze Forestali e Ambientali, A.A. 2013/2014, Fisica Dr. Adrian MANESCU Tel. 071-220 4603, a.manescu@univpm.it http://www.isf.univpm.it/isf/manescu/manescu.html Dipartimento DISCO Sezione di Scienze Fisiche secondo piano Orario delle lezioni: dal 17.02.2014

Dettagli

GRANDEZZE FISICHE. Prof.ssa Paravizzini M.R.

GRANDEZZE FISICHE. Prof.ssa Paravizzini M.R. GRANDEZZE FISICHE Prof.ssa Paravizzini M.R. PROPRIETA DEL CORPO SOGGETTIVE OGGETTIVE PR.SOGGETTIVE: gusto, bellezza, freschezza, forma MISURABILI PR. OGGETTIVE: massa, temperatura, diametro, ecc.. Le misure

Dettagli

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro I FENOMENI TERMICI Temperatura Calore Trasformazioni termodinamiche Gas perfetti Temperatura assoluta Gas reali Principi della Termodinamica Trasmissione del calore Termoregolazione del corpo umano Temperatura

Dettagli

Il Sistema Internazionale di Unità di Misura (SI)

Il Sistema Internazionale di Unità di Misura (SI) Il Sistema Internazionale di Unità di Misura (SI) Bibliografia: UNI_CEI_ISO_1000-2004 Unità di misura SI Doebelin, Strumenti e metodi di misura - MCGRAW-HILL - Ed2008 pagg. 32-46 http://www.inrim.it/ldm/index_i.shtml

Dettagli

Da Newton a Planck. La struttura dell atomo. Da Newton a Planck. Da Newton a Planck. Meccanica classica (Newton): insieme

Da Newton a Planck. La struttura dell atomo. Da Newton a Planck. Da Newton a Planck. Meccanica classica (Newton): insieme Da Newton a Planck Meccanica classica (Newton): insieme La struttura dell atomo di leggi che spiegano il mondo fisico fino alla fine del XIX secolo Prof.ssa Silvia Recchia Quantomeccanica (Planck): insieme

Dettagli

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Forza CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Cos è una forza? la forza è una grandezza che agisce su un corpo cambiando la sua velocità e provocando una deformazione sul corpo 2 Esempi

Dettagli

Strane anomalie di un motore omopolare Di Valerio Rizzi e Giorgio Giurini

Strane anomalie di un motore omopolare Di Valerio Rizzi e Giorgio Giurini Strane anomalie di un motore omopolare Di Valerio Rizzi e Giorgio Giurini Gli scriventi, in qualità di studiosi del generatore omopolare hanno deciso di costruire questo motore per cercare di capire le

Dettagli

IL SISTEMA INTERNAZIONALE DELLE UNITA DI MISURA

IL SISTEMA INTERNAZIONALE DELLE UNITA DI MISURA Lezione II - 7/03/2014 ora 14.30-17.30 - Unità di misura - Originale di Laura Conti, Isabella Dusi IL SISTEMA INTERNAZIONALE DELLE UNITA DI MISURA Che cos è l unità di misura? L Unità di Misura è un valore

Dettagli

I.S.I.S. Zenale e Butinone di Treviglio Dipartimento di Scienze integrate anno scolastico 2014/15

I.S.I.S. Zenale e Butinone di Treviglio Dipartimento di Scienze integrate anno scolastico 2014/15 I.S.I.S. Zenale e Butinone di Treviglio Dipartimento di Scienze integrate anno scolastico 2014/15 KIT RECUPERO SCIENZE INTEGRATE FISICA CLASSI PRIME TECNICO TURISTICO SUPPORTO DIDATTICO PER ALUNNI CON

Dettagli

LABORATORIO DI CHIMICA GENERALE E INORGANICA

LABORATORIO DI CHIMICA GENERALE E INORGANICA UNIVERSITA DEGLI STUDI DI MILANO Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Chimica CORSO DI: LABORATORIO DI CHIMICA GENERALE E INORGANICA Docente: Dr. Alessandro Caselli

Dettagli

Temperatura e Calore

Temperatura e Calore Temperatura e Calore La materia è un sistema fisico a molti corpi Gran numero di molecole (N A =6,02 10 23 ) interagenti tra loro Descrizione mediante grandezze macroscopiche (valori medi su un gran numero

Dettagli

LICEO STATALE TERESA CICERI COMO 11 settembre 2012 PROGRAMMAZIONE DISCIPLINARE DI FISICA A. S. 2012/2013

LICEO STATALE TERESA CICERI COMO 11 settembre 2012 PROGRAMMAZIONE DISCIPLINARE DI FISICA A. S. 2012/2013 PROGRAMMAZIONE DISCIPLINARE DI FISICA A. S. 2012/2013 TRIENNIO BROCCA LICEO SOCIO PSICO - PEDAGOGICO TRIENNIO BROCCA LICEO LINGUISTICO FINALITA GENERALI Il Progetto Brocca individua le seguenti finalità

Dettagli

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2013

Preparazione alle gare di II livello delle Olimpiadi della Fisica 2013 Preparazione alle gare di II livello delle Olimpiadi della Fisica 01 Incontro su temi di termodinamica 14/1/01 Giuseppina Rinaudo - Dipartimento di Fisica dell Università di Torino Sommario dei quesiti

Dettagli

I.S.I.S. Zenale e Butinone di Treviglio Dipartimento di Scienze integrate anno scolastico 2013/14

I.S.I.S. Zenale e Butinone di Treviglio Dipartimento di Scienze integrate anno scolastico 2013/14 I.S.I.S. Zenale e Butinone di Treviglio Dipartimento di Scienze integrate anno scolastico 2013/14 KIT RECUPERO SCIENZE INTEGRATE FISICA CLASSI SECONDE TECNICO GRAFICO SUPPORTO DIDATTICO PER ALUNNI CON

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

Definizioni del secondo ed evoluzione degli orologi

Definizioni del secondo ed evoluzione degli orologi Definizioni del secondo ed evoluzione degli orologi Nel corso dei secoli vari strumenti aiutarono l'uomo a misurare il tempo; orologi solari, clessidre e orologi a pendolo definirono con minore o maggiore

Dettagli

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione 1. L elettrone ha una massa di 9.1 10-31 kg ed una carica elettrica di -1.6 10-19 C. Ricordando che la forza gravitazionale

Dettagli

Pressione. www.easymaths.altervista.org. 01 - Pressione.

Pressione. www.easymaths.altervista.org. 01 - Pressione. Pressione 01 - Pressione La forza è una grandezza fisica caratterizzata dal fatto di essere in grado di modificare lo stato di moto di un corpo o di modificarne la struttura interna Supponiamo che una

Dettagli

Istituto Superiore Cigna Baruffi Garelli, MONDOVI. PROGRAMMA SVOLTO DI FISICA - CLASSE 2^ A EE - Anno scolastico 2014/15

Istituto Superiore Cigna Baruffi Garelli, MONDOVI. PROGRAMMA SVOLTO DI FISICA - CLASSE 2^ A EE - Anno scolastico 2014/15 Istituto Superiore Cigna Baruffi Garelli, MONDOVI PROGRAMMA SVOLTO DI FISICA - CLASSE 2^ A EE - Anno scolastico 2014/15 INSEGNANTI: Massimo Morandini () - Renato Griseri () Testo adottato: "Dentro la fisica,

Dettagli

Classificazione dei Sensori. (raccolta di lucidi)

Classificazione dei Sensori. (raccolta di lucidi) Classificazione dei Sensori (raccolta di lucidi) 1 Le grandezze fisiche da rilevare nei processi industriali possono essere di varia natura; generalmente queste quantità sono difficili da trasmettere e

Dettagli

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. PREMESSA: Anche intuitivamente dovrebbe a questo punto essere ormai chiaro

Dettagli

Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA

Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA Termodinamica TERMODINAMICA Cosa è la termodinamica? La termodinamica studia la conversione del calore in lavoro meccanico Prof Crosetto Silvio 2 Prof Crosetto Silvio Il motore dell automobile trasforma

Dettagli

1. Unità SI, loro multipli e sottomultipli decimali

1. Unità SI, loro multipli e sottomultipli decimali ALLEGATO A Simboli convenzionali di unità di misura di cui al testo vigente dell'allegato al decreto del Presidente della Repubblica 12 agosto 1982, n. 802 (Attuazione della direttiva n. 80/181/CEE relativa

Dettagli

Energia nelle reazioni chimiche. Lezioni d'autore di Giorgio Benedetti

Energia nelle reazioni chimiche. Lezioni d'autore di Giorgio Benedetti Energia nelle reazioni chimiche Lezioni d'autore di Giorgio Benedetti VIDEO Introduzione (I) L energia chimica è dovuta al particolare arrangiamento degli atomi nei composti chimici e le varie forme di

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Che cos è la corrente elettrica? Nei conduttori metallici la corrente è un flusso di elettroni. L intensità della corrente è il rapporto tra la quantità

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

LE TORRI: DISCOVERY e COLUMBIA

LE TORRI: DISCOVERY e COLUMBIA LE TORRI: DISCOVERY e COLUMBIA Osservazioni e misure a bordo Le tue sensazioni e l accelerometro a molla 1) Nelle due posizioni indicate dalle frecce indica le sensazioni ricevute rispetto al tuo peso

Dettagli

Proprieta meccaniche dei fluidi

Proprieta meccaniche dei fluidi Proprieta meccaniche dei fluidi 1. Definizione di fluido: liquido o gas 2. La pressione in un fluido 3. Equilibrio nei fluidi: legge di Stevino 4. Il Principio di Pascal 5. Il barometro di Torricelli 6.

Dettagli