113 CAPITOLO 10: PROVE DI LABORATORIO CAPITOLO 10: PROVE DI LABORATORIO

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "113 CAPITOLO 10: PROVE DI LABORATORIO CAPITOLO 10: PROVE DI LABORATORIO"

Transcript

1 113 Questo capitolo tratta delle prove di laborario che servono per ricavare i parametri da introdurre nei modelli. Inizialmente vengono affrontate le condizioni al contorno, sia con riguardo alle azioni applicate che alle condizioni di drenaggio; in seguito vengono illustrati i tipi di prove ed i risultati delle prove di taglio diretto e delle prove di compressione cilindrica erroneamente chiamate prove triassiali. Condizioni di sollecitazione al contorno Le prove di laboratorio sui provini di terreno devono essere fatte nelle condizioni più controllabili possibile. Il provino viene appoggiato su una base alla quale vengono applicate delle sollecitazioni che possono essere di natura diversa: di tipo deformativo o tensionale. Sullo stesso provino si eseguono misure della risposta: si possono misurare forze o spostamenti. Gli spostamenti sono differenze di misure di lunghezza. CONTROLLO DEGLI SPOSTAMENTI: a tale campione può essere imposto uno spostamento δ e di conseguenza vengono misurati gli sforzi che si generano al suo interno. Figura 10.1 CONTROLLO DELLE FORZE (O DI PRESSIONE): al provino viene applicata una pressione p inserendo tra la struttura rigida e il campione una sorta di camera d aria; conosciamo il valore dello stato di pressione e possiamo misurarne le caratteristiche deformative. Figura 10.2 Il significato di queste due modalità di condotta delle prove è evidente se riportiamo in un grafico i risultati delle prove, rispettivamente in condizioni di controllo di carico ed in condizioni di controllo di spostamento. Con le prove condotte in condizioni di controllo di forze prendiamo un provino, andiamo ad incrementare le forze e misuriamo gli spostamenti. Quando viene raggiunto il carico massimo il campione si rompe bruscamente e la prova si interrompe. La prova edometrica è un esempio di prova eseguita con controllo di forza, nella quale la deformazione laterale è impedita. Figura 10.3 Con le prove eseguite in condizioni di controllo di spostamenti si mette il provino tra i piani di una pressa molto rigida e vengono imposti gli spostamenti mediante un motore passo passo che procede con una certa velocità. In questo caso si misura la forza che il campione oppone. Si vede in questo modo il comportamento del campione anche dopo aver raggiunto il valore massimo del carico. Dopo il valore massimo si riducono i carichi che il campione sopporta. Con questo tipo di prove si ottengono i grafici F δ con la parte discendente della curva. Figura 10.4

2 114 Condizioni di drenaggio nelle prove di laboratorio. Una parte importante delle prove di laboratorio è il controllo delle condizioni di drenaggio. Utilizziamo il seguente schema non preoccupandoci di come sono imposte le azioni al provino, ma poniamo la nostra attenzione all acqua, alla sua pressione ed al suo volume. Distinguiamo due tipi di prove: Figura PROVE IN CONDIZIONI DRENATE (D) Il rubinetto è aperto. u=0 I carichi sono applicati in modo tale che è possibile dissipare le pressioni interstiziali. V 0 C è una variazione di volume del campione, che misuro leggendo il livello dell acqua nella buretta. Posso sapere esattamente di quanto varia il volume del provino perché il campione è saturo S=1. 2. PROVE IN CONDIZIONI NON DRENATE (U) Il rubinetto è chiuso. u 0 Misuro al manometro le variazioni di pressione interstiziale. V=0 La variazione di volume è nulla. Riproduco in questo modo le condizioni iniziali di un processo di consolidazione, nel momento in cui applico i carichi. Da notare le lettere maiuscole che identificano il tipo di prova derivano dai vocaboli in Inglese D drained (drenata), U undrained (non drenata).

3 Tipi di prove. 115 Quelle che abbiamo visto sono le condizioni per le prove che generalmente vengono eseguite a carico dei campioni di terreno. Si possono sottoporre i campioni a prove che differiscono fra loro per gli stati di sollecitazione o deformazione applicati. Possiamo distinguere due classi di prove. 1. La prima classe di prove è caratterizzata dalla coincidenza fra gli assi principali delle tensioni e delle deformazioni e dall assenza di rotazione degli assi principali durante la prova. 2. La seconda classe di prove è caratterizzata dalla rotazione delle direzioni principali durante la prova e sono utilizzate principalmente per le misure di resistenza. Le presentiamo nel paragrafo delle prove di taglio. COMPRESSIONE TRIASSIALE VERA: provino cubico sollecitato sulle 3 facce con pressioni diverse σ a σ b σ c. COMPRESSIONE CILINDRICA TRIASSIALE erroneamente chiamata TRIASSIALE o TRIASSIALE CONVENZIONALE: σ b=σ c σ c. COMPRESSIONE SEMPLICE O MONOASSIALE : σ b=σ c=0, σ a 0 è un caso particolare della compressione cilindrica triassiale, è quella usata per il cls e l acciaio.

4 116 STATO PIANO DI COMPRESSIONE : σ c=0. COMPRESSIONE ISOTROPA : σ a=σ b=σ c. Per quanto riguarda le prove a controllo di pressione si possono avere: COMPRESSIONE EDOMETRICA : ɛ a 0 ɛ r=0. COMPRESSIONE DI DEFORMAZIONE PIANA : ɛ a ɛ b ɛ c=0. Tutte queste prove presentano uno svantaggio sostanziale; durante la prova stessa le direzioni principali lungo le quali vengono applicati gli sforzi non variano e quindi le tensioni tangenziali che vengono imposte sono nulle. Esistono prove che considerano anche lo sforzo di taglio.

5 Prove di taglio 117 PROVA DI TAGLIO DIRETTO Sono qui rappresentati lo schema della prova di taglio diretto e la modalità di rottura del provino. Figura 10.6 PROVA DI TAGLIO SEMPLICE Sono qui rappresentati lo schema della prova di taglio semplice e come il provino si distorce. Figura 10.7 PROVA DI TORSIONE, O PROVA CON CILINDRO CAVO Si può applicare un carico esterno, un carico assiale ed un momento torcente. Il carico interno al cilindro può essere diverso da quello esterno. Figura 10.8

6 Prova di taglio diretto 118 L apparecchio per eseguire le prove di taglio diretto è detto scatola di taglio diretto o anche scatola di Casagrande ed è identico ad un edometro per quanto attiene la fase di consolidazione del campione. Di seguito ne disegniamo lo schema. Figura 10.9 In laboratorio il provino ha una base quadrata di lato 60mm e un altezza di 20 30mm. Il provino è completamente immerso in acqua in modo che non si formino menischi e si annullino le pressioni al contorno. Le prove di taglio diretto sono sempre prove in condizioni drenate, cioè viene condotta molto lentamente in modo che si dissipino le pressioni interstiziali. Le prove di taglio diretto si dividono in due fasi: I FASE: CONSOLIDAZIONE APPLICHIAMO N MISURIAMO δv Durante la prima fase applichiamo un carico costante N e misuriamo lo spostamento verticale δv. La prova è identica ad una prova edometrica. Quando gli incrementi di spostamento tendono a zero il processo di consolidazione è concluso. Noi utilizziamo la curva logt, δv per controllare il processo di consolidazione. La fase di consolidazione dura 24 ore e vengono applicati a tempi prestabiliti dei carichi che sono via via il doppio del precedente. II FASE: TAGLIO APPLICHIAMO δh MISURIAMO T CONDIZIONI DRENATE (u=0) Durante la seconda fase applichiamo δh mediante un motore a velocità costante e misuriamo T. I risultati vengono riportati direttamente in un grafico δh,t. Anche questa seconda fase avviene in condizioni drenate, cioè viene condotta in modo estremamente lento; se la prova fosse veloce le pressioni interstiziali non avrebbero il tempo di dissiparsi e noi non possiamo conoscerne l entità. Entriamo nel dettaglio della seconda fase chiedendoci a quale velocità deve avanzare la scatola di taglio per ottenere che la prova sia effettivamente drenata anche durante la fase di taglio. Lo spazio da percorrere δh è di 3 5mm per ottenere i valori di resistenza a taglio di picco mentre δh è di 7 9mm per ottenere i valori ultimi, infine δh è dell ordine di 10cm per ottenere i valori di resistenza residua e si ottiene riportando a zero la scatola di taglio numerose volte. Il tempo deve essere valutato in modo coerente con la fase di consolidazione. Dal diagramma cedimento tempo in scala semilogaritmica determino c v con il metodo di Casagrande, detto anche metodo del logaritmo. In queso modo potrei utilizzare c v in modo parametrico se tutte le prove utilizzassero lo stesso strumento standardizzato, e otterrei la velocità del motore dividendo c v [m 2 /s] per δh [m]. Altrimenti in modo più generale ricavo dallo stesso diagramma t 50 e con questo v=δh / t 50.

7 119 Con la prova di taglio diretto riscontriamo due tipi di comportamento. 1. COMPORTAMENTO CONTRAENTE. Durante la prova ad un progressivo aumento di δh corrisponde un incrudimento del materiale, cioè T cresce via via sempre meno; contemporaneamente si riscontra un cedimento verticale del campione, per questo lo riportiamo verso il basso in un apposito grafico. Quello che si riscontra è che al crescere di δh il provino si addensa fino a raggiungere un valore uniforme. Questo è il comportamento tipico del terreno che in passato non ha subito carichi superiori a quelli applicati nella prova. Riscontriamo un comportamento contraente nelle: ARGILLE: normalmente consolidate NC, debolmente consolidate SABBIE: sciolte, poco addensate Figura COMPORTAMENTO DILATANTE. Durante la prova ad un aumento di δh corrisponde un aumento dello sforzo di taglio T fino al raggiungimento di un valore di picco detto resistenza di picco, all ulteriore aumento di δh il terreno diventa meno resistente, la resistenza decade verso il valore più contenuto della resistenza ultima. Per quanto riguarda la dimensione verticale del campione, inizialmente riscontriamo un cedimento verticale, ma abbastanza presto si manifesta il comportamento dilatante, cioè un aumento di spessore del provino. La correlazione tra i due fenomeni si ha in corrispondenza della resistenza di picco che corrisponde al punto di flesso della curva dei cedimenti. È da notare come la resistenza ultima nei provini che manifestano comportamento dilatante tende alla resistenza ultima dei provini con comportamento contraente, tali provini si riferiscono allo stesso terreno, ma hanno subito carichi diversi prima di sottoporli alla prova di taglio. Riscontriamo un comportamento contraente nelle: ARGILLE: fortemente preconsolidate, Figura SABBIE: dense

8 120 Può essere utile riportare in un grafico l indice dei vuoti e in funzione degli spostamenti orizzontali δh e non dei cedimenti verticali δv. Il fatto interessante è che entrambi i materiali convergono allo stesso valore di porosità al crescere di δh, cioè alla stessa resistenza ultima, graficamente ho lo stesso asintoto orizzontale. Questa comportamento è importante perché ha delle conseguenze sulle caratteristiche meccaniche dei materiali e sui parametri che assumeremo per il modello del terreno. Figura Se riportiamo i risultati di una prova di taglio diretto sul piano di Mohr. Riporteremo delle coppie di valori medi (τ, σ) e non dei cerchi perché durante la prova non abbiamo valori uniformi di T ed N. Riporto per alcuni campioni sia i valori di picco che i valori ultimi. Per valori contenuti della tensione verticale σ I i valori di resistenza di picco e di resistenza ultima sono nettamente distinti, per valori maggiori di tensione verticale i due valori coincidono. I valori di resistenza ultima stanno su una retta passante per l origine. Indichiamo con I l ANGOLO DI ATTRITO, questo parametro sintetizza il comportamento del terreno che aumenta la propria resistenza all aumentare dello sforzo normale. Indichiamo con c I il COEFFICIENTE DI COESIONE, che esprime la resistenza al taglio del terreno senza che vi sia applicato alcun sforzo normale. Figura A seconda della retta interpolatrice, al variare del livello di tensione σ I a cui mi riferisco, ottengo I p e c I p diversi. Per il calcolo delle opere geotecniche utilizzo i valori I, c I di picco o i valori di resistenza ultima? La risposta non è affatto scontata, comunque impieghiamo i valori di resistenza di picco per i materiali sovraconsolidati in quanto sarebbe eccessivamente cautelativo utilizzare i valori di resistenza ultima che si manifestano solo in prossimità della rottura. Utilizzo i valori di resistenza ultima qualora lo stato di sollecitazione è talmente elevato da non permettere il manifestarsi lo scavalco dei grani e che comporta direttamente la rottura degli stessi. Non si utilizzano neppure i valori della resistenza residua se non nel caso in cui ho un frana che si era arrestata ed ora si rimette in moto. Solitamente con un fenomento d instabilità di nuova formazione nelle parti più in alto della superficie di scorrimento ancora non si sono mobilitate le resistenze ultime che il piede già inizia a muoversi; per cui dovremo utilizzare un valore intermedio fra quello ultimo e quello di picco.

9 121 Prova di compressione cilindrica Figura Volgarmente chiamata triassiale o triassiale convenzionale. La prova viene eseguita all interno di una cella triassiale. Lo stato tensionale isotropo nella cella, cioè la pressione dell acqua che vi pompiamo, lo indichiamo con σ 2, σ 3 sigma o tensioni principali 2 e 3, σ r sigma radiale e con σ c sigma di cella. Lo stato tensionale deviatorico, cioè la pressione esercitata dal pistone, lo indichiamo con q, con σ 1 sigma o tensione principale 1 indichiamo lo sforzo verticale globale che include q e σ c: σ 1=σ c+q. LA MEMBRANA non serve a tenere assieme il provino, anche se a volte è costituito da sabbia incoerente, essenzialmente serve per applicare una pressione laterale isotropa al terreno. Se non ci fosse la membrana l acqua della cella sarebbe a diretto contatto con l acqua all interno del provino. La pressione dell acqua della cella si trasmetterebbe all acqua del provino. La membrana serve per trasmettere la tensione efficace al provino. u= σ r σ r I = σ r La prova triassiale si sviluppa in due fasi: FASE 1: Si applica uno stato di sforzo isotropo, una compressione isotropa, ed a seconda che i rubinetti siano aperti o chiusi e che la prova sia sufficientemente lenta si ha una prova CONSOLIDATA C oppure NON CONSOLIDATA U. FASE 2: Si porta a rottura il campione con i rubinetti chiusi o aperti. Ciò avviene comprimendo il provino con il pistone cioè si applica uno sforzo di taglio, uno sforzo deviatorico, con la contemporanea presenza della pressione laterale convenzionale, che viene mantenuta costante. La prova può essere DRENATA D o NON DRENATA U. Sebbene si abbiano 4 combinazioni ci sono solo 3 tipi di prove. Le prove di compressione triassiale possono essere di 3 tipi: 1. non consolidata, non drenata (U,U) 2. consolidata, drenata (C,D) 3. consolidata, non drenata (C,U)

10 122 Fase 1: applicazione del carico isotropo in condizioni drenate con consolidazione Figura Si consegue la consolidazione applicando una pressione σ r (=σ c) alla cella triassiale. I rubinetti sono aperti e la prova è drenata. Viene applicato uno stato tensionale uniforme in tutte le direzioni σ r (stato di sollecitazione isotropo). Per effetto della pressione applicata all istante t=0 il provino tende a subire una variazione di volume, ma a causa della resistenza al moto dell acqua nei pori del materiale la variazione di volume non può essere istantanea: per t=0 V =0 Nell istante t=0 il provino non subisce alcun effetto meccanico in quanto la variazione di volume è nulla; l incremento dello stato di sollecitazione interessa la fase liquida e lo scheletro solido non subisce alcuna deformazione: per t=0 V =0 σ r I =0 u= σ r σ r I = σ r Istantaneamente si può dire che la prova è come quella di tipo non drenato perché il drenaggio necessita un tempo finito per potersi verificare. Col trascorrere del tempo si attiva un processo di consolidazione e questo teoricamente termina in un tempo. Al trascorrere del tempo, l acqua esce, e la pressione neutra si scarica sullo scheletro solido. Con il trascorrere del tempo la sovrappressione si trasferisce dalla fase liquida allo scheletro solido inducendo sullo stesso una variazione di volume. per t u=0 σ r I = σ r V 0 Per consentire la consolidazione del provino deve essere realizzata una prova di tipo drenato. La prima fase della prova triassiale ha termine quando il volume d acqua V nella buretta non varia più. Figura L andamento della deformazione volumetrica è simile a quello della prova in condizioni edometriche, ci è utile per controllare che la prova si sia svolta correttamente, che sia giunta a conclusione la prima fase. Fase 2: applicazione dello sforzo di taglio In questa seconda fase si porta a rottura il provino applicando uno sforzo assiale di compressione (detto anche deviatorico o di taglio) mediante il pistone. La pressione laterale convenzionale (detta anche di cella o radiale o isotropa) rimane costante σ r=σ c=cost. I rubinetti possono essere chiusi o aperti: otteniamo così una rottura rispettivamente in condizioni non drenate o drenate.

11 Prova non consolidata, non drenata (U,U) 123 Nella PRIMA FASE viene applicato il carico isotropo, ma il rubinetto è chiuso: viene impedita l uscita dell acqua. Nell ipotesi che il terreno sia saturo S=1, la variazione di volume è nulla. V =0 Se la variazione di volume è nulla non si osserva nessun effetto meccanico: il terreno rimane indeformato. Questo significa che non si hanno variazioni di tensioni efficaci. σ I =0 Più correttamente ricordando che il carico è isotropo si può scrivere in termini di invarianti: p= σ 2σ 1 3 = σ 2σ c c =σ 3 3 c I 2σ 3 I p I = σ 1 3 q=σ 1 σ 3 =0 p I =0 q I =0 Ricordando che: p= p I u p= p I u con p I =0 p= u Si vede che p corrisponde alla pressione di cella. Visto che con l applicazione del carico isotropo la variazione di volume è nulla, lo stato tensionale rimane inalterato, allora la pressione applicata si scarica per intero sull acqua ed il provino rimane indisturbato. L effetto che si ottiene dall applicazione della pressione isotropa esterna è l aumento della pressione dell acqua all interno del provino; in altre parole la pressione di cella σ c qualunque valore abbia si scarica sull acqua interstiziale. Nella SECONDA FASE si applica uno sforzo assiale sul pistone mantenendo il rubinetto chiuso visto che la prova non è drenata. La pressione laterale viene mantenuta costante. Si applica q=σ 1 σ c, cioè lo sforzo verticale globale è σ 1 e q è la quantità aggiunta. u t =0 q=σ 1 σ 3 = N A N è lo sforzo sul pistone. Dato che i rubinetti sono chiusi, la variazione di volume è nulla. V =0

12 Prova consolidata, drenata (C,D) 124 Viene eseguita la PRIMA FASE con l applicazione del carico di cella o isotropo in condizioni drenate in modo da permettere la consolidazione. Con la SECONDA FASE incrementiamo la pressione assiale mantenendo costante quella laterale. σ a = σ 1 >0 σ c = σ r = σ 3 =0 σ 3 tensione principale massima La prova viene condotta con velocità ridotta in modo che la prova possa essere considerata effettivamente drenata. Le sollecitazioni sono applicate in modo così lento che le tensioni interstiziali hanno il modo di dissiparsi. Una prova con terreni a grana fine dura da una settimana a 10 giorni, anche se prendiamo il provino più piccolo φ 76mm, h 38mm e con due pietre porose in modo da dimezzare il percorso di drenaggio e di conseguenza il tempo di consolidazione. Con queste prove posso definire effettivamente un tensione assiale ed una radiale e questa volta va meglio che non con la prova di taglio diretto perché ho dei valore uniformi.

13 Prova consolidata, non drenata (C,U) 125 Nella PRIMA FASE avviene la consolidazione isotropa del campione: con l applicazione della pressione di cella, essa immediatamente si trasferisce sull acqua, ma questa volta i rubinetti sono aperti e l acqua incomincia a defluire: quando le sovrapressioni sono completamente dissipate il fenomeno cessa e contestualmente si ha una riduzione di volume. Nella SECONDA FASE, in cui si ha l applicazione della compressione deviatorica, i rubinetti vengono chiusi, realizzando così le condizioni non drenate. Il taglio è applicato attraverso un deviatore: lo sforzo assiale maggiore di quello radiale.

14 126 Come varia la pressione interstiziale durante la prova non drenata Eseguiamo una prova di compressione cilindrica (o prova triassiale) non drenata sia in fase 1 che in fase 2. In prove non drenate, con condizioni di terreno saturo, la variazione di volume è nulla e quindi tutto l incremento dello stato tensionale si scarica sulla fase liquida. La variazione u di pressione può essere determinata dalla seguente relazione semiempirica 8 : u=b σ r A σ a σ r Skempton (1957) Componente isotropa dello stato di sforzo totale: Componente deviatorica dello stato di sforzo totale: σ r σ a σ r In questa relazione intervengono due parametri: A e B. Questa relazione ci mostra che la pressione neutra varia per l applicazione di uno stato di sforzo isotropo ma anche per l applicazione di uno stato di sforzo deviatorico. Durante la prima fase della prova di compressione cilindrica (o prova triassiale) lo stato di sollecitazione è di tipo isotropo, in altre parole σ a=σ r, cioè σ a=σ b=σ c allora la formula di Skempton si riduce a: u=b σ r e B è un parametro che dipende dal grado di saturazione del terreno: S =0 B 0 S =1 B=1 Da questa prima fase potremo ricavare il parametro B, visto che misuriamo la variazione di pressione u ad un manometro e la pressione di cella σ r ad un altro: B= u σ r Il coefficiente A tiene conto come per effetto dell applicazione della componente deviatorica degli sforzi abbiamo una variazione delle pressioni neutre, ma non solo. NOTA BENE: Se il provino è secco, o almeno non saturo, essendo l aria comprimibile il carico applicato può provocare anche una variazione di volume anche nel caso di prova non drenata e il carico viene trasferito quasi per intero sullo scheletro solido. Durante la fase 2 della prova cilindrica condotta in condizioni non drenate: la pressione di cella è costante σ r=0, cioè e varia solamente lo sforzo assiale σ a. Allora la formula di Skempton diventa: u=b A σ a Possiamo così ricavare A: A= u B σ a Nel modello di Skempton quando applichiamo lo sforzo di taglio rimane il coefficiente A. Il coefficiente A dipende da molti fattori. Vediamo com è influenzato il valore del coefficiente A dal tipo di struttura del provino: 1. con grani a struttura sciolta, 2. con grani a struttura molto addensata. 8 A. Burghignoli, Lezioni di meccanica delle terre pp

15 Se lo sforzo di taglio viene applicato ad un terreno dalla struttura poco densa i grani tendono ad entrare negli spazi presenti tra un granello e l altro. Questo effetto tende a provocare una riduzione del volume V<0. A seguito di questo teorema, osservando che le deformazioni volumetriche sono impedite, nasce una componente di pressione neutra aggiuntiva che tende a bilanciare la variazione volumetrica precedente. In definitiva una sollecitazione tagliante applicata ad un terreno poco denso incrementa il livello di tensione neutra mantenendo inalterato il volume del provino. Una struttura sciolta a cui si applica uno sforzo di taglio τ provoca V =0 u>0 Il volume vorrebbe diminuire ma non può allora aumenta la pressione 2. A causa dell applicazione degli sforzi di taglio in un terreno dalla struttura molto addensata la tendenza dei granelli è quella di reciproco scavalcamento; il volume tende ad aumentare e il fenomeno viene detto DILATANZA (dipende dal grado di addensamento del terreno). Siccome però la variazione di volume è impedita allora nasce una variazione di pressione neutra negativa che tende a bilanciare l effetto della dilatanza. La tensione tangenziale applicata ad un terreno molto addensato tende a diminuire il livello di pressione neutra mantenendo inalterato il volume del provino. Una struttura molto addensata a cui si applica uno sforzo di taglio τ provoca V =0 u<0 Il volume vorrebbe aumentare per via di qualche scorrimento ma non può allora diminuisce la pressione Sappiamo che A è un parametro che qualifica la variazione di pressione neutra a seguito dell applicazione di una sollecitazione tangenziale τ. Possiamo quindi dire secondo questi semplici ragionamenti che : A>0 A<0 PER TERRENI A STRUTTURA SCIOLTA: argille normalmente o debolmente sovraconsolidate sabbie sciolte poco addensate PER TERRENI A STRUTTURA MOLTO ADDENSATA: argille fortemente preconsolidate sabbie dense NOTA BENE: Si può osservare che il parametro A non si mantiene costante durante la prova in quanto varia il livello della pressione neutra applicata.

16 128 I risultati delle prove drenate sono del tipo seguente: In questi diagrammi si vede la differenza di comportamento dei materiali a struttura sciolta dai materiali a struttura densa. Per quanto riguarda gli sforzi tangenziali vediamo che i terreni densi presentano un comportamento instabile, cioè si arriva ad un valore massimo dello sforzo di taglio ed in seguito la resistenza diminuisce. I materiali a struttura sciolta non presentano questa instabilità in quanto lo sforzo tangenziale è una funzione sempre crescente; per a i due tipi di materiale presentano un asintoto orizzontale comune. Siccome stiamo trattando le prove drenate allora i provini sono interessati da variazioni volumetriche. Per i materiali a struttura sciolta abbiamo una progressiva diminuzione di volume. Per i materiali a struttura densa inizialmente si osserva una leggera diminuzione di volume, ma superato un certo livello di deformazione assiale abbiamo una inversione della tendenza con aumento del volume del provino. Figura 10.17

17 129 I risultati delle prove non drenate presentano degli andamenti simili ai precedenti, ma interessano delle grandezze diverse. Per quanto riguarda l andamento degli sforzi tangenziali può essere fatto un discorso simile al caso precedente l unica cosa che cambia sono i valori degli sforzi. Il secondo diagramma in questo caso rappresenta l andamento delle pressioni neutre in quanto essendo la prova non drenata la variazione di volume è nulla e le tensioni applicate si scaricano sulla fase liquida. Il rapporto tra le quantità che vengono misurate in questi diagrammi rappresenta il valore assunto dal coefficiente A della formula di Skempton durante la prova. A questo punto per le due tipologie di prova possiamo andare a studiare il percorso seguito nel piano delle tensioni p, q oppure p I,q I. Figura 10.18

18 130 Prova drenata: percorso delle tensioni totali ed efficaci Nel tatto OA viene applicata al provino una tensione assiale uguale a quella radiale e quindi la tensione tangenziale che viene introdotta è nulla. Nel tratto AB il provino viene sottoposto ad un incremento della sola tensione assiale fino ad arrivare alla condizione di rottura. Dobbiamo osservare che in questo caso essendo la prova drenata la pressione neutra si mantiene nulla per cui il tratto A I B I delle tensioni efficaci coincide con quello delle tensioni totali. Figura Prova non drenata: percorso delle tensioni totali ed efficaci Se la prova è non drenata la fase di carico AB che introduce le tensioni tangenziali è tale per cui la curva delle tensioni totali si differenzia dalla curva delle tensioni efficaci. Questo è dovuto al fatto che una variazione di volume nulla provoca una variazione di pressione neutra. Il tratto di curva A I B I è relativo ad un terreno sovraconsolidato, infatti la variazione di pressione neutra u risulta prima positiva e poi negativa all aumentare di q la curva A I B II è relativa ad un terreno normalconsolidato in quanto la variazione di pressione neutra è sempre positiva. Figura 10.20

19 Criterio di rottura di Mohr Coulomb 131 Nelle pagine precedenti abbiamo discusso le prove che vengono eseguite su un provino di terreno e abbiamo studiato l andamento delle risposte che esso forniva in funzione della tipologia della prova e del grado di consolidamento del terreno. Vediamo ora il criterio di Mohr Coulomb applicato alle diverse prove. Iniziamo con le prove consolidate drenate CD. Consideriamo un unico campione da cui otteniamo tre provini sottoposti ad uno stato tensionale assiale ed uno radiale ed analizziamo il comportamento in corrispondenza di diversi valori della tensione radiale σ ri. Le prove che abbiamo qui rappresentato sono quelle tipiche dei terreni fortemente addensati; ognuna di esse è stata condotta per un determinato valore della tensione radiale σ ri, tra una prova e l altra cambia esclusivamente il valore della σ ri. Per ogni prova eseguita sul terreno nel piano di Mohr è possibile tracciare il cerchio in corrispondenza del valore massimo dello sforzo sollecitante il provino durante la prova. Figura Figura Operando in questo modo sul piano di Mohr possono essere riportati diversi cerchi, di solito tre, che rappresentano la condizione di rottura per il terreno in corrispondenza di valori diversi della tensione radiale σ ri. Una volta riportati alcuni cerchi relativi alla condizione di rottura del terreno è possibile tracciare la curva d inviluppo di questi cerchi la quale può essere approssimata ad una retta che è definita da due parametri c I e I. La retta può essere rappresentata tramite la seguente equazione: τ f =c I σ I tan I Gli stati compatibili per il terreno sono quelli per cui risulta: τ τ f e questa condizione rappresenta il CRITERIO DI ROTTURA DI MOHR COULOMB. c I COEFFICIENTE DI COESIONE I ANGOLO DI ATTRITO Attenzione che c I e I non sono dei parametri che definiscono delle proprietà fisiche del terreno, ma sono dei coefficienti che utilizziamo per rappresentare le capacità di resistenza del terreno (tentativo di descrizione del comportamento meccanico). Questi parametri infatti dipendono dalle condizioni di drenaggio del provino e anche dal suo grado di saturazione. Per mettere in evidenza questo aspetto si può considerare una serie di prove non consolidate e non drenate (UU). In questo caso è conveniente riportare il comportamento del terreno in funzione delle tensioni totali e non di quelle efficaci. Faremo delle prove con diversi valori della tensione radiale, ma la condizione di rottura fornisce un cerchio per ogni prova che presenta il medesimo diametro ( σ a σ r ).

20 132 Vediamo ora di eseguire delle prove in condizioni non drenate UU e di completa saturazione del provino S=1. Questo significa che un incremento della tensione radiale σ r si trasferisce completamente sulla fase liquida presente nel terreno mantenendo inalterate le tensioni efficaci del provino; per questo motivo rimangono immutate le condizioni di rottura. Se la rappresentazione di queste prove fosse stata fatta facendo riferimento alle tensioni efficaci allora avremmo ottenuto un unico cerchio di Mohr rappresentativo di tutte le condizioni di rottura. In termini di tensioni totali la condizione di rottura del terreno può essere espressa dalla relazione: τ=c u con u =0 Nel caso in cui la prova non drenata fosse eseguita su un provino di Figura terreno non saturo (S<1) allora in questo caso la variazione di volume non è più nulla; questo significa che una variazione di tensione applicata non provoca solamente una variazione delle pressioni neutre, ma anche un cambiamento delle tensioni efficaci. Essendo il provino non saturo all interno dei pori oltre all acqua è presente anche aria la quale ammette una elevata comprimibilità e quindi anche se le condizioni di prova sono non drenate è ammessa comunque una variazione di volume e quindi un incremento delle tensioni efficaci. Operando delle prove secondo queste condizioni sul piano di Mohr otteniamo dei cerchi, rappresentativi della condizione di rottura, che saranno progressivamente crescenti all aumentare della tensione radiale. Un provino non saturo con prova non drenata piccola V 0 σ I 0. S<1 V<0 σ I 3 >0 u< σ 3 B<1 u >0 Figura Man mano che viene incrementata la tensione radiale le condizioni del provino si modificano, e quindi il comportamento sopra descritto per la condizione di rottura si modifica. All aumentare della tensione σ r diminuisce il volume dell aria quindi aumenta il grado di saturazione S inoltre in base alla legge di Henry aumenta la solubilità dell aria nell acqua che provoca un ulteriore aumento della saturazione S. Questi due effetti tendono a portare il grado di saturazione ad un valore unitario, quindi la curva limite relativa alla condizione di rottura tende a diventare orizzontale. Nell intervallo in cui S<1 la curva limite non è una retta ma se l intervallo di tensioni non è sufficientemente elevato è possibile determinare un valore di c u e u approssimati. Dobbiamo osservare che la condizione di rottura per un provino è valida sia per gli stati tensionali positivi che per quelli negativi. Figura 10.25

21 133 Facciamo ora qualche considerazione sulle prove consolidate e poi condotte a rottura in condizioni non drenate CU. Supponiamo di riportare i tre cerchi di Moh di tre provini ottenuti da un certo campione: otteniamo sul piano di Mohr un grafico che assomiglia a quello delle prove condotte in condizioni drenate, ma ha un significato diverso. Ricordo che questo tipo di prove può servire per valutare il comportamento di un terreno di fondazione, quindi un terreno consolidato nel tempo per la presenza dei carichi della costruzione, quando avvenga un sisma, cioè una sollecitazione che non permette alcuna dissipazione delle sovrapressioni interstiziali. Da notare il pedice CU che accompagna i parametri della prova. Figura Gli stati compatibili per la resistenza del terreno possono essere espressi nel modo seguente: τ c I σ I tan

22 134 Anche per le prove triassiali definiamo un GRADO DI SOVRACONSOLIDAZIONE il quale differisce da quello definito per le prove edometriche per l utilizzo degli invarianti dello stato di sforzo efficace anziché delle tensioni efficaci. Lo si indica sempre con OCR dalle iniziali dei termini inglesi Over Consolidated Ratio. I OCR= p c p I Se OCR=1 il provino si dice normalconsolidato. Se 1<OCR<2 il provino si dice debolmente sovraconsolidato o normalconsolidato. Se OCR>2 il provino si dice fortemente sovraconsolidato. Consideriamo delle prove di compressione triassiali consolidate e non drenate (CU). I vari provini vengono consolidati a valori diversi di tensione di preconsolidazione p I c e dopo vengono portati a rottura senza essere preventivamente scaricati. Incrementando la pressione di consolidazione p I c si osserva che la prova da origine a delle curve di resistenza via via maggiori. p I = σ I I 2σ q I =σ 1 I σ 3 I Se rappresentiamo le curve di carico relazionate alla pressione di consolidazione p I c allora gli andamenti delle tre prove coincidono. Vediamo ora queste prove nel piano p I, q I ; in tale piano possiamo rappresentare la retta di stato critico che definisce le condizioni di rottura del provino. Per diversi valori della pressione di consolidazione p I c individuiamo diverse posizioni sull asse p I alle quali corrisponde uno sforzo tangenziale nullo.

23 135 q I = σ 1 I σ 3 I = σ 1 I Da queste posizioni viene incrementato il carico fino ad arrivare alla condizione di rottura del provino; il percorso seguito può essere diverso a seconda che la prova avvenga in condizioni drenate o meno. Se la prova avviene in condizioni drenate (CD) allora la variazione di tensioni coincide con la variazione delle tensioni efficaci. La prova viene condotta con un incremento di σ 1 inalterato il valore di σ 3: σ 1 0 σ 3 =0 Se la prova è drenata possiamo allora dire che: σ 1 I = σ 1 0 σ 3 I =0 Da cui si ricava che: p I = σ I I 2 σ = σ I 1 3 Facendo il rapporto di queste due espressioni: q I p I =3 Nel caso in cui la prova fosse non drenata allora la sua conduzione avviene comunque con: σ 1 0 σ 3 =0 mantenendo però tali variazioni non si riflettono allo stesso modo sulle tensioni efficaci. Nasce una variazione di pressione neutra che definisce un percorso diverso per portare a rottura il provino.

24 136 (Questa pagina è intenzionalmente bianca.)

75 CAPITOLO 6: PROVE EDOMETRICHE CAPITOLO 6: PROVE EDOMETRICHE

75 CAPITOLO 6: PROVE EDOMETRICHE CAPITOLO 6: PROVE EDOMETRICHE 75 CAPTOLO 6: PROVE EDOMETRCE CAPTOLO 6: PROVE EDOMETRCE La prova edometrica è una prova di compressione assiale senza deformazione laterale, serve a determinare le caratteristiche di comprimibilità dei

Dettagli

PARTE IV: RESISTENZA AL TAGLIO

PARTE IV: RESISTENZA AL TAGLIO PARTE IV: RESISTENZA AL TAGLIO Resistenza al taglio in corrispondenza dei contatti fra le particelle Definizione dell angolo di attrito Φ μ tgφ μ = f con f = coefficiente di attrito Interpretazione micromeccanicistica

Dettagli

RESISTENZA A TAGLIO. Università degli Studi di Trento - Facoltà di Ingegneria Geotecnica A / Geotecnica B (Dr. A Tarantino) 1.1

RESISTENZA A TAGLIO. Università degli Studi di Trento - Facoltà di Ingegneria Geotecnica A / Geotecnica B (Dr. A Tarantino) 1.1 RESISTENZA A TAGLIO 1.1 Capacità portante di una fondazione F W ribaltante W stabilizzante mobilitata La stabilità del complesso terreno-fondazione dipende dalle azioni tangenziali che si possono mobilitare

Dettagli

ESERCIZI DA ESAMI (1996-2003) Prove triassiali

ESERCIZI DA ESAMI (1996-2003) Prove triassiali ESERCIZI DA ESAMI (1996-23) Prove triassiali Esercizio 1 Un provino di argilla è consolidato isotropicamente in cella triassiale con: pressione di cella: σ c = 4 kpa contropressione neutra: B.P. = 2 kpa

Dettagli

165 CAPITOLO 13: PROVE MECCANICHE IN SITO

165 CAPITOLO 13: PROVE MECCANICHE IN SITO 165 Introduzione Rispetto alle prove eseguite in laboratorio, quelle in sito presentano sia dei vantaggi che degli svantaggi. 1. Tra i vantaggi delle prove in sito di può dire che queste sono più rapide

Dettagli

GEOTECNICA. ing. Nunziante Squeglia 8. COMPORTAMENTO MECCANICO DEI TERRENI RESISTENZA DEI TERRENI

GEOTECNICA. ing. Nunziante Squeglia 8. COMPORTAMENTO MECCANICO DEI TERRENI RESISTENZA DEI TERRENI GEOTECNICA 8. COMPORTAMENTO MECCANICO DEI TERRENI RESISTENZA DEI TERRENI PERCORSO TENSIONALE IN UNA PROVA TRIASSIALE DRENATA PROVA TRIASSIALE DRENATA TERRENO NC PRESSIONE NEUTRA NULLA COMPRESSIONE ISOTROPA

Dettagli

MODELLO ELASTICO (Legge di Hooke)

MODELLO ELASTICO (Legge di Hooke) MODELLO ELASTICO (Legge di Hooke) σ= Eε E=modulo elastico molla applicazioni determinazione delle tensioni indotte nel terreno calcolo cedimenti MODELLO PLASTICO T N modello plastico perfetto T* non dipende

Dettagli

Figura 1 Planimetria schematica con indicazione della ubicazione dei sondaggi e delle prove CPT

Figura 1 Planimetria schematica con indicazione della ubicazione dei sondaggi e delle prove CPT ESERCITAZIONE n. 1 Ai fini della caratterizzazione e modellazione geologica e geotecnica di un sito che sarà interessato dalla realizzazione di un edificio, con quattro piani fuori terra, da adibire a

Dettagli

A.A. 2014-2015 03.11.2014. Determinazione della resistenza dei terreni

A.A. 2014-2015 03.11.2014. Determinazione della resistenza dei terreni Determinazione della resistenza dei terreni RESISTENZA = MASSIMO VALORE DELLO SFORZO DI TAGLIO CHE IL TERRENO PUÒ SOSTENERE Le caratteristiche di resistenza di un terreno sono studiate sperimentalmente

Dettagli

Lezione 6 GEOTECNICA. Docente: Ing. Giusy Mitaritonna e-mail: g.mitaritonna@poliba.it

Lezione 6 GEOTECNICA. Docente: Ing. Giusy Mitaritonna e-mail: g.mitaritonna@poliba.it Lezione 6 GEOTECNICA Docente: Ing. Giusy Mitaritonna e-mail: g.mitaritonna@poliba.it - Lezione 6 A. Indagine Geotecnica: considerazioni generali B. Indagini in sito: Perforazioni di sondaggio e prelievo

Dettagli

COMPRESSIBILITÀ E CONSOLIDAZIONE

COMPRESSIBILITÀ E CONSOLIDAZIONE COMPRESSIBILITÀ E CONSOLIDAZIONE. Cedimenti nel caso di falda profonda e fondazione a p.c. 3 t δ 3 I cedimenti sono non lineari con il carico falda Al termine della fase di carico, i cedimenti sono trascurabili.

Dettagli

Prova di verifica parziale N. 2 24 Nov 2008

Prova di verifica parziale N. 2 24 Nov 2008 Prova di verifica parziale N. 2 24 Nov 2008 Esercizio 1 Una prova triassiale CU è stata eseguita su tre provini preparati a partire da un campione indisturbato di argilla satura. Nella prima fase i tre

Dettagli

ESERCIZI CINEMATICA IN UNA DIMENSIONE

ESERCIZI CINEMATICA IN UNA DIMENSIONE ESERCIZI CINEMATICA IN UNA DIMENSIONE ES. 1 - Due treni partono da due stazioni distanti 20 km dirigendosi uno verso l altro rispettivamente alla velocità costante di v! = 50,00 km/h e v 2 = 100,00 km

Dettagli

CAPITOLO 9 RESISTENZA AL TAGLIO DEI TERRENI

CAPITOLO 9 RESISTENZA AL TAGLIO DEI TERRENI 9. Introduzione CAPITOLO 9 Per le verifiche di resistenza delle opere geotecniche è necessario valutare quali sono gli stati di tensione massimi sopportabili dal terreno in condizioni di incipiente rottura.

Dettagli

Pali di fondazione = elementi strutturali in grado di trasferire il carico applicato alla loro sommità a strati di terreno più profondi e resistenti

Pali di fondazione = elementi strutturali in grado di trasferire il carico applicato alla loro sommità a strati di terreno più profondi e resistenti FONDAZIONI SU PALI Pali di fondazione = elementi strutturali in grado di trasferire il carico applicato alla loro sommità a strati di terreno più profondi e resistenti Si ricorre a fondazioni su pali quando:

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

GEOTECNICA. Elementi di meccanica dei terreni. Muri di sostegno. Fondazioni superficiali. Progettazione della fondazione di un edificio in muratura

GEOTECNICA. Elementi di meccanica dei terreni. Muri di sostegno. Fondazioni superficiali. Progettazione della fondazione di un edificio in muratura GEOTECNICA Elementi di meccanica dei terreni Muri di sostegno Fondazioni superficiali Progettazione della fondazione di un edificio in muratura 1 I PROBLEMI DELLA GEOTECNICA SOVRASTRUTTURA TERRENO DI FONDAZIONE

Dettagli

PROPRIETÀ DEI MATERIALI

PROPRIETÀ DEI MATERIALI ESERCITAZIONE 1 PROPRIETÀ DEI MATERIALI SONO LE GRANDEZZE IL CUI VALORE DESCRIVE IL COMPORTAMENTO DEL MATERIALE IN PRESENZA DELLE DIVERSE SOLLECITAZIONI E CONDIZIONI DI SERVIZIO COSTITUISCONO L ELEMENTO

Dettagli

UNIVERSITA DEGLI STUDI DI ENNA

UNIVERSITA DEGLI STUDI DI ENNA UNIVERSITA DEGLI STUDI DI ENNA Kore Corso di Laurea in Ingegneria Civile e Ambientale (Classe 8) Corso di GEOTECNICA Docente: prof. Francesco Castelli Calcolo dei cedimenti nei terreni argillosi Secondo

Dettagli

Lezione 7 GEOTECNICA. Docente: Ing. Giusy Mitaritonna e-mail: g.mitaritonna@poliba.it

Lezione 7 GEOTECNICA. Docente: Ing. Giusy Mitaritonna e-mail: g.mitaritonna@poliba.it Lezione 7 GEOTECNICA Docente: Ing. Giusy Mitaritonna e-mail: g.mitaritonna@poliba.it - Lezione 7 A. Compressibilità dei terreni: considerazioni generali ed applicazioni B. L edometro C. La pressione di

Dettagli

LA PROGETTAZIONE GEOTECNICA E LA NORMATIVA

LA PROGETTAZIONE GEOTECNICA E LA NORMATIVA LA PROGETTAZIONE GEOTECNICA E LA NORMATIVA L. Mongiovì Università di Trento Dipartimento di Ingegneria Meccanica e Strutturale Via Mesiano 77, 38050 Trento, Italia Sommario. Si fanno preliminarmente alcune

Dettagli

Proprietà elastiche dei corpi

Proprietà elastiche dei corpi Proprietà elastiche dei corpi I corpi solidi di norma hanno una forma ed un volume non facilmente modificabili, da qui deriva la nozioni di corpo rigido come corpo ideale non deformabile. In realtà tutti

Dettagli

COMUNE DI MENTANA ROMA

COMUNE DI MENTANA ROMA COMUNE DI MENTANA ROMA di Abballe Laboratorio autorizzato dal Ministero Infrastrutture e Trasporti DPR 380/01 Art. 59 Circolare 7619/STC del 08/09/2010 Concessione per l'esecuzione e certificazione di

Dettagli

Introduzione. Consideriamo la classica caratteristica corrente-tensione di un diodo pn reale: I D. V γ

Introduzione. Consideriamo la classica caratteristica corrente-tensione di un diodo pn reale: I D. V γ Appunti di Elettronica Capitolo 3 Parte II Circuiti limitatori di tensione a diodi Introduzione... 1 Caratteristica di trasferimento di un circuito limitatore di tensione... 2 Osservazione... 5 Impiego

Dettagli

CARATTERIZZAZIONE GEOTECNICA DEI TERRENI SOTTO AZIONI DINAMICHE CON PROVE IN SITO E DI LABORATORIO

CARATTERIZZAZIONE GEOTECNICA DEI TERRENI SOTTO AZIONI DINAMICHE CON PROVE IN SITO E DI LABORATORIO < CARATTERIZZAZIONE GEOTECNICA DEI TERRENI SOTTO AZIONI DINAMICHE CON PROVE IN SITO E DI LABORATORIO #$$! "! " %&'()**) +,-./ ?@1 3>?@1 012 34561 75 ;33849: Dinamica dei Terreni Studia il comportamento

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria

Università degli Studi di Bergamo Facoltà di Ingegneria Università degli Studi di Bergamo Facoltà di Ingegneria Geotecnica e Tecnica delle Fondazioni ESERCITAZIONE Docente: Daniela Giretti Studenti: Monica Bianchi Gabriele Gazzaniga Gabriele Ravizza Lorenzo

Dettagli

RESISTENZA AL TAGLIO DEI TERRENI

RESISTENZA AL TAGLIO DEI TERRENI UNIVERSITA DEGLI STUDI DI CATANIA Dipartimento di Ingegneria gg Civile e Architettura Sezione di ingegneria geotecnica (www.dicar.unict.it/) RESISTENZA AL TAGLIO DEI TERRENI Corso di Geotecnica Ingegneria

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Affidabilità del modello di Winkler

Affidabilità del modello di Winkler COMASTRI imp 14-09-2004 11:00 Pagina 50 Dal punto di vista fisico il mezzo alla Winkler può essere assimilato a un letto di molle elastiche mutuamente indipendenti, o meglio a un liquido di peso specifico

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE STUDIO DI FUNZIONE Passaggi fondamentali Per effettuare uno studio di funzione completo, che non lascia quindi margine a una quasi sicuramente errata inventiva, sono necessari i seguenti 7 passaggi: 1.

Dettagli

FONDAZIONI DIRETTE prof. Stefano Catasta

FONDAZIONI DIRETTE prof. Stefano Catasta La scelta ed il dimensionamento di una soluzione fondale di tipo diretto superficiale è legata oltre alle caratteristiche del terreno su cui sorgerà la costruzione anche dal tipo di soluzione strutturale

Dettagli

Fondamenti di Trasporti. Meccanica della Locomozione Utilizzazione della potenza a bordo

Fondamenti di Trasporti. Meccanica della Locomozione Utilizzazione della potenza a bordo Università di Catania Facoltà di Ingegneria Corso di Laurea in Ingegneria Civile AA 1011 1 Fondamenti di Trasporti Meccanica della Locomozione Utilizzazione della potenza a bordo Giuseppe Inturri Dipartimento

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

D.M. 11.03.1988: NTC2008: 6.2.1. 6.2.2

D.M. 11.03.1988: NTC2008: 6.2.1. 6.2.2 D.M. 11.03.1988: [ ] la progettazione deve essere basata sulla caratterizzazione geotecnica dei terreni di fondazione, ottenuta a mezzo di rilievi, indagini e prove [ ] NTC2008: [ ] Le scelte progettuali

Dettagli

2. L ENERGIA MECCANICA

2. L ENERGIA MECCANICA . L ENERGIA MECCANICA.1 Il concetto di forza La forza può essere definita come «azione reciproca tra corpi che ne altera lo stato di moto o li deforma: essa é caratterizzata da intensità direzione e verso».

Dettagli

GEOTECNICA. ing. Nunziante Squeglia 13. OPERE DI SOSTEGNO. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura

GEOTECNICA. ing. Nunziante Squeglia 13. OPERE DI SOSTEGNO. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura GEOTECNICA 13. OPERE DI SOSTEGNO DEFINIZIONI Opere di sostegno rigide: muri a gravità, a mensola, a contrafforti.. Opere di sostegno flessibili: palancole metalliche, diaframmi in cls (eventualmente con

Dettagli

Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM

Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM 2 OBIETTIVO: Il modello IS-LM Fornire uno schema concettuale per analizzare la determinazione congiunta della produzione e del tasso

Dettagli

GRANDEZZE ELETTRICHE E COMPONENTI

GRANDEZZE ELETTRICHE E COMPONENTI Capitolo3:Layout 1 17-10-2012 15:33 Pagina 73 CAPITOLO 3 GRANDEZZE ELETTRICHE E COMPONENTI OBIETTIVI Conoscere le grandezze fisiche necessarie alla trattazione dei circuiti elettrici Comprendere la necessità

Dettagli

INTEGRATORE E DERIVATORE REALI

INTEGRATORE E DERIVATORE REALI INTEGRATORE E DERIVATORE REALI -Schemi elettrici: Integratore reale : C1 R2 vi (t) R1 vu (t) Derivatore reale : R2 vi (t) R1 C1 vu (t) Elenco componenti utilizzati : - 1 resistenza da 3,3kΩ - 1 resistenza

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

Corso di Macroeconomia. Il modello IS-LM. Appunti

Corso di Macroeconomia. Il modello IS-LM. Appunti Corso di Macroeconomia Il modello IS-LM Appunti 1 Le ipotesi 1. Il livello dei prezzi è fisso. 2. L analisi è limitata al breve periodo. La funzione degli investimenti A differenza del modello reddito-spesa,

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

PRIMA LEGGE DI OHM OBIETTIVO: NOTE TEORICHE: Differenza di potenziale Generatore di tensione Corrente elettrica

PRIMA LEGGE DI OHM OBIETTIVO: NOTE TEORICHE: Differenza di potenziale Generatore di tensione Corrente elettrica Liceo Scientifico G. TARANTINO ALUNNO: Pellicciari Girolamo VG PRIMA LEGGE DI OHM OBIETTIVO: Verificare la Prima leggi di Ohm in un circuito ohmico (o resistore) cioè verificare che l intensità di corrente

Dettagli

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6 ppunti di Controlli utomatici Capitolo 7 parte II Margini di stabilità Introduzione... Margine di ampiezza... Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di ode... 6 Introduzione

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

Schema piezometrico di un generico impianto di sollevamento.

Schema piezometrico di un generico impianto di sollevamento. La scelta della pompa da inserire in un generico impianto di sollevamento (Figura 9-) che debba sollevare un assegnata portata non è univoca se a priori non sono assegnati anche il tipo e il diametro delle

Dettagli

Fasi del progetto geotecnico di una fondazione

Fasi del progetto geotecnico di una fondazione Fasi del progetto geotecnico di una fondazione 1. Indagini per la caratterizzazione del sottosuolo. Analisi di entità e distribuzione delle azioni di progetto in esercizio (carichi fissi e sovraccarichi

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

RESISTENZA DEL MEZZO [W] [kw] Velocità m/s. Adimensionale Massa volumica kg/m 3. Sezione maestra m 2 POTENZA ASSORBITA DALLA RESISTENZA DEL MEZZO:

RESISTENZA DEL MEZZO [W] [kw] Velocità m/s. Adimensionale Massa volumica kg/m 3. Sezione maestra m 2 POTENZA ASSORBITA DALLA RESISTENZA DEL MEZZO: RSISTZA D MZZO R m 1 C X ρ A v Adimensionale Massa volumica kg/m 3 Velocità m/s Sezione maestra m Valori medi dei coefficienti: Superfici piane normali al moto: acqua: K9,81 60, aria: K9,81 0,08 1 K C

Dettagli

23 CAPITOLO 2: RELAZIONI TRA LE DIVERSE FASI DI UN CAMPIONE DI TERRENO

23 CAPITOLO 2: RELAZIONI TRA LE DIVERSE FASI DI UN CAMPIONE DI TERRENO v 23 CAPITOLO 2: RELAZIONI TRA LE DIERSE FASI DI UN CAMPIONE DI TERRENO CAPITOLO 2: RELAZIONI TRA LE DIERSE FASI DI UN CAMPIONE DI TERRENO Un campione di terreno viene considerato come un sistema multifase,

Dettagli

Caratteristiche fisiche delle terre

Caratteristiche fisiche delle terre 1 Caratteristiche fisiche delle terre Peso volumico reale Il peso volumico reale di una terra è il rapporto tra il peso dei suoi granuli non considerando i vuoti dei pori, e il peso di un uguale volume

Dettagli

LA TERMOLOGIA. studia le variazioni di dimensione di un corpo a causa di una

LA TERMOLOGIA. studia le variazioni di dimensione di un corpo a causa di una LA TERMOLOGIA La termologia è la parte della fisica che si occupa dello studio del calore e dei fenomeni legati alle variazioni di temperatura subite dai corpi. Essa si può distinguere in: Termometria

Dettagli

La conservazione dell energia meccanica

La conservazione dell energia meccanica La conservazione dell energia meccanica Uno sciatore che scende da una pista da sci è un classico esempio di trasformazione di energia. Quando lo sciatore usa gli impianti di risalita per andare in vetta

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

ACCUMULATORI IDRAULICI

ACCUMULATORI IDRAULICI In generale, un accumulatore idraulico può accumulare liquido sotto pressione e restituirlo in caso di necessità; IMPIEGHI 1/2 Riserva di liquido Nei circuiti idraulici per i quali le condizioni di esercizio

Dettagli

Sintesi Scopo Metodo

Sintesi Scopo Metodo Sintesi Scopo: analizzare le variazioni aerodinamiche dovute allo sbandamento in una barca a vela monoscafo. Metodo: - definizione di un modello ideale di vela; - simulazione numerica del flusso d aria

Dettagli

Misure di base su una carta. Calcoli di distanze

Misure di base su una carta. Calcoli di distanze Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,

Dettagli

Docente: Ing. Giuseppe Scasserra

Docente: Ing. Giuseppe Scasserra Prima Facoltà di Architettura Ludovico Quaroni LABORATORIO DI COSTRUZIONI DELL ARCHITETTURA II MODULO DI GEOTECNICA E FONDAZIONI Docente: Ing. Giuseppe Scasserra Dipartimento di Ingegneria Strutturale

Dettagli

8 Elementi di Statistica

8 Elementi di Statistica 8 Elementi di Statistica La conoscenza di alcuni elementi di statistica e di analisi degli errori è importante quando si vogliano realizzare delle osservazioni sperimentali significative, ed anche per

Dettagli

SCORRIMENTO VISCOSO TEORIA E APPLICAZIONI. Scorimento Viscoso Costruzione di Macchine 3

SCORRIMENTO VISCOSO TEORIA E APPLICAZIONI. Scorimento Viscoso Costruzione di Macchine 3 SCORRIMENTO VISCOSO TEORIA E APPLICAZIONI 1 DEFINIZIONI Lo scorrimento viscoso o scorrimento plastico permanente (in inglese creep) è la deformazione permanente di un materiale sottoposto, ad alta temperatura,

Dettagli

- LAVORO - - ENERGIA MECCANICA - - POTENZA -

- LAVORO - - ENERGIA MECCANICA - - POTENZA - Danilo Saccoccioni - LAVORO - - ENERGIA MECCANICA - - POTENZA - Indice Lavoro compiuto da una forza relativo ad uno spostamento pag. 1 Lavoro ed energia cinetica 3 Energia potenziale 4 Teorema di conservazione

Dettagli

Istituto Tecnico per Geometri Corso di Costruzioni Edili

Istituto Tecnico per Geometri Corso di Costruzioni Edili Istituto Tecnico per Geometri Corso di Costruzioni Edili Prof. Giacomo Sacco LEZIONI SUL CEMENTO ARMATO Sforzo normale, Flessione e taglio CONCETTI FONDAMENTALI Il calcestruzzo ha una bassa resistenza

Dettagli

RESISTENZA DEI MATERIALI TEST

RESISTENZA DEI MATERIALI TEST RESISTENZA DEI MATERIALI TEST 1. Nello studio della resistenza dei materiali, i corpi: a) sono tali per cui esiste sempre una proporzionalità diretta tra sollecitazione e deformazione b) sono considerati

Dettagli

Misura di e/m. Marilena Teri, Valerio Toso & Ettore Zaffaroni (gruppo Lu4)

Misura di e/m. Marilena Teri, Valerio Toso & Ettore Zaffaroni (gruppo Lu4) Misura di e/m Marilena Teri, Valerio Toso & Ettore Zaffaroni (gruppo Lu4) 1 Introduzione 1.1 Introduzione ai fenomeni in esame Un elettrone all interno di un campo elettrico risente della forza elettrica

Dettagli

Corso di Geologia Applicata

Corso di Geologia Applicata Scienze e Tecnologie per i Beni Culturali Corso di Geologia Applicata Dott. Maria Chiara Turrini Ripartizione degli sforzi fra fase solida e fase liquida Poiché il terreno è un sistema multifase, il carico

Dettagli

2. TEORIA DEI CARICHI ECCEZIONALI

2. TEORIA DEI CARICHI ECCEZIONALI . TEORIA DEI CARICHI ECCEZIONAI Si vuole costruire un modello di ponte di riferimento e un modello di carico eccezionale che consenta una verifica automatica della possibilità di passaggio del carico su

Dettagli

Insegnamento di Progetto di Infrastrutture viarie

Insegnamento di Progetto di Infrastrutture viarie Insegnamento di Progetto di Infrastrutture viarie Opere in terra Caratteristiche di un terreno Compressibilità e costipamento delle terre Portanza sottofondi e fondazioni stradali Instabilità del corpo

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa Master della filiera cereagricola Giovanni Di Bartolomeo Stefano Papa Facoltà di Agraria Università di Teramo Impresa e mercati Parte prima L impresa L impresa e il suo problema economico L economia studia

Dettagli

Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione. Foronomia

Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione. Foronomia Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione Foronomia In idrostatica era lecito trascurare l attrito interno o viscosità e i risultati ottenuti valevano sia per i liquidi

Dettagli

Calcolo delle molle e dei tamburi per le porte sezionali. http://www.excubia-soft.com

Calcolo delle molle e dei tamburi per le porte sezionali. http://www.excubia-soft.com Calcolo delle molle e dei tamburi per le porte sezionali http://www.excubia-soft.com 1 INTRODUZIONE... 3 I TAMBURI ED IL NUMERO DI GIRI... 4.1 ELEVAZIONE NORMALE CON GUIDE ORIZZONTALI... 4. ELEVAZIONE

Dettagli

1) non deve portare a rottura il terreno sottostante. 2) non deve indurre nel terreno cedimenti eccessivi

1) non deve portare a rottura il terreno sottostante. 2) non deve indurre nel terreno cedimenti eccessivi SICUREZZA e FUNZIONALITÀ delle strutture in elevazione (edificio in c.a., rilevato, etc.) sono garantite anche da alcuni requisiti che il SISTEMA FONDALE deve rispettare. In particolare il carico trasmesso

Dettagli

Analogia tra il circuito elettrico e il circuito idraulico

Analogia tra il circuito elettrico e il circuito idraulico UNIVERSITÁ DEGLI STUDI DELL AQUILA Scuola di Specializzazione per la Formazione degli Insegnanti nella Scuola Secondaria Analogia tra il circuito elettrico e il circuito idraulico Prof. Umberto Buontempo

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente.

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente. CORRENTE ELETTRICA Si definisce CORRENTE ELETTRICA un moto ordinato di cariche elettriche. Il moto ordinato è distinto dal moto termico, che è invece disordinato, ed è sovrapposto a questo. Il moto ordinato

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 Lavoro, forza costante: W = F r Problema 1 Quanto lavoro viene compiuto dalla forza di

Dettagli

STRUTTURE MISTE ACCIAIO-CLS Lezione 2

STRUTTURE MISTE ACCIAIO-CLS Lezione 2 STRUTTURE MISTE ACCIAIO-CLS Lezione 2 I SISTEMI DI CONNESSIONE Tipologie di connettori Calcolo della sollecitazione nei connettori Connettori a totale ripristino di resistenza Connettori a parziale ripristino

Dettagli

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA SOMMARIO: 2.1 La domanda. - 2.2 Costi, economie di scala ed economie di varietà. - 2.2.1 I costi. - 2.2.2 Le economie di scala. - 2.2.3 Le economie di varietà.

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

Imposte ed efficienza economica

Imposte ed efficienza economica Imposte ed efficienza economica Imposte ed efficienza economica Nell immediato, ogni aumento delle imposte fa diminuire il benessere dei contribuenti. Nel lungo periodo, tale diminuzione è compensata dai

Dettagli

Lezione del 5/10/2010 ora 8:30-10:30. Giuseppe Miglino matr. 209769 Domenico Florio matr.

Lezione del 5/10/2010 ora 8:30-10:30. Giuseppe Miglino matr. 209769 Domenico Florio matr. Giuseppe Miglino matr. 209769 Domenico Florio matr. Lezione del 5/10/2010 ora 8:30-10:30 INDICE della lezione del 5/10/2010 argomento: Essiccamento Introduzione 1 Il legame tra il grado igrometrico e il

Dettagli

n matr.145817 23. 01. 2003 ore 8:30-10:30

n matr.145817 23. 01. 2003 ore 8:30-10:30 Matteo Vecchi Lezione del n matr.145817 23. 01. 2003 ore 8:30-10:30 Il Moto Esterno Con il termine moto esterno intendiamo quella branca della fluidodinamica che studia il moto dei fluidi attorno ad un

Dettagli

CAPITOLO 5 IDRAULICA

CAPITOLO 5 IDRAULICA CAPITOLO 5 IDRAULICA Cap. 5 1 FLUIDODINAMICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO'

Dettagli

Edifici antisismici in calcestruzzo armato. Aurelio Ghersi

Edifici antisismici in calcestruzzo armato. Aurelio Ghersi Incontro di aggiornamento Edifici antisismici in calcestruzzo armato Aspetti strutturali e geotecnici secondo le NTC08 1 Esame visivo della struttura Orizzonte Hotel, Acireale 16-17 dicembre 2010 Aurelio

Dettagli

IL TRACCIAMENTO QUALITATIVO DEL MOMENTO FLETTENTE NEI PORTALI

IL TRACCIAMENTO QUALITATIVO DEL MOMENTO FLETTENTE NEI PORTALI IL TRACCIAMENTO QUALITATIVO DEL MOMENTO FLETTENTE NEI PORTALI Alcune proprietà della deformata dei portali Si esaminano nel seguito alcune proprietà della deformata dei portali. Queste proprietà permettono

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

QUADRO RIASSUNTIVO PROVE GEOTECNICHE DI LABORATORIO

QUADRO RIASSUNTIVO PROVE GEOTECNICHE DI LABORATORIO Studio Tecnico Geol. Domenico Laviola - Corso Metaponto 13, 75015 Pisticci (MT) Tel/Fax 0835582716 Cell 3385236805 e-mail: laviolam@alice.it REGIONE BASILICATA COMUNE DI MELFI PROGETTO PER LA REALIZZAZIONE

Dettagli

14.4 Pompe centrifughe

14.4 Pompe centrifughe 14.4 Pompe centrifughe Le pompe centrifughe sono molto diffuse in quanto offrono una notevole resistenza all usura, elevato numero di giri e quindi facile accoppiamento diretto con i motori elettrici,

Dettagli

Modulo di Meccanica e Termodinamica

Modulo di Meccanica e Termodinamica Modulo di Meccanica e Termodinamica 1) Misure e unita di misura 2) Cinematica: + Moto Rettilineo + Moto Uniformemente Accelerato [+ Vettori e Calcolo Vettoriale] + Moti Relativi 3) Dinamica: + Forza e

Dettagli

Capitolo 22: Lo scambio nel mercato dei capitali

Capitolo 22: Lo scambio nel mercato dei capitali Capitolo 22: Lo scambio nel mercato dei capitali 22.1: Introduzione In questo capitolo analizziamo lo scambio nel mercato dei capitali, dove si incontrano la domanda di prestito e l offerta di credito.

Dettagli

Idrogeologia. Velocità media v (m/s): nel moto permanente è inversamente proporzionale alla superficie della sezione. V = Q [m 3 /s] / A [m 2 ]

Idrogeologia. Velocità media v (m/s): nel moto permanente è inversamente proporzionale alla superficie della sezione. V = Q [m 3 /s] / A [m 2 ] Idrogeologia Oltre alle proprietà indici del terreno che servono a classificarlo e che costituiscono le basi per utilizzare con facilità l esperienza raccolta nei vari problemi geotecnici, è necessario

Dettagli