Le proteine rappresentano gli elementi strutturali e funzionali più importanti nei sistemi viventi. Qualsiasi processo vitale dipende da questa

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Le proteine rappresentano gli elementi strutturali e funzionali più importanti nei sistemi viventi. Qualsiasi processo vitale dipende da questa"

Transcript

1 Gli amminoacidi

2 Le proteine rappresentano gli elementi strutturali e funzionali più importanti nei sistemi viventi. Qualsiasi processo vitale dipende da questa classe di molecole: p. es. la catalisi delle reazioni metaboliche (enzimi), le difese immunitarie (immunoglobuline), il trasporto di ossigeno (emoglobina), il trasporto di nutrienti (albumina), il movimento (actina, miosina).

3 Le proteine sono macromolecole costituite dall unione di un grande numero di unità elementari: gli amminoacidi (AA) Sebbene in natura esistano più di 300 amminoacidi, soltanto 20 sono incorporati nelle proteine dei mammiferi poiché sono gli unici codificati dal DNA La caratteristica strutturale comune a tutte le proteine è di essere dei polimeri lineari di amminoacidi Ciascuna proteina ha però una propria struttura tridimensionale che la rende capace di svolgere specifiche funzioni biologiche

4 Struttura degli amminoacidi Ogni amminoacido (eccetto la prolina) possiede un carbonio centrale, chiamato carbonio a, al quale sono legati quattro differenti gruppi: un gruppo amminico basico (-NH 2 ) un gruppo carbossilico acido (-COOH) un atomo di idrogeno (-H) una catena laterale, diversa per ciascun amminoacido (-R)

5

6 Gli aminoacidi Anatomia di un amminoacido. Ad eccezione della prolina e dei suoi derivati, tutti gli amminoacidi che si trovano comunemente nelle proteine possiedono questo tipo di struttura.

7 Tutti gli amminoacidi (tranne la glicina) hanno l atomo di carbonio a legato a quattro gruppi diversi: il carbonio a (asimmetrico) è quindi un centro chiralico o otticamente attivo Gli amminoacidi che hanno un centro asimmetrico nel carbonio a possono esistere in due forme speculari (D ed L) dette stereoisomeri, isomeri ottici o enantiomeri Le proteine contengono solo L- amminoacidi

8 Champe et al., Le basi della biochimica, Ed. Zanichelli

9 Quando un amminoacido viene sciolto in H 2 O diventa uno ione dipolare (zwitterione) che può agire sia come acido (donatore di protoni) che come base (accettore di protoni) Le sostanze che hanno questa doppia natura si definiscono anfòtere o anfoliti. Al ph fisiologico (valore attorno a 7,4) tutti gli amminoacidi hanno: il gruppo carbossilico dissociato, si forma lo ione negativo carbossilato (-COO - ) il gruppo amminico protonato (-NH 3 + )

10 Champe et al., Le basi della biochimica, Ed. Zanichelli

11 Oltre alla parte funzionale, comune a tutti, ogni amminoacido presenta un gruppo -R proprio La natura del gruppo -R conferisce proprietà diverse a ciascun amminoacido Punto isoeletrico (pi): è il valore di ph al quale un amminoacido ha carica netta 0 cioè è elettricamente neutro Il pi è una caratteristica di ogni singolo amminoacido

12 Nelle proteine quasi tutti i gruppi carbossilici e amminici degli amminoacidi sono uniti in legami peptidici Le proprietà di ciascun amminoacido dipendono dalle catene laterali (-R) che sono i gruppi funzionali responsabili della struttura, delle funzioni e della carica elettrica delle proteine Ciò che sostanzialmente determina il ruolo di un amminoacido in una proteina è la natura della catena laterale (-R)

13 Gli amminoacidi possono essere classificati in base alle proprietà delle loro catene laterali (-R), considerando la loro polarità o non polarità al ph fisiologico e quindi la tendenza ad interagire con l acqua Gli amminoacidi con catene laterali cariche, idrofiliche, sono generalmente esposti sulla superficie delle proteine I residui idrofobici, non polari, si trovano in genere all interno delle proteine, protetti dal contatto con l acqua

14 Amminoacidi con gruppi -R alifatici (non polari) Glicina, alanina, valina, leucina, isoleucina, metionina, prolina. Le loro catene laterali sono costituite da una catena idrocarburica satura: sono idrofobici. La metionina è uno dei due amminoacidi contenenti zolfo. La prolina ha una caratteristica struttura ad anello, formato dalla catena laterale e dal suo gruppo amminico, e differisce dagli altri amminoacidi perché contiene un gruppo imminico (R-NH-R ). E solo moderatamente polare.

15 Champe et al., Le basi della biochimica, Ed. Zanichelli

16 Amminoacidi con gruppi -R aromatici Fenilalanina, tirosina, triptofano Le loro catene laterali sono aromatiche Sono relativamente non polari (idrofobici) Possono partecipare tutti ad interazioni idrofobiche I gruppi -OH della tirosina ed NH del triptofano possono formare legami a idrogeno

17 Amminoacidi aromatici ionizzabile Non polare Non polare

18 Amminoacidi con gruppi -R polari, non carichi Serina, treonina, cisteina, asparagina, glutammina Sono polari ma in condizioni fisiologiche sono privi di carica elettrica. I loro gruppi -R sono più idrofilici di quelli degli AA non polari: contengono gruppi funzionali che formano legami idrogeno con l acqua. La polarità di serina e treonina è dovuta al gruppo ossidrilico (-OH), quella della cisteina al gruppo sulfidrilico (-SH), quella di asparagina e glutammina ai gruppi ammidici (-CONH 2 ), dove sia la porzione carbonilica che quella amminica possono entrare in gioco.

19

20 Amminoacidi con gruppi -R carich positivamente (basici) Lisina, arginina, istidina Sono accettori di protoni Le loro catene laterali, contenenti gruppi amminici, a ph fisiologico sono ionizzate ed hanno carica positiva L istidina è debolmente basica (pk a = 6,0) ed a ph fisiologico l amminoacido libero è in gran parte non ionizzato; quando si trova incorporata in una proteina può recare una carica positiva o essere neutra (proprietà molto importante!)

21 Struttura degli amminoacidi

22 Amminoacidi polari con carica Si dispongono all esterno della molecola proteica a contatto con il solvente * H

23 Amminoacidi con gruppi -R carichi negativamente (acidi) Acido aspartico, acido glutammico. Sono donatori di protoni. I gruppi carbossilici delle loro catene laterali, al ph fisiologico, sono ionizzati ed hanno carica negativa.

24 Amminoacidi con caratteristiche particolari

25 Champe et al., Le basi della biochimica, Ed. Zanichelli

26 Dal punto di vista biochimico gli amminoacidi si possono classificare in: Essenziali: quegli AA che una determinata specie non è in grado di sintetizzare (o li sintetizza in quantità non sufficienti *); - devono essere introdotti con la dieta - Phe, Val, Thr, Try, Ile, Met, Leu, Lys, His*, Arg* (* sono necessari nella dieta solo durante lo stadio giovanile di crescita) Non essenziali: quegli AA che una determinata specie è in grado di sintetizzare.

27 Glucogenici: tutti gli AA dal cui catabolismo otteniamo acido piruvico o un intermedio del ciclo di Krebs e che quindi possono essere utilizzati per riformare glucosio (Asp, Glu, Asn, Gln, His, Pro, Arg, Gly, Ala, Ser, Cys, Met, Val). Chetogenici: gli AA dal cui catabolismo otteniamo acetilcoa o acetoacetilcoa, che quindi non possono essere utilizzati per riformare glucosio (leucina e lisina). Sia chetogenici che glucogenici: dal loro catabolismo otteniamo acido piruvico o un intermedio del ciclo di Krebs, oltre che acetil CoA o acetoacetilcoa (Phe, Tyr, Trp, Ile, Thr).

28 La struttura delle proteine

29 Proteine globulari e fibrose Le proteine possono essere classificate in due gruppi principali: proteine globulari e fibrose. Proteine globulari Le catene polipeptidiche sono ripiegate ed assumono forma compatta, sferica o globulare. Contengono più tipi di struttura secondaria. Le proteine globulari comprendono : enzimi, proteine di trasporto (p.es. albumina, emoglobina), proteine regolatrici, immunoglobuline, etc.

30 Proteine Fibrose Hanno catene polipeptidiche disposte in lunghi fasci o in foglietti. In genere presentano un unico tipo di struttura secondaria. Sono insolubili in H 2 O per la presenza di elevate [ ] di AA idrofobici. Le catene polipeptidiche si associano in complessi sopramolecolari in modo da nascondere al solvente le superfici idrofobiche. Sono adatte a ruoli strutturali (p.es. a-cheratina, collageno).

31 P roteine Fibrose e Globulari Le proteine possono essere divise in due classi: Proteine Globulari Proteine fibrose 33

32 Le Proteine Fibrose Sono di origine animali, insolubili in acqua, Assolvono ruoli strutturali per lo più. Si dividono in tre categorie: Ø le cheratine Ø i collageni Ø le sete Formano tessuti protettivi Formano tessuti connettivi Come i bozzoli dei bachi da seta 34

33 Le Proteine Fibrose Cheratine e collageni hanno strutture ad elica, Le sete hanno struttura foglietto beta Gruppi apolari e ponti disolfuro tendono a conferire rigidità e insolubilità alle proteine fibrose. 35

34 Le Proteine Globulari Sono solubili in acqua, di forma quasi sferica, Assolvono funzioni biologiche. Possono essere: Enzimi Ormoni Proteine di trasporto Proteine di deposito

35 Le Proteine Globulari Contengono amminoacidi con catene polari e carichi, Sono strutture elicoidali. Mioglobina, proteina globulare che trasporta l ossigeno nei muscoli. Le interazioni sono dovute a ponti disolfuro, alla polarità o meno dei gruppi R, e alla capacità di formare legame ad idrogeno. 37

36 Protein a Proteine monomeriche molecole composte da una o più catene polipeptidiche Proteine multimerich e omomultimerich e (stesso tipo di polipeptide) eteromultimeric he (diversi tipi di polipeptidi)

37 Le proteine Fondamentali in ogni organismo, hanno molteplici ruoli: Componenti strutturali (collagene, tessuto connettivo, citoscheletro, pelle) Trasportatori (emoglobina, albumina) Trasmettitori di messaggi (ormoni peptidici) Catalizzatori di reazioni chimiche (enzimi) Difesa contro i patogeni (immunoglobuline) Controllo e regolazione dell espressione genica (istoni) Deposito di materiale (ferritina) Proteine dei sistemi contrattili (miosina) Es. Albumina: aumenta solubilita degli acidi grassi nel sangue Istoni: proteine nucleiche, formano la cromatina insieme al DNA

38 Molte malattie sono dovute al difettoso ripiegamento di una proteina Alcune patologie derivano da proteine che non sono in grado di raggiungere la loro struttura funzionale e che tendono a formare grossi aggregati (fibrille o forme amiloidi): Alzheimer, Parkinson, encefalopatia spongiforme, diabete di tipo II. In altri casi mutazioni puntiformi generano proteine che non raggiungono la loro locazione finale o che non sono più in grado di svolgere la loro funzione perché incapaci di legare i loro substrati. Fibrosi cistica: difetto nella proteina transmembrana che agisce come un canale degli ioni cloro nelle cellule epiteliali (CFTR: 1480 amminoacidi). La mutazione più comune è la delezione di un amminoacido (Phe 508) e la proteina mutata non si avvolge correttamente.

39 I 20 amminoacidi che si trovano comunemente nelle proteine sono uniti l uno all altro da legami peptidici. La sequenza lineare degli amminoacidi legati contiene l informazione necessaria a generare una proteina con una forma tridimensionale esclusiva. La struttura di una proteina è complessa: organizzazione in 4 livelli gerarchici (struttura primaria, secondaria, terziaria, quaternaria).

40 Il ripetersi di questa reazione dà luogo a polipeptidi e proteine. Gli amminoacidi possono unirsi tra loro con legami peptidici Estremità amminica

41 Proprieta del legame peptidico Planare, ha una forza intermedia tra il legame semplice ed il legame doppio. H H N R C H C O O OH + H N H R R C H O C O OH H R C C N C C H OH N H H

42

43 Champe et al., Le basi della biochimica, Ed. Zanichelli

44 peptidi, polipeptidi e proteine gli aminoacici sono uniti tra loro da legami peptidici energia di legame 100 Kcal/mol non vengono rotti con l ebollizione, ma solo con l azione prolungata di acidi o basi concentrate gli enzimi proteolitici sono in grado di rompere tali legami esistono sequenze lunghe da pochi aminoacidi a migliaia di aminoacidi con peso molecolare da 5 a 1000 KDalton (1 Dalton = 1/12 massa 12 C) # aminoacidi peptide (oligopeptide) <20 polipeptide <60 proteina >60

45 Polarità del legame peptidico Legame peptidico

46 Caratteristiche del legame peptidico Ha il carattere di un doppio legame parziale (è più corto di un legame singolo). E rigido e planare (non è possibile la rotazione attorno al legame tra il carbonio carbonilico e l azoto del legame peptidico). In genere è un legame di tipo trans, a causa di interferenze steriche tra i gruppi -R (i legami tra un Ca e un gruppo a-amminico o a-carbossilico possono ruotare!) I gruppi -C=O ed -NH del legame peptidico non hanno una carica elettrica (a differenza del gruppo a- amminico all estremità N-terminale ed a-carbossilico al C-terminale) ma sono polari e partecipano alla formazione di legami a idrogeno.

47 Denominazione dei peptidi L unione di più amminoacidi mediante legami peptidici produce una catena denominata polipeptide. Per convenzione, l estremità amminica libera della catena peptidica (estremità N) si scrive a sinistra mentre quella carbossilica libera (estremità C) si scrive a destra. Le sequenze di amminoacidi si leggono sempre dall estremità N all estremità C del peptide.

48 I singoli amminoacidi in una catena peptidica sono chiamati residui amminoacidici. In genere le proteine sono composte da residui amminoacidi. La struttura primaria di una proteina è definita dalla sequenza lineare dei residui amminoacidici.

49 proteine: struttura primaria riguarda la sequenza lineare degli aminoacidi struttura covalente (legami peptidici).sequenza di 2: 20 x 20 = 202 = 400 dipeptidi diversi.sequenza di 3: 20 x 20 x 20 = 203 = 8000 tripeptidi diversi.sequenza di 100: = 1.27x10130 peptidi diversi Di tutte queste possibili forme, l evoluzione ha scelto solo alcune, che rappresentano il risultato di una precisa selezione mirata ad ottimizzare la funzione della proteina

50 Struttura primaria La sequenza degli aminoacidi di una proteina si chiama struttura primaria. Nelle proteine, gli amminoacidi sono uniti covalentemente con legami peptidici. I legami peptidici sono legami ammidici tra il gruppo a- carbossilico (-COOH) di un amminoacido ed il gruppo a-amminico (-NH 2 ) dell amminoacido successivo. Durante la formazione del legame peptidico viene eliminata una molecola di acqua (reazione di condensazione).

51

52

53 La peculiare sequenza amminoacidica di una catena polipeptidica rappresenta la struttura primaria Lisozima

54 Per funzionare una proteina deve assumere una struttura tridimensionale precisa collagene mioglobina

55 Struttura secondaria Si riferisce alla conformazione locale della catena polipeptidica. E determinata da interazioni di tipo legame a idrogeno fra l ossigeno di un gruppo carbonilico del legame peptidico e l idrogeno del gruppo ammidico di un altro legame peptidico. Esistono due tipi di strutture secondarie: l a-elica ed il foglietto b.

56 proteine: struttura secondaria strutture dovute ad interazioni locali di tipo ponte-h a-elica ponte-h ogni 3,6 aminoacidi Il legame H si instaura tra l H dell azoto amidico e l O del gruppo carbonilico residui esterni alla spirale b-foglietto legami idrogeno fra aminoacidi di catene diverse foglietto piegato

57 Struttura secondaria (a-elica) E una struttura in cui la catena polipeptidica è avvolta a spirale. Le catene laterali degli amminoacidi (-R) si protendono verso l esterno rispetto all asse della spirale. L a-elica è stabilizzata da legami idrogeno intracatena che si formano tra l ossigeno carbonilico di un legame peptidico e l idrogeno ammidico di un legame peptidico situato a 4 residui di distanza sulla catena. La prolina interrompe l a-elica!!! Gli amminoacidi con catene laterali (-R ) voluminose o cariche possono interferire con la formazione dell a-elica.

58 Struttura secondaria: alfa elica Legame idrogeno Le proprietà idrofobiche o idrofiliche di una alfa-elica dipendono dalle catene laterali degli aa

59 Champe et al., Le basi della biochimica, Ed. Zanichelli

60 Ogni idrogeno ammidico è coinvolto in un legame idrogeno con il carbonile di un altro amminoacido

61 Legame H a-elica ponte-h ogni 3,6 aminoacidi Il legame H si instaura tra l H dell azoto amidico e l O del gruppo carbonilico

62 Esempio di proteina composta da alfa eliche

63 Struttura secondaria (foglietto b) E una struttura ripiegata, formata da 2 o più catene polipeptidiche (filamenti) quasi completamente distese. I legami a idrogeno sono intercatena e perpendicolari allo scheletro del peptide. Tutti i componenti di un legame peptidico partecipano alla formazione di legami a idrogeno. Tali legami si realizzano tra l ossigeno di un gruppo carbonilico di un legame peptidico e l idrogeno del gruppo ammidico di un altro legame peptidico appartenente ad un filamento diverso.

64 Struttura secondaria: foglietto beta

65 Nei foglietti pieghettati ci sono ancora dei legami ad idrogeno, ma stavolta sono tra fogli adiacenti (sheet)

66 Struttura secondaria (foglietto b) I polipeptidi che formano un foglietto b possono disporsi in modo parallelo o antiparallelo. Un foglietto b può essere formato anche da una singola catena polipeptidica ripiegata su se stessa: in tal caso i legami a H sono legami intracatena. La superficie dei foglietti b è pieghettata.

67 b Sheet Stabilizzata da legami H intercatena tra N-H & C=O 2 Orientations Parallel Not optimum H-bonds; less stable Anti-parallel Optimum H-bonds; more stable

68

69 Struttura secondari (sequenze non ripetitive) Queste strutture non ripetitive non sono casuali. Hanno una forma meno regolare rispetto all a-elica ed al foglietto b. La catena polipeptidica assume una conformazione ad anse ed avvolgimenti.

70 Una proteina tende a ripiegarsi in una configurazione compatta Cosa determina la forma di una proteina?

71 Struttura terziaria: struttura tridimensionale dell intero polipeptide che deriva dall interazione fra le catene laterali di aa anche distanti nella sequenza primaria

72 Struttura terziaria La struttura terziaria è la conformazione tridimensionale, avvolta, di una proteina. La struttura primaria di una catena polipeptidica determina la sua struttura terziaria. Quando una proteina si avvolge su se stessa, gli AA che si trovano in regioni lontane della sequenza polipeptidica possono ugualmente interagire tra loro.

73 La Struttura Terziaria La struttura terziaria è la conformazione tridimensionale assunta da una proteina. È stabilizzata da legami non covalenti come ponti idrogeno, interazioni idrofobiche tra amminoacidi non polari e legami ionici. È indispensabile per la sua attività biologica.

74 La Struttura Terziaria Ma anche da legami covalenti, sotto forma di ponti disolfuro fra due cisteine. Le interazioni che si instaurano a livello tridimensionale coinvolgono amminoacidi non necessariamente vicini nella struttura primaria. 80

75 ossidazione

76 proteine: struttura terziaria Determina la struttura 3D Stabilizzata da ponti S-S interazioni idrofobiche interazioni elettrostatiche (legami ionici) legami di Wan der Waals Suscettibile di denaturazione-rinaturazione ponti disolfuro R apolari verso l interno (eccetto in proteine integrali di membrana) R polari verso l esterno (solvatati da H2O)

77 Ponti S_S Come si forma una struttura terziaria? Interazioni idrofobiche Formazione di sali Legame idrogeno

78

79 La struttura terziaria è stabilizzata da 4 tipi di interazioni Interazioni idrofobiche: gli amminoacidi con catene laterali non polari tendono a localizzarsi all interno della molecola dove si associano con altri residui idrofobici. Interazioni ioniche: i gruppi con carica negativa (-COO - ) possono interagire con gruppi carichi positivamente (-NH 3 + ) Legami a idrogeno Legami disolfuro

80 Legame disolfuro E un legame covalente che deriva dalla ossidazione del gruppo sulfidrilico (-SH) di due residui di cisteina con formazione di un residuo di cistina. Le due cisteine possono essere molto lontane nella stessa catena polipeptidica o appartenere a due diverse catene. Essendo legami covalenti, i legami disolfuro concorrono a stabilizzare la struttura delle proteine impedendone la denaturazione nell ambiente extracellulare.

81 La Struttura Terziaria Quando le interazioni vengono meno, in presenza di elevate temperature, di ph non ottimale o di detergenti, la struttura tridimensionale viene persa, così la proteina va incontro a denaturazione, perdendo la sua attività biologica. la denaturazione a volte è un processo reversibile, e, allontanando l'agente denaturante, la proteina riprende spontaneamente la sua conformazione tridimensionale (che è dettata dalla struttura primaria). 87

82 Denaturazione e rinaturazione di una proteina RNasi nativa RNasi denaturata RNasi nativa La sequenza aminoacidica contiene tutta l informazione necessaria a specificare la forma tridimensionale di una proteina

83 Form between adjacent cysteine sulfhydryl groups (-S-H). Formation is oxidation, disulfide breaking is reduction. Denatured inactive ribonuclease

84 Champe et al., Le basi della biochimica, Ed. Zanichelli

85 Struttura terziaria di proteine Proteine: Fibrose Insolubili in acqua Utilizzate per tessuti connettivi Seta, collagene, cheratina Proteine globulari Solubili in acqua Usate per proteine cellulari Hanno un struttura complessa tridimensionale

86 Struttura terziaria (i domini) Le catene polipeptidiche formate da più di 200 amminoacidi in genere comprendono 2 o più domini, piccole unità compatte. I domini sono le unità strutturali e funzionali di una proteina. Ciascun dominio è una regione globulare, compatta, che si forma per la combinazione di più elementi strutturali secondari (a-eliche, foglietti b, sequenze non ripetitive). Strutturalmente, ciascun dominio è indipendente da altri domini della stessa catena polipeptidica. La struttura terziaria riguarda sia il ripiegamento di ciascun dominio sia la disposizione reciproca finale dei domini di un polipeptide.

87 Struttura terziaria di una proteina chinasi dominio proteico:parte di una catena polipeptidica che si può ripiegare indipendentemente in una struttura compatta stabil 2 domini con funzioni regolatorie Src 2 domini con funzioni catalitiche

88 Struttura quaternaria delle proteine Molte proteine NON sono un unica catena polipeptidica Sono combinazione di oggetti Aggregati di proteine (globulari o fibrose) Ci possono essere parecchie unità identiche Molte proteine inglobano un gruppo non proteico che viene utilizzato per compiere una funzione specifica e viene detto PROSTETICO

89 Struttura quaternaria Molte proteine sono costituite da una sola catena polipeptidica (proteine monomeriche). Alcune proteine sono costituite da 2 o più catene polipeptidiche (subunità) strutturalmente identiche o diverse (proteine multimeriche). L associazione di queste subunità costituisce la struttura quaternaria. Le subunità sono tenute insieme da interazioni non covalenti.

90 Struttura quaternaria: associazione di più catene polipeptidich

91 Alcune proteine contengono gruppi chimici diversi dagli amminoacidi Molti enzimi contengono solo amminoacidi e nessun altro gruppo chimico PROTEINE SEMPLICI. Altre proteine contengono, oltre agli amminoacidi, gruppi chimici funzionali permanentemente associati PROTEINE CONIUGATE. La parte non amminoacidica viene definita GRUPPO PROSTETICO.

92 proteine: struttura quaternaria associazioni non covalenti di più subunità ( emoglobina 4, aspartato transcarbamilasi 12, virus del mosaico del tabacco >2000) sede dell allosterismo (interazioni fra le subunità con conseguenze funzionali) Modello di enzima allosterico A induce una conformazione con maggiore affinità per S I diminuisce l affinità dell enzima per S

93 Carica e polarità di una catena polipeptidica La composizione in amminoacidi influenza le proprietà chimico-fisiche di una proteina. Proteine ricche in amminoacidi alifatici o aromatici sono relativamente poco solubili in acqua rispetto a quelle ricche in amminoacidi polari. Gli amminoacidi con catena laterale contenente gruppi acidi o basici conferiscono carica elettrica e capacità tampone ad una proteina.

94 In soluzione acquosa le proteine globulari hanno una struttura compatta: le catene laterali idrofobiche si trovano nella parte interna della molecola mentre i gruppi idrofilici in genere si trovano in superficie. In un ambiente non polare (lipidico), per esempio una membrana, la disposizione è opposta: catene laterali idrofiliche all interno, amminoacidi idrofobici sulla superficie della molecola.

95 Champe et al., Le basi della biochimica, Ed. Zanichelli

Struttura degli amminoacidi

Struttura degli amminoacidi AMMINOACIDI, PEPTIDI E PROTEINE AMMINOACIDI, PEPTIDI E PROTEINE AMMINOACIDI, PEPTIDI E PROTEINE Le proteine sono macromolecole costituite dall unione di un grande numero di unità elementari: gli amminoacidi

Dettagli

Formazione del legame peptidico:

Formazione del legame peptidico: Formazione del legame peptidico: Planare, ha una forza intermedia tra il legame semplice ed il legame doppio. 2^ lezione N R C C O O O + R N R C O C O O N R C C N C C O Ogni piano delle unità peptidiche

Dettagli

Le proteine sono polimeri lineari costituiti da unità base formate da oltre 40 amminoacidi. Possono assumere forme diverse a seconda della funzione

Le proteine sono polimeri lineari costituiti da unità base formate da oltre 40 amminoacidi. Possono assumere forme diverse a seconda della funzione Le proteine sono polimeri lineari costituiti da unità base formate da oltre 40 amminoacidi Hanno elevato PM Possono assumere forme diverse a seconda della funzione svolgono molteplici funzioni Tra le proteine

Dettagli

Fondamentali in ogni organismo, hanno molteplici ruoli:

Fondamentali in ogni organismo, hanno molteplici ruoli: Le proteine Fondamentali in ogni organismo, hanno molteplici ruoli: Componenti strutturali (collagene, tessuto connettivo, citoscheletro, pelle) Trasportatori (emoglobina, albumina) Trasmettitori di messaggi

Dettagli

LE PROTEINE -struttura tridimensionale-

LE PROTEINE -struttura tridimensionale- LE PROTEINE -struttura tridimensionale- Struttura generale di una proteina Ceruloplasmina Cosa sono??? Sono biopolimeri con forme ben definite. composti da molteplici amminoacidi, legati con legami peptidici

Dettagli

Amminoacidi. Struttura base di un a-amminoacido

Amminoacidi. Struttura base di un a-amminoacido Amminoacidi Struttura base di un a-amminoacido Forma non ionizzata Forma ionizzata, sale interno (zwitterione) Il carbonio α di tutti gli α-amminoacidi (tranne la glicina) è asimmetrico (=chirale) D-alanina

Dettagli

Struttura delle Proteine

Struttura delle Proteine Chimica Biologica A.A. 2010-2011 Struttura delle Proteine Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano Macromolecole Biologiche Struttura Proteine Proteine:

Dettagli

Proteine strutturali Sostegno meccanico Cheratina: costituisce i capelli Collagene: costituisce le cartilagini Proteine di immagazzinamento

Proteine strutturali Sostegno meccanico Cheratina: costituisce i capelli Collagene: costituisce le cartilagini Proteine di immagazzinamento Tipo Funzione Esempi Enzimi Accelerano le reazioni chimiche Saccarasi: posiziona il saccarosio in modo che possa essere scisso nelle due unità di glucosio e fruttosio che lo formano Ormoni Messaggeri chimici

Dettagli

AMMINOACIDI E PROTEINE

AMMINOACIDI E PROTEINE AMMINOACIDI E PROTEINE 1 AMMINOACIDI Gli amminoacidi sono composti organici composti da atomi di carbonio, idrogeno, ossigeno e azoto e in alcuni casi anche da altri elementi come lo zolfo. Gli amminoacidi

Dettagli

LE PROTEINE. SONO Polimeri formati dall unione di AMMINOACIDI (AA) Rende diversi i 20 AA l uno dall altro UN ATOMO DI C AL CENTRO

LE PROTEINE. SONO Polimeri formati dall unione di AMMINOACIDI (AA) Rende diversi i 20 AA l uno dall altro UN ATOMO DI C AL CENTRO LE PROTEINE SONO Polimeri formati dall unione di ATOMI DI C, H, N, O CHE SONO AMMINOACIDI (AA) Uniti tra loro dal Legame peptidico 20 TIPI DIVERSI MA HANNO STESSA STRUTTURA GENERALE CON Catene peptidiche

Dettagli

BIOMOLECOLE (PROTEINE)

BIOMOLECOLE (PROTEINE) BIOMOLECOLE (PROTEINE) Proteine: funzioni Strutturale (muscoli, scheletro, legamenti ) Contrattile (actina e miosina) Di riserva (ovoalbumina) Di difesa (anticorpi) Di trasporto (emoglobina, di membrana)

Dettagli

AMINOACIDI Struttura. Funzione. Classificazione. Proprietà

AMINOACIDI Struttura. Funzione. Classificazione. Proprietà AMINOACIDI Struttura Funzione Classificazione Proprietà 1 STRUTTURA Composti caratterizzati dalla presenza di un gruppo aminico (NH 2 ) e di un gruppo acido (COOH) legati al medesimo carbonio (C). In soluzione

Dettagli

sono le unità monomeriche che costituiscono le proteine hanno tutti una struttura comune

sono le unità monomeriche che costituiscono le proteine hanno tutti una struttura comune AMINO ACIDI sono le unità monomeriche che costituiscono le proteine sono 20 hanno tutti una struttura comune sono asimmetrici La carica di un amino acido dipende dal ph Classificazione amino acidi Glicina

Dettagli

Struttura degli Amminoacidi

Struttura degli Amminoacidi Amminoacidi Struttura degli Amminoacidi Amminoacido (o α-amminoacido): molecola che possiede un gruppo amminico primario (-NH 2 ) come sostituente dell atomo di carbonio α, e un gruppo carbossilico acido

Dettagli

COMPOSTI AZOTATI. derivanti dall ammoniaca AMMINE. desinenza -INA AMMIDE

COMPOSTI AZOTATI. derivanti dall ammoniaca AMMINE. desinenza -INA AMMIDE COMPOSTI AZOTATI derivanti dall ammoniaca AMMINE desinenza -INA AMMIDE ANCORA AMMIDI RISONANZA A M M I D I Il legame ammidico ha parziale carattere di doppio legame per la seguente risonanza: Ammidi H

Dettagli

AMMINO ACIDI. L equilibrio è regolato dal ph

AMMINO ACIDI. L equilibrio è regolato dal ph AMMINO ACIDI AMMINO ACIDI Amminoacido: un composto difunzionale che contiene nell ambito della stessa molecola una funzione amminica -NH 2 e una funzione carbossilica -COOH α-ammino acido: I due gruppi

Dettagli

Formula generale di un amminoacido

Formula generale di un amminoacido Formula generale di un amminoacido Gruppo carbossilico Gruppo amminico Radicale variabile che caratterizza i singoli amminoacidi Le catene laterali R degli amminoacidi di distinguono in: Apolari o idrofobiche

Dettagli

lezione Prof. Spina miliardi di anni fa l universo comparve sotto forma di eruzioni

lezione Prof. Spina miliardi di anni fa l universo comparve sotto forma di eruzioni Biochimica Matricole dispari 1 1^ lezione Prof. Spina LA BIOCHIMICA 15 20 miliardi di anni fa l universo comparve sotto forma di eruzioni d l f d inimmaginabili di particele subatomiche ricche di energia

Dettagli

scaricato da I peptidi risultano dall unione di due o più aminoacidi mediante un legame COVALENTE

scaricato da  I peptidi risultano dall unione di due o più aminoacidi mediante un legame COVALENTE Legame peptidico I peptidi risultano dall unione di due o più aminoacidi mediante un legame COVALENTE tra il gruppo amminico di un aminoacido ed il gruppo carbossilico di un altro. 1 Catene contenenti

Dettagli

Amminoacidi Peptidi Proteine

Amminoacidi Peptidi Proteine Amminoacidi Peptidi Proteine Amminoacidi-Peptidi-Proteine Amminoacidi: Struttura generale COOH H NH 2 Centro chiralico Stereoisomeri: composti con la stessa connessione tra gli atomi, ma con una differente

Dettagli

LE PROTEINE: POLIMERI COSTITUITI DA 20 TIPI DI MONOMERI, I 20 AMINOACIDI

LE PROTEINE: POLIMERI COSTITUITI DA 20 TIPI DI MONOMERI, I 20 AMINOACIDI LE PROTEINE: POLIMERI OSTITUITI DA 20 TIPI DI MONOMERI, I 20 AMINOAIDI OGNI PROTEINA PUO ESSERE FORMATA DA MOLTE DEINE O ENTINAIA DI AMINOAIDI E SI LEGANO A FORMARE UNA ATENA NON RAMIFIATA La catena di

Dettagli

Funzioni delle proteine

Funzioni delle proteine Funzioni delle proteine ENZIMI Proteine di trasporto Proteine di riserva Proteine contrattili o motili Proteine strutturali Proteine di difesa Proteine regolatrici Proteine di trasporto Emoglobina Lipoproteine

Dettagli

AMMINOACIDI. Gli amminoacidi si distinguono in base alla diversità della catena laterale R in ciascuno di essi.

AMMINOACIDI. Gli amminoacidi si distinguono in base alla diversità della catena laterale R in ciascuno di essi. AMMINOACIDI Gli amminoacidi sono composti polifunzionali, infatti essi presentano sia un gruppo carbossilico, che conferisce loro caratteristiche acide, sia un gruppo amminico, che conferisce loro caratteristiche

Dettagli

scaricato da www.sunhope.it Proteine semplici costituite dai soli amminoacidi

scaricato da www.sunhope.it Proteine semplici costituite dai soli amminoacidi Proteine semplici costituite dai soli amminoacidi Proteine coniugate costituite dagli amminoacidi + porzioni di natura non amminoacidica dette GRUPPI PROSTETICI Le Proteine coniugate prive del gruppo prostetico

Dettagli

AMMINOACIDI E PROTEINE

AMMINOACIDI E PROTEINE AMMINOACIDI E PROTEINE Vengono chiamate amminoacidi quelle molecole organiche in cui sono contemporaneamente presenti sia un gruppo acido carbossilico -COOH che un gruppo amminico -NH2. Le proteine, a

Dettagli

Biochimica. studio della vita a livello molecolare

Biochimica. studio della vita a livello molecolare Biochimica studio della vita a livello molecolare studio della composizione molecolare dei sistemi viventi studio delle reazioni chimiche cui vanno incontro i sistemi viventi ALCUNI QUESITI DELLA BIOCHIMICA

Dettagli

Vittoria Patti MACROMOLECOLE BIOLOGICHE. 4. proteine

Vittoria Patti MACROMOLECOLE BIOLOGICHE. 4. proteine Vittoria Patti MACROMOLECOLE BIOLOGICHE 4. proteine 1 Funzioni principali delle proteine funzione cosa significa esempi ENZIMATICA STRUTTURALE TRASPORTO MOVIMENTO DIFESA IMMUNITARIA ORMONALE catalizzare

Dettagli

amminico è legato all atomo di carbonio immediatamente adiacente al gruppo carbonilico e hanno la seguente

amminico è legato all atomo di carbonio immediatamente adiacente al gruppo carbonilico e hanno la seguente Gli amminoacidi naturali sono α-amminoacidi : il gruppo amminico è legato all atomo di carbonio immediatamente adiacente al gruppo carbonilico e hanno la seguente formula generale: gruppo funzionale carbossilico

Dettagli

α-amminoacidi O α O α R CH C O - NH 3 forma ionizzata sale interno (zwitterione) OH NH 2 forma non ionizzata (non esistente in realtà)

α-amminoacidi O α O α R CH C O - NH 3 forma ionizzata sale interno (zwitterione) OH NH 2 forma non ionizzata (non esistente in realtà) Amminoacidi 2 forma non ionizzata (non esistente in realtà) 3 forma ionizzata sale interno (zwitterione) In soluzione acquosa c'è equilibrio tra tre forme 3 forma cationica p molto acidi 3 forma zwitterionica

Dettagli

Amminoacidi. Struttura base di un a-amminoacido

Amminoacidi. Struttura base di un a-amminoacido Amminoacidi Struttura base di un a-amminoacido Forma non ionizzata Forma ionizzata, sale interno (zwitterione) Il carbonio α di tutti gli α-amminoacidi (tranne la glicina) è asimmetrico (=chirale) D-alanina

Dettagli

MACROMOLECOLE. Polimeri (lipidi a parte)

MACROMOLECOLE. Polimeri (lipidi a parte) MACROMOLECOLE Monomeri Polimeri (lipidi a parte) Le caratteristiche strutturali e funzionali di una cellula o di un organismo sono determinate principalmente dalle sue proteine. Ad esempio: Le proteine

Dettagli

Caratteristiche generali

Caratteristiche generali AMMINOACIDI Gli amminoacidi sono le unità costruttive (building blocks) delle proteine. Come dice il termine, gli amminoacidi naturali sono costituiti da un gruppo amminico (-NH 2 ) e da un gruppo carbossilico

Dettagli

Composti organici. I composti organici. Atomi e molecole di carbonio. Atomi e molecole di carbonio. Gruppi funzionali. Isomeri

Composti organici. I composti organici. Atomi e molecole di carbonio. Atomi e molecole di carbonio. Gruppi funzionali. Isomeri I composti organici Atomi e molecole di carbonio Carboidrati Lipidi Proteine Acidi nucleici Composti organici Materiale composto da biomolecole - Formate in buona parte da legami ed anelli di carbonio.

Dettagli

Biochimica. studio della vita a livello molecolare

Biochimica. studio della vita a livello molecolare Biochimica studio della vita a livello molecolare studio della composizione molecolare dei sistemi viventi studio delle reazioni chimiche cui vanno incontro i sistemi viventi ALCUNI QUESITI DELLA BIOCHIMICA

Dettagli

a) un movimento contro gradiente di concentrazione che utilizza fonti primarie di energia

a) un movimento contro gradiente di concentrazione che utilizza fonti primarie di energia 1. Quale considerazione sulla struttura primaria di una proteina è vera? a) è caratteristica delle proteine insolubili b) i ponti S-S la stabilizzano c) i ponti H la stabilizzano d) la proteina assume

Dettagli

Introduzione alla biologia della cellula. Lezione 2 Le biomolecole

Introduzione alla biologia della cellula. Lezione 2 Le biomolecole Introduzione alla biologia della cellula Lezione 2 Le biomolecole Tutte le molecole contenute nelle cellule sono costituite da composti del carbonio Zuccheri Lipidi Proteine Acidi nucleici Polimeri Sono

Dettagli

Le proteine. Sono polimeri di amminoacidi dispos$ in sequenza. Due amminoacidi si legano tra loro formando un legame pep-dico.

Le proteine. Sono polimeri di amminoacidi dispos$ in sequenza. Due amminoacidi si legano tra loro formando un legame pep-dico. Le proteine Sono polimeri di amminoacidi dispos$ in sequenza. Due amminoacidi si legano tra loro formando un legame pep-dico. Cur$s et al. Invito alla biologia.blu Zanichelli editore 2011 1 Struttura e

Dettagli

moli OH - /mole amminoacido

moli OH - /mole amminoacido ) ) Di seguito è riportata la curva di titolazione di un amminoacido. Osservando il grafico: a) stabilire il valore dei pka dell aminoacido b) calcolare il valore del pi e individuarlo sul grafico. c)

Dettagli

La chimica della pelle

La chimica della pelle La chimica della pelle 1 Gli amminoacidi Queste unità hanno la particolare caratteristica di contenere nella stessa molecola un gruppo acido (- COOH) ed uno basico (- NH 2 ), legati tra loro attraverso

Dettagli

TUTORATO DI BIOLOGIA GENERALE PER BIOTECNOLOGIE ANNO 2018/2019

TUTORATO DI BIOLOGIA GENERALE PER BIOTECNOLOGIE ANNO 2018/2019 TUTORATO DI BIOLOGIA GENERALE PER BIOTECNOLOGIE ANNO 2018/2019 TUTOR DEL CORSO: ALBERTO VICENZI E-mail: alberto.vicenzi@student.unife.it LE MACROMOLECOLE Le macromolecole biologiche più importanti sono:

Dettagli

Aminoacidi. Struttura generale Sono 20 e formano le

Aminoacidi. Struttura generale Sono 20 e formano le Aminoacidi Struttura generale Sono 20 e formano le proteine. Oltre a questi ne esistono altri meno comuni Alcuni subiscono modificazioni dopo essere stati inseriti nelle proteine Altri stanno nell organismo

Dettagli

PROTEINE DEFINIZIONE:

PROTEINE DEFINIZIONE: Cap.4 Le PROTEINE DEFINIZIONE: Macromolecole formate di AA della serie L uniti tra loro da un legame peptidico. FUNZIONI DELLE PROTEINE Enzimi Proteine di riconoscimento Proteine di trasporto Proteine

Dettagli

Alcol + alcol etere R-OH + R -OH R-O-R + H 2 O Aldeide + alcol emiacetale R-CHO + R -OH R-CHOH-O-R Acido + Acido anidride R-COOH + R -COOH

Alcol + alcol etere R-OH + R -OH R-O-R + H 2 O Aldeide + alcol emiacetale R-CHO + R -OH R-CHOH-O-R Acido + Acido anidride R-COOH + R -COOH Nomenclatura AMIDI Alcol + alcol etere R-OH + R -OH R-O-R + H 2 O Aldeide + alcol emiacetale R-CHO + R -OH R-CHOH-O-R Acido + Acido anidride R-COOH + R -COOH R-CO-O-CO-R + H 2 O Alcol + Acido estere R-COOH

Dettagli

Schemi delle lezioni 1

Schemi delle lezioni 1 Schemi delle lezioni 1 Detti anche proteine sono i composti organici maggiormente presenti nelle cellule, dato che costituiscono circa il 50% del loro peso secco. Nell uomo adulto rappresentano circa

Dettagli

Protidi. Protidi 16/01/2019

Protidi. Protidi 16/01/2019 Protidi I protidi sono macromolecole costituite dall unione di amminoacidi tra loro. I protidi, a seconda del numero di amminoacidi che li costituiscono, sono distinti in: oligopeptidi, formati da pochi

Dettagli

Proteine: struttura e funzione

Proteine: struttura e funzione Proteine: struttura e funzione Prof.ssa Flavia Frabetti PROTEINE dal greco al 1 posto costituiscono il 50% circa del peso secco della maggior parte degli organismi viventi composti quaternari (C, H, O,

Dettagli

Aminoacidi. Gli α-aminoacidi sono molecole con almeno due gruppi funzionali legati al carbonio α

Aminoacidi. Gli α-aminoacidi sono molecole con almeno due gruppi funzionali legati al carbonio α Aminoacidi Gli α-aminoacidi sono molecole con almeno due gruppi funzionali legati al carbonio α 1 Isomeria ottica Tutti gli AA, esclusa la glicina, presentano almeno un atomo di carbonio asimmetrico, il

Dettagli

Chimotripsina Una proteina globulare. Glicina Un amminoacido

Chimotripsina Una proteina globulare. Glicina Un amminoacido Chimotripsina Una proteina globulare Glicina Un amminoacido - In teoria un numero enorme di differenti catene polipeptidiche potrebbe essere sintetizzato con i 20 amminoacidi standard. 20 4 = 160.000 differenti

Dettagli

Percorsi di chimica organica - Soluzioni degli esercizi del testo

Percorsi di chimica organica - Soluzioni degli esercizi del testo ercorsi di chimica organica - Soluzioni degli esercizi del testo AITL 14 1. Il prefisso α negli α-amminoacidi sta ad indicare che il gruppo amminico, - 2, si trova sul carbonio alfa (carbonio legato al

Dettagli

Proprietà comuni. Il gruppo α-carbossilico b è un acido più forte del gruppo carbossilico degli acidi alifatici

Proprietà comuni. Il gruppo α-carbossilico b è un acido più forte del gruppo carbossilico degli acidi alifatici Gli aminoacidi Proprietà comuni Il gruppo α-carbossilico b è un acido più forte del gruppo carbossilico degli acidi alifatici paragonabili Il gruppo α-aminico è un acido più forte (o una base più debole

Dettagli

La chimica della vita si basa sui composti del carbonio e dipende da reazioni chimiche che avvengono in soluzione acquosa.

La chimica della vita si basa sui composti del carbonio e dipende da reazioni chimiche che avvengono in soluzione acquosa. La chimica della vita si basa sui composti del carbonio e dipende da reazioni chimiche che avvengono in soluzione acquosa. Le cellule contengono 4 famiglie principali di piccole molecole organiche: Amminoacidi

Dettagli

Le biomolecole si trovano negli organismi viventi

Le biomolecole si trovano negli organismi viventi Le biomolecole si trovano negli organismi viventi I viventi sono formati per la maggior parte da acqua e molecole, chiamate biomolecole. Le biomolecole sono sostanze contenenti carbonio. I composti del

Dettagli

STRUTTURA E FUNZIONE DELLE PROTEINE

STRUTTURA E FUNZIONE DELLE PROTEINE STRUTTURA E FUNZIONE DELLE PROTEINE PROTEINE 50% DEL PESO SECCO DI UNA CELLULA STRUTTURA intelaiatura citoscheletrica strutture cellulari impalcatura di sostegno extracellulare FUNZIONE catalisi enzimatica

Dettagli

CAP.6 Voet Voet.Pratt CAP.5 GARRETT CAP.3 DEVLIN. Le proteine: struttura tridimensionale

CAP.6 Voet Voet.Pratt CAP.5 GARRETT CAP.3 DEVLIN. Le proteine: struttura tridimensionale CAP.6 Voet Voet.Pratt CAP.5 GARRETT CAP.3 DEVLIN Le proteine: struttura tridimensionale Il nostro sistema vita è basato su una rete di interazioni molecolari Molecular network system in a cell (From ExPASy

Dettagli

SOLUZIONI DEGLI ESERCIZI

SOLUZIONI DEGLI ESERCIZI Niccolò Taddei - Biochimica apitolo 3 GLI AMMINAOIDI E LE PROTEINE DEGLI ESERIZI 1 Le proteine costituiscono una grande famiglia di biomolecole molto diffuse in natura; sono costituite da unità strutturali

Dettagli

30/10/2015 LIVELLI DI ORGANIZZAZIONE STRUTTURALE DELLE PROTEINE

30/10/2015 LIVELLI DI ORGANIZZAZIONE STRUTTURALE DELLE PROTEINE LIVELLI DI ORGANIZZAZIONE STRUTTURALE DELLE PROTEINE 1 CARATTERISTICHE DEL LEGAME PEPTIDICO lunghezza intermedia tra un legame singolo e uno doppio ibrido di risonanza per il parziale carattere di doppio

Dettagli

Gli amminoacidi ( 20) hanno proprietà strutturali comuni

Gli amminoacidi ( 20) hanno proprietà strutturali comuni Quando nel XIX secolo gli scienziati rivolsero per la prima volta la loro attenzione alla nutrizione, in breve tempo scoprirono che i prodotti naturali contenenti azoto erano essenziali per la nutrizione

Dettagli

I PROTIDI ASPETTI GENERALI

I PROTIDI ASPETTI GENERALI I PROTIDI ASPETTI GENERALI I PROTIDI O PROTEINE SONO SOSTANZE ORGANICHE AZOTATE, DI STRUTTURA MOLTO COMPLESSA, PRESENTI IN OGNI FORMA DI VITA. LE PROTEINE SONO COMPOSTI QUATERNARI, OSSIA SONO FORMATE DA

Dettagli

Jay Phelan, Maria Cristina Pignocchino. Scopriamo la biologia

Jay Phelan, Maria Cristina Pignocchino. Scopriamo la biologia Jay Phelan, Maria Cristina Pignocchino Scopriamo la biologia Capitolo 2 Le molecole della vita 3 1. Le classi delle biomolecole Le biomolecole sono composti organici formati da: catene di atomi di carbonio,

Dettagli

La struttura delle proteine

La struttura delle proteine La struttura delle proteine Funzioni delle proteine Strutturali Contrattili Trasporto Riserva Ormonali Enzimatiche Protezione Struttura della proteina Struttura secondaria: ripiegamento locale della catena

Dettagli

20/12/ tipi di amino acidi: parecchie combinazioni

20/12/ tipi di amino acidi: parecchie combinazioni 20 tipi di amino acidi: parecchie combinazioni Le proteine sono polimeri di amino acidi 1 SEMPLICI : costituite solo da amino acidi PROTEINE CONIUGATE Apoproteina = parte proteica Gruppo prostetico = parte

Dettagli

LE PROTEINE SINTESI PROTEICA. funzione delle proteine nel nostro organismo

LE PROTEINE SINTESI PROTEICA. funzione delle proteine nel nostro organismo LE PTEIE Le proteine sono sostanze organiche presenti in tutte le cellule di tutti gli organismi viventi Le proteine sono costituite da,,,, (S) Struttura delle proteine Le proteine sono macromolecole (

Dettagli

PROTEINE dal greco al 1 posto costituiscono il 50% circa del peso secco della maggior parte degli organismi viventi

PROTEINE dal greco al 1 posto costituiscono il 50% circa del peso secco della maggior parte degli organismi viventi POTEINE dal greco al 1 posto costituiscono il 50% circa del peso secco della maggior parte degli organismi viventi composti quaternari (,, O, N) macromolecole organiche, molecole informazionali, polimeri

Dettagli

Le proteine o protidi

Le proteine o protidi Le proteine o protidi A differenza di glucidi e lipidi (che di regola non contengono azoto), le proteine sono composti organici quaternari, che possiedono sempre atomi di azoto nella loro molecola (quasi

Dettagli

Gli amminoacidi Il legame peptidico Motivi strutturali classificazione, architettura topologia delle strutture tridimensionali di proteine.

Gli amminoacidi Il legame peptidico Motivi strutturali classificazione, architettura topologia delle strutture tridimensionali di proteine. Struttura di proteine Gli amminoacidi Il legame peptidico Motivi strutturali classificazione, architettura topologia delle strutture tridimensionali di proteine. Correlazioni struttura-funzione Gli amminoacidi

Dettagli

Aminoacidi e Proteine. Relazione Struttura-funzioni e fonti alimentari

Aminoacidi e Proteine. Relazione Struttura-funzioni e fonti alimentari Aminoacidi e Proteine. Relazione Struttura-funzioni e fonti alimentari Proteine corporee 40% nel muscolo di cui 65% miosina ed actina per locomozione e lavoro muscolare, ma anche come fonte di amminoacidi

Dettagli

Le proteine rappresentano gli elementi strutturali e funzionali più importanti nei sistemi viventi. Qualsiasi processo vitale dipende da questa

Le proteine rappresentano gli elementi strutturali e funzionali più importanti nei sistemi viventi. Qualsiasi processo vitale dipende da questa Gli amminoacidi Le proteine rappresentano gli elementi strutturali e funzionali più importanti nei sistemi viventi. Qualsiasi processo vitale dipende da questa classe di molecole: p. es. la catalisi delle

Dettagli

Amminoacidi (1) Acido 2-ammino propanoico (acido α-ammino propionico) α * NH 2 CH 3 COOH

Amminoacidi (1) Acido 2-ammino propanoico (acido α-ammino propionico) α * NH 2 CH 3 COOH Amminoacidi (1) Presentano un gruppo amminico ( N 2 ) ed un gruppo carbossilico ( OO) nella stessa molecola 3 N 2 α * OO Acido 2-ammino propanoico (acido α-ammino propionico) STPA-himica Organica 1 Amminoacidi

Dettagli

Biologia. Lezione 09/11/2010

Biologia. Lezione 09/11/2010 Biologia Lezione 09/11/2010 Tutte le molecole contenute nelle cellule sono costituite da composti del carbonio Zuccheri Lipidi Proteine Acidi nucleici Polimeri Sono macromolecole formate da unità (MONOMERI)

Dettagli

Parametri dell α-elica. residui/giro 3.6. passo dell elica

Parametri dell α-elica. residui/giro 3.6. passo dell elica GRAFICO DI RAMACHANDRAN Parametri dell α-elica residui/giro 3.6 spazio/residuo passo dell elica 1.5 Å 5.4 Å 1 L α-elica può essere destabilizzata da interazioni tra i gruppi R: repulsione/attrazione elettrostatica

Dettagli

Proteine. Enzimi Fattori di Trascrizione Proteine di Membrana (trasportatori, canale, recettori di membrana)

Proteine. Enzimi Fattori di Trascrizione Proteine di Membrana (trasportatori, canale, recettori di membrana) Proteine Enzimi Fattori di Trascrizione Proteine di Membrana (trasportatori, canale, recettori di membrana) Ormoni e Fattori di crescita Anticorpi Trasporto Trasporto (emoglobina, LDL, HDL.) Fenotipo Proteine

Dettagli

PROTIDI: LE PROTEINE E GLI AMMINOACIDI

PROTIDI: LE PROTEINE E GLI AMMINOACIDI PROTIDI: LE PROTEINE E GLI AMMINOACIDI GLI AMMINOACIDI Struttura generica di un amminoacido. R rappresenta un gruppo laterale specifico di ogni amminoacido. In chimica, gli amminoacidi (impropriamente

Dettagli

Corso di Laurea in Farmacia Insegnamento di CHIMICA BIOLOGICA. Angela Chambery Lezione 5

Corso di Laurea in Farmacia Insegnamento di CHIMICA BIOLOGICA. Angela Chambery Lezione 5 Corso di Laurea in Farmacia Insegnamento di CHIMICA BIOLOGICA Angela Chambery Lezione 5 Il legame peptidico Concetti chiave: In un polipeptide gli amminoacidi sono uniti dai legami peptidici. Il legame

Dettagli

STRUTTURA E FUNZIONE DELLE PROTEINE

STRUTTURA E FUNZIONE DELLE PROTEINE STRUTTURA E FUNZIONE DELLE PROTEINE PROTEINE 50% DEL PESO SECCO DI UNA CELLULA STRUTTURA intelaiatura citoscheletrica strutture cellulari impalcatura di sostegno extracellulare FUNZIONE catalisi enzimatica

Dettagli

Amminoacidi (1) Acido 2-ammino propanoico (acido α-ammino propionico) α * NH 2 CH 3 COOH. ) ed un gruppo carbossilico ( COOH) nella stessa molecola

Amminoacidi (1) Acido 2-ammino propanoico (acido α-ammino propionico) α * NH 2 CH 3 COOH. ) ed un gruppo carbossilico ( COOH) nella stessa molecola Amminoacidi (1) Presentano un gruppo amminico ( NH 2 ) ed un gruppo carbossilico ( COOH) nella stessa molecola CH 3 NH 2 C H α * COOH Acido 2-ammino propanoico (acido α-ammino propionico) 1 Amminoacidi

Dettagli

Formazione. di un peptide.

Formazione. di un peptide. Formazione. di un peptide. Quando due aminoacidi si uniscono si forma un legame peptidico. In questo caso il dipeptide glicilalanina (Gly-Ala) viene mostrato come se si stesse formando in seguito a eliminazione

Dettagli

Il legame peptidico è un ibrido di risonanza: scaricato da

Il legame peptidico è un ibrido di risonanza: scaricato da Il legame peptidico è un ibrido di risonanza: - O ha una parziale carica negativa - - la coppia di e - del legame C=O è parzialmente spostata verso O - N ha una parziale carica positiva + - la coppia di

Dettagli

LE MACROMOLECOLE BIOLOGICHE Le cellule contengono 4 famiglie principali di molecole organiche:

LE MACROMOLECOLE BIOLOGICHE Le cellule contengono 4 famiglie principali di molecole organiche: LEZIONE n 1 LE MACROMOLECOLE BIOLOGICHE Le cellule contengono 4 famiglie principali di molecole organiche: macromolecole Macromolecole macromolecole I componenti chimici di una cellula -Le macromolecole

Dettagli

PROTEINE: STRUTTURA, ESEMPI E FUNZIONAMENTO TUTORATO 1 GIULIANO F. PATANÈ COLLEGIO A. VOLTA

PROTEINE: STRUTTURA, ESEMPI E FUNZIONAMENTO TUTORATO 1 GIULIANO F. PATANÈ COLLEGIO A. VOLTA PROTEINE: STRUTTURA, ESEMPI E FUNZIONAMENTO TUTORATO 1 GIULIANO F. PATANÈ COLLEGIO A. VOLTA PROTEINE Una proteina è basilarmente una catena polipeptidica (che in termini chimici può anche essere definita

Dettagli

Le molecole biologiche. Sylvia S. Mader Immagini e concetti della biologia Zanichelli editore, 2012

Le molecole biologiche. Sylvia S. Mader Immagini e concetti della biologia Zanichelli editore, 2012 Le molecole biologiche 1 Il carbonio è l elemento di base delle biomolecole Una cellula batterica può contenere fino a 5000 tipi diversi di composti organici. 2 Il carbonio deve acquistare quattro elettroni

Dettagli

Chimica generale e inorganica Studia gli elementi e i composti inorganici

Chimica generale e inorganica Studia gli elementi e i composti inorganici Chimica generale e inorganica Studia gli elementi e i composti inorganici Chimica organica Studia i composti organici, cioè composti che contengono atomi di carbonio Biochimica È lo studio della chimica

Dettagli

Modulo 2. Struttura e funzione delle proteine

Modulo 2. Struttura e funzione delle proteine Modulo 2 Struttura e funzione delle proteine Le proteine e i suoi costituenti Macromolecole più abbondanti e varie delle cellule - sbalorditiva diversità Ruolo primario nelle cellule e nell organismo (da

Dettagli

CHIMICA BIOLOGICA. Seconda Università degli Studi di Napoli. DiSTABiF. Antimo Di Maro. Lezione 3. Corso di Laurea in Scienze Biologiche

CHIMICA BIOLOGICA. Seconda Università degli Studi di Napoli. DiSTABiF. Antimo Di Maro. Lezione 3. Corso di Laurea in Scienze Biologiche Seconda Università degli Studi di Napoli DiSTABiF Corso di Laurea in Scienze Biologiche Insegnamento di CHIMICA BIOLOGICA Antimo Di Maro Anno Accademico 2016-2017 Lezione 3 GLI AMMINOACIDI PROTEICI Le

Dettagli

Amminoacidi Peptidi Proteine

Amminoacidi Peptidi Proteine Amminoacidi Peptidi Proteine Amminoacidi: Struttura generale COOH H NH 2 Centro chiralico Gli amminoacidi nelle molecole proteiche sono tutti stereoisomeri L IDROFOBOCI IDROFOBOCI IDROFILICI Secondo gruppo

Dettagli

Le macromolecole dei tessuti - 1

Le macromolecole dei tessuti - 1 Le macromolecole dei tessuti - 1 Che cosa sono le proteine? Sono macromolecole complesse ad alta informazione Sono costituite da una o più catene polipeptidiche Ogni catena peptidica è composta da centinaia

Dettagli

LEZIONE 2 COMPOSTI DEL CARBONIO: MACROMOLECOLE:

LEZIONE 2 COMPOSTI DEL CARBONIO: MACROMOLECOLE: LEZIONE 2 COMPONENTI CHIMICI DELLA CELLULA ACQUA COMPOSTI DEL CARBONIO: MACROMOLECOLE: ZUCCHERI ACIDI GRASSI PROTEINE NUCLEOTIDI percentuale di abbondanza relativa I componenti chimici di una cellula organismi

Dettagli

L ACQUA E LE SUE PROPRIETÀ

L ACQUA E LE SUE PROPRIETÀ L ACQUA E LE SUE PROPRIETÀ L acqua è una sostanza indispensabile per tutte le forme di vita. Ogni molecola di acqua (H2O) è formata da due atomi di idrogeno e un atomo di ossigeno, uniti tramite due legami

Dettagli

Amminoacidi e proteine Dagli amminoacidi come building-blocks alla struttura quaternaria

Amminoacidi e proteine Dagli amminoacidi come building-blocks alla struttura quaternaria Corso di Laurea Magistrale in Ingegneria Biomedica Complementi di Chimica e Biochimica per le Tecnologie Biomediche Amminoacidi e proteine Dagli amminoacidi come building-blocks alla struttura quaternaria

Dettagli

Chimica Biologica A.A α-elica foglietto β reverse turn

Chimica Biologica A.A α-elica foglietto β reverse turn Chimica Biologica A.A. 2010-2011 α-elica foglietto β reverse turn Str. Secondaria sperimentalmente osservata: Si distinguono fondamentalmente tre tipi di strutture secondarie: α elica foglietto β reverse

Dettagli

Amminoacidi (1) Acido 2-ammino propanoico (acido α-ammino propionico) α * NH 2 CH 3 COOH

Amminoacidi (1) Acido 2-ammino propanoico (acido α-ammino propionico) α * NH 2 CH 3 COOH Amminoacidi (1) Presentano un gruppo amminico ( N 2 ) ed un gruppo carbossilico ( COO) nella stessa molecola C 3 N 2 C α * COO Acido 2-ammino propanoico (acido α-ammino propionico) STPA-Chimica Organica

Dettagli

COMPORTAMENTO ANFOTERO DEGLI AA

COMPORTAMENTO ANFOTERO DEGLI AA Proprietà acido-basiche degli aminoacidi FORMA NON IONICA Non esiste a nessun valore di ph FORMA ZWITTERIONICA È la forma prevalente a ph 7 COMPORTAMENTO ANFOTERO DEGLI AA CARICA NETTA +1 CARICA NETTA

Dettagli

Amminoacidi - Peptidi - Proteine. Emoglobina

Amminoacidi - Peptidi - Proteine. Emoglobina Amminoacidi - Peptidi - Proteine Emoglobina 1 Emoglobina Gli amminoacidi sono le sostanze di base che costituiscono le proteine. Ogni proteina è caratterizzata da una precisa sequenza di mattoni di amminoacidi.

Dettagli

9) Scrivere un disaccaride formato dal β-d-galattosio e dall α-d-n-acetil-glucosammina legati da un legame glicosidico β(1-4).

9) Scrivere un disaccaride formato dal β-d-galattosio e dall α-d-n-acetil-glucosammina legati da un legame glicosidico β(1-4). CARBOIDRATI - AMMINOACIDI - PROTEINE 1) Scrivere la proiezione di Fisher del D-ribosio e del D-glucosio. La lettera D a cosa si riferisce? Disegnare inoltre il disaccaride ottenuto dalla condensazione

Dettagli

FUNZIONI DELLE PROTEINE

FUNZIONI DELLE PROTEINE FUNZIONI DELLE PROTEINE 1 CATALISI ENZIMATICA 2 TRASPORTO E DEPOSITO 3 MOVIMENTO COORDINATO 4 SUPPORTO MECCANICO 5 PROTEZIONE IMMUNITARIA 6 GENERAZIONE E TRASMISSIONE DELL IMPULSO NERVOSO 7 CONTROLLO DELLA

Dettagli

Capitolo 3 Le biomolecole

Capitolo 3 Le biomolecole apitolo 3 Le biomolecole I composti organici e i loro polimeri 3.1 La diversità molecolare della vita è basata sulle proprietà del carbonio Un atomo di carbonio può formare quattro legami covalenti. Questi

Dettagli

Il carbonio è l elemento di base delle biomolecole. Una cellula batterica può contenere fino a 5000 tipi diversi di composti organici.

Il carbonio è l elemento di base delle biomolecole. Una cellula batterica può contenere fino a 5000 tipi diversi di composti organici. Il carbonio è l elemento di base delle biomolecole Una cellula batterica può contenere fino a 5000 tipi diversi di composti organici. 1 Il carbonio deve acquistare quattro elettroni per essere stabile

Dettagli

le porzioni con strutture secondarie sono avvicinate e impaccate mediante anse e curve della catena. STRUTTURA TERZIARIA

le porzioni con strutture secondarie sono avvicinate e impaccate mediante anse e curve della catena. STRUTTURA TERZIARIA STRUTTURA TERZIARIA le porzioni con strutture secondarie sono avvicinate e impaccate mediante anse e curve della catena. Le proteine globulari dopo aver organizzato il proprio scheletro polipeptidico con

Dettagli

Chimica generale e inorganica Studia gli elementi e i composti inorganici

Chimica generale e inorganica Studia gli elementi e i composti inorganici Chimica generale e inorganica Studia gli elementi e i composti inorganici Chimica organica Studia i composti organici, cioè composti che contengono atomi di carbonio Biochimica È lo studio della chimica

Dettagli

Il legame peptidico è polare

Il legame peptidico è polare Scaricato da Il legame peptidico è polare SONO FAVORITE QUELLE CONFIGURAZIONI CHE CONSENTONO IL MAGGIOR NUMERO DI INTERAZIONI TRA LE PARTI DELLA CATENA POLIPEPTIDICA. A CAUSA DELLA POLARITA' DEL LEGAME

Dettagli