Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro"

Transcript

1 Segnali e Sistemi Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione 2. Notazione Classificazione dei segnali 3 2. Segnali a tempo continuo e a tempo discreto Segnali pari, dispari, periodici Segnali singoli e multipli Energia e potenza di un segnale Classificazione dei sistemi 6 3. Sistemi puramente algebrici e sistemi dinamici Sistemi causali e non causali Sistemi lineari e non lineari Sistemi stazionari e non stazionari Sistemi stabili e instabili ingresso limitato-uscita limitata Lo stato iniziale dei sistemi dinamici causali

2 Introduzione Questo fascicoletto riporta alcuni complementi allo studio di Controlli Automatici.. Notazione appartenente a per ogni R insieme dei numeri reali R n insieme delle n-uple (vettori) di numeri reali C insieme dei numeri complessi C n insieme delle n-uple (vettori) di numeri complessi x coniugato del numero complesso x Z insieme dei numeri interi C classe delle funzioni limitate e continue a tratti C i classe delle funzioni derivabili i volte q.o. con i-esima derivata C x( ) segnale a tempo continuo (x : R R o x : R C) x( ) segnale a tempo discreto (x : Z R o x : Z C) [α,β] intervallo chiuso [α,β) intervallo aperto a destra 2

3 2 Classificazione dei segnali Un segnale è una funzione che rappresenta il succedersi dei valori di una grandezza fisica variabile nel tempo. 2. Segnali a tempo continuo e a tempo discreto I segnali possono essere a tempo continuo o a tempo discreto. Questi si rappresentano tipicamente come è indicato in Fig.. Con il simbolo x( ) o x( ) si indicherà l intero segnale a tempo continuo o discreto (la tilde caratterizza il tempo discreto), mentre con x(t) o x(k) si indicherà il valore del segnale all istante t o k. x x -5 t k Figura : Segnali a tempo continuo e a tempo discreto. Si noti che in entrambe le rappresentazioni è stata definita ed indicata con un origine dei tempi, che determina la scala dei tempi. Quando l intervallo di tempo in cui è definito il segnale non è specificato, si assume implicitamente che sia t (, ) o k (, ). In altri casi esso viene dato, ad esempio t o k, oppure t [t a,t b ] o k [k a,k b ]. Anche l intervallo dei valori che può assumere il segnale può essere o non essere esplicitamente specificato. Esempi di segnali a tempo continuo: la temperatura in un ambiente, la corrente in un circuito elettrico, la pressione dell aria in un punto, che produce un suono, rivelabile dall orecchio o da un microfono. Il microfono è un trasduttore, cioè un dispositivo che converte un segnale (pressione dell aria) in un segnale di diverso tipo (tensione elettrica fra due terminali o corrente elettrica in un circuito). Esempi di segnali a tempo discreto: l indice di chiusura giornaliero della Borsa di Milano, il traffico giornaliero in una stazione ferroviaria. I segnali deterministici sono segnali i cui valori sono completamente assegnati in ogni istante, mentre i segnali stocastici sono caratterizzati solo statisticamente. Ad esempio l indice di chiusura giornaliero della Borsa di Milano per 3

4 il passato è un segnale deterministico, per il futuro è un segnale stocastico. Nel nostro contesto ci si occuperà solo di segnali deterministici. x, x x,x t,k k,t Figura 2: Conversione da tempo continuo a tempo discreto e viceversa. Spesso i segnali a tempo discreto si ottengono eseguendo il campionamento di segnali a tempo continuo, come è indicato in Fig.2 a sinistra. Al campionamento in genere è associata la quantizzazione: al valore del segnale a tempo continuo, espresso da un numero reale, viene associato un valore numerico espresso da un numero finito di cifre, per cui esso può variare solo per incrementi finiti in un dato intervallo. La conversione inversa, da segnali a tempo continuo a segnali a tempo discreto, viene eseguita mediante dispositivi di tenuta, come è indicato in Fig.2 a destra. I segnali a tempo continuo a valori reali si dicono anche segnali analogici, mentre i segnali a tempo discreto e a valori discreti si dicono segnali digitali. I dispositivi che eseguono la conversione da segnali analogici a segnali digitali si dicono convertitori analogico-digitale, mentre i dispositivi che eseguono la conversione inversa si dicono convertitori digitale-analogico. I due tipi di dispositivi vengono rappresentati negli schemi a blocchi come è indicato in Fig.3. x x x x A/D D/A Figura 3: Convertitore analogico-digitale e digitale-analogico. Esempio: un suono registrato su un CD audio è campionato e quantizzato e può essere riconvertito in segnale a tempo continuo mediante un dispositivo di tenuta, amplificato e riconvertito in suono con un altoparlante. È intuitivo che se il campionamento avviene a frequenza sufficientemente elevata e la quantizzazione è sufficientemente fine la conversione di un segnale 4

5 analogico (a valori reali in un dato intervallo) in un segnale digitale (con un numero finito di valori in un dato intervallo) e la conversione inversa possono essere eseguite con errore trascurabile. 2.2 Segnali pari, dispari, periodici Un segnale si dice pari se soddisfa la relazione x( t) = x(t) t o x( k) = x(k) k Un segnale si dice dispari se soddisfa la relazione x( t) = x(t) t o x( k) = x(k) k Gli esempi più comuni di segnali pari e dispari sono, rispettivamente, i segnali x(t) = cos(ωt) e x(t) = sin(ωt). Un segnale si dice periodico di periodo T o N se soddisfa la relazione x(t + T) = x(t) t o x(k + N) = x(k) k Il periodo fondamentale T o N è il più piccolo valore di T o N per cui le precedenti relazioni sono soddisfatte. 2.3 Segnali singoli e multipli Nelle precedenti considerazioni con i simboli x( ) o x( ) ci si può riferire ad una funzione che lega un solo valore reale alla variabile indipendente tempo o ad una funzione che lega un vettore (n-upla di numeri reali) alla variabile indipendente tempo. Nei due casi il segnale si dice rispettivamente singolo o multiplo. 2.4 Energia e potenza di un segnale L energia di un segnale a tempo continuo o discreto si definisce come E = x(t) 2 dt o E = k= x(k) 2 La potenza media o valore efficace di un segnale a tempo continuo o discreto si definisce come P = lim T T T/2 T/2 x(t) 2 dt o P = lim N 5 2N + N k= N x(k) 2

6 x x t t Figura 4: Segnale a energia finita e a potenza media finita. Esempi di segnali a tempo continuo ad energia finita e potenza media finita sono rappresentati in Fig.4. Per segnali periodici il valore efficace si riferisce al periodo e si definisce come P = x(t) 2 dt o P = x(k) 2 () T N T 3 Classificazione dei sistemi Un sistema è un modello matematico approssimante il comportamento di un processo fisico, che lega un segnale di uscita o risposta y( ) ad un segnale di ingresso o eccitazione x( ). N x sistema monovariabile y x x 2 x p sistema multivariabile y y 2 y q Figura 5: Sistema monovariabile e sistema multivariabile. I sistemi si dicono a tempo continuo o a tempo discreto, a seconda del tipo di segnale da essi elaborato. Nel caso dei sistemi a tempo continuo il segnale di ingresso si suppone limitato e continuo a tratti (cioè con un numero finito di punti di discontinuità per ogni intervallo temporale di misura finita), mentre nel caso dei sistemi a tempo discreto il segnale di ingresso si suppone limitato. Quindi un sistema equivale ad una trasformazione fra due funzioni. Nel caso dei sistemi a tempo continuo si può scrivere y( ) = F ( x( ) ) con x( ), y( ) definite in t (, ) (2) 6

7 mentre nel caso dei sistemi a tempo discreto si ha ỹ( ) = F ( x( ) ) con x( ), ỹ( ) definite in k (, ) (3) I segnali di ingresso e di uscita possono essere singoli o multipli. Nel primo caso il sistema si dice monovariabile o SISO (single input-single output), nel secondo si dice multivariabile o MIMO (multi input-multi output). In questo secondo caso il valore della funzione di ingresso è un vettore a p componenti reali e quello della funzione di uscita è un vettore a q componenti reali. Gli schemi corrispondenti sono rappresentati in Fig Sistemi puramente algebrici e sistemi dinamici Un sistema si dice puramente algebrico o privo di memoria se la sua uscita all istante generico t o k dipende solo dal valore dell ingresso in quello stesso istante. In caso contrario il sistema si dice dinamico o fornito di memoria. R R v i R 2 v u v i C v u Figura 6: Sistema puramente algebrico e sistema dinamico. Esempi: Le relazioni v u (t) = R 2 v u (t) = R C R + R 2 v i (t), t (, ) (4) t ( vi (τ) v u (τ) ) dτ, t,τ (, ) (5) che si riferiscono ai circuiti elettrici di Fig.6, descrivono rispettivamente un sistema a tempo continuo privo di memoria e un sistema a tempo continuo fornito di memoria. Le relazioni ỹ(k) = k 2 x(k), k (, ) (6) ỹ(k) = k h= x(h), k,h (, ) (7) 7

8 descrivono rispettivamente un sistema a tempo discreto privo di memoria e un sistema a tempo discreto fornito di memoria. 3.2 Sistemi causali e non causali Un sistema si dice causale se per ogni valore del tempo l uscita y(t) o ỹ(k) all istante generico t o k dipende solo dai valori dell ingresso all istante attuale o agli istanti precedenti, cioè da valori della funzione x(τ), τ (,t] o x(h), h (,k]. In caso contrario il sistema si dice non causale. Esempi. I sistemi (4), (5), (6), (7) sono causali. Altri esempi di sistemi causali sono y(t) = x(t t ), t (, ) (8) ỹ(k) = x(k k ), k (, ) (9) con t reale non negativo e k intero non negativo. Questi sistemi sono detti ritardi finiti, in quanto il segnale di uscita è uguale al segnale di ingresso ritardato di t o k, mentre i sistemi y(t) = x(t + t ), t (, ) () ỹ(k) = x(k + k ), k (, ) () detti anticipi finiti, sono non causali. L integratore y(t) = t è un sistema causale, mentre il derivatore x(τ)dτ, t,τ (, ) (2) y(t) = d x(t), t (, ) (3) dt è non causale. Si considerino infatti i segnali gradino unitario, rappresentato a sinistra in Fig.7 e rampa unitaria, rappresentato a destra nella stessa figura. Per integrare il gradino ricavandone la rampa è sufficiente conoscerne i valori fino all istante attuale, mentre il calcolo della derivata della rampa all istante è un operazione non causale, in quanto per eseguire il limite destro (e quindi ricostruire la discontinuità del gradino) occorre conoscere valori futuri. 3.3 Sistemi lineari e non lineari Un sistema a tempo continuo descritto dall equazione (2), si dice lineare se, essendo y ( ) = F ( x ( ) ), y 2 ( ) = F ( x 2 ( ) ) 8

9 t t Figura 7: Gradino unitario e rampa unitaria. vale la relazione α y ( ) + α 2 y 2 ( ) = F ( α x ( ) + α 2 x 2 ( ) ) per ogni coppia di numeri reali α, α 2. La definizione di linearità per un sistema a tempo discreto descritto dall equazione (3) è del tutto analoga. Un sistema che non sia lineare si dice non lineare. Esempi: i sistemi (4), (5), (6), (8), (9), (), (), (2), (3) sono lineari, mentre il sistema (7) è non lineare. 3.4 Sistemi stazionari e non stazionari Un sistema a tempo continuo si dice stazionario o tempo invariante se una traslazione nel tempo in anticipo o in ritardo del segnale di ingresso produce la stessa traslazione nel tempo del segnale di uscita, cioè se y(t t ) = F ( x(t t ) ), t (, ) per ogni valore reale di t, positivo o negativo. Un sistema che non sia stazionario si dice non stazionario o tempo variante. Analogamente, per un sistema a tempo discreto la stazionarietà corrisponde alla relazione ỹ(k k ) = F ( x(k k ) ), k (, ) per ogni valore intero di k, positivo o negativo. Esempi: i sistemi (4), (5), (7), (8), (9), (), (), (2), (3) sono stazionari, mentre il sistema (6) è non stazionario. 3.5 Sistemi stabili e instabili ingresso limitato-uscita limitata Un sistema a tempo continuo si dice stabile ingresso limitato-uscita limitata (i.l.u.l.) se per ogni costante reale k tale che il segnale di ingresso soddisfi 9

10 la relazione x(t) k, t (, ) esiste una costante reale k 2 tale che il corrispondente segnale di uscita soddisfa la relazione y(t) k 2, t (, ) Un sistema che non sia stabile i.l.u.l. si dice instabile ingresso limitato-uscita limitata. Nel caso dei sistemi a tempo discreto la definizione di stabilità i.l.u.l. è del tutto analoga. Esempi: i sistemi (4), (5), (7), (8), (9), (), (), (3) sono stabili i.l.u.l., mentre i sistemi (6), (2) sono instabili i.l.u.l. 3.6 Lo stato iniziale dei sistemi dinamici causali In molti casi il comportamento dei sistemi dinamici causali viene analizzato a partire da un certo istante, in genere l origine dell asse tempi. In questi casi in luogo dei modelli (2), (3) si usano modelli del tipo y( ) = F ( s,x( ) ) con x( ), y( ) definite in t [, ) (4) ỹ( ) = F ( s, x( ) ) con x( ), ỹ( ) definite in k [, ) (5) in cui s indica lo stato iniziale, consistente in un parametro (numero reale, vettore o funzione) che compendia l informazione necessaria per determinare il comportamento futuro del sistema. In questi casi si definisce la risposta libera, cioè dovuta al solo stato iniziale, con segnale di ingresso identicamente nullo y ( ) = F(s, ), ỹ ( ) = F(s, ) e la risposta forzata, dovuta al solo segnale di ingresso, con stato iniziale nullo, y 2 ( ) = F (,x( ) ), ỹ 2 ( ) = F (, x( ) ) Nel caso dei sistemi lineari la risposta è data dalla somma della risposta libera e della risposta forzata ed entrambe le risposte sono funzioni lineari. Esempi: il sistema (5) si può descrivere con la relazione v u (t) = s + R C t ( vi (τ) v u (τ) ) dτ, t,τ [, ) (6) con s =v u (). La conoscenza della tensione di carica del condensatore all istante t = equivale pertanto alla conoscenza del segnale di ingresso v i ( )

11 nell intervallo t (, ). Il sistema (7) equivale a k ỹ(k) = s + x(h), s = ỹ(), k,h [, ) h= Il sistema (2) equivale a y(t) = s + t x(τ)dτ, s = y(), t,τ [, )

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Introduzione all Analisi dei Segnali

Introduzione all Analisi dei Segnali Tecniche innovative per l identificazione delle caratteristiche dinamiche delle strutture e del danno Introduzione all Analisi dei Segnali Prof. Ing. Felice Carlo PONZO - Ing. Rocco DITOMMASO Scuola di

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

Introduzione all analisi dei segnali digitali.

Introduzione all analisi dei segnali digitali. Introduzione all analisi dei segnali digitali. Lezioni per il corso di Laboratorio di Fisica IV Isidoro Ferrante A.A. 2001/2002 1 Segnali analogici Si dice segnale la variazione di una qualsiasi grandezza

Dettagli

CONVERSIONE ANALOGICA DIGITALE (ADC)(A/D) CONVERSIONE DIGITALE ANALOGICA (DAC)(D/A)

CONVERSIONE ANALOGICA DIGITALE (ADC)(A/D) CONVERSIONE DIGITALE ANALOGICA (DAC)(D/A) CONVERSIONE ANALOGICA DIGITALE (ADC)(A/D) CONVERSIONE DIGITALE ANALOGICA (DAC)(D/A) ELABORAZIONE ANALOGICA O DIGITALE DEI SEGNALI ELABORAZIONE ANALOGICA ELABORAZIONE DIGITALE Vantaggi dell elaborazione

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

Fondamenti di Automatica. Modellistica dei sistemi dinamici a tempo discreto

Fondamenti di Automatica. Modellistica dei sistemi dinamici a tempo discreto Fondamenti di Automatica Modellistica dei sistemi dinamici a tempo discreto Sistemi dinamici a tempo discreto I sistemi dinamici a tempo discreto sono sistemi in cui tutte le grandezze variabili sono funzioni

Dettagli

Sistema dinamico a tempo continuo

Sistema dinamico a tempo continuo Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2 Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo:

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo: .5 Stabilità dei sistemi dinamici 9 Risulta: 3 ( s(s + 4).5 Stabilità dei sistemi dinamici Si è visto come un sistema fisico può essere descritto tramite equazioni differenziali o attraverso una funzione

Dettagli

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO MOD. 1 Sistemi di controllo e di regolazione. Si tratta di un ripasso di una parte di argomenti effettuati l anno scorso. Introduzione. Schemi a blocchi di

Dettagli

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte b Bipoli elettrici - potenza entrante Tensione e corrente su di un bipolo si possono misurare secondo la convenzione

Dettagli

Prova scritta di Controlli Automatici

Prova scritta di Controlli Automatici Prova scritta di Controlli Automatici Corso di Laurea in Ingegneria Meccatronica, AA 2011 2012 10 Settembre 2012 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare

Dettagli

Sistemi e modelli matematici

Sistemi e modelli matematici 0.0.. Sistemi e modelli matematici L automazione è un complesso di tecniche volte a sostituire l intervento umano, o a migliorarne l efficienza, nell esercizio di dispositivi e impianti. Un importante

Dettagli

La prove dinamiche sugli edifici II parte strumentazione e analisi dei segnali

La prove dinamiche sugli edifici II parte strumentazione e analisi dei segnali La prove dinamiche sugli edifici II parte strumentazione e analisi dei segnali Luca Facchini e-mail: luca.facchini@unifi.it Introduzione Quali strumenti vengono utilizzati? Le grandezze di interesse nelle

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013 Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici a Corrente Alternata Sergio Benenti 7 settembre 2013? ndice 2 Circuiti elettrici a corrente alternata 1 21 Circuito

Dettagli

Fondamenti di Informatica Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio

Fondamenti di Informatica Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma Fondamenti di Informatica Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio Rappresentazione dell Informazione

Dettagli

Università degli Studi di Cassino e del Lazio Meridionale. Area Didattica di Ingegneria. Corso di Laurea in Ingegneria Industriale

Università degli Studi di Cassino e del Lazio Meridionale. Area Didattica di Ingegneria. Corso di Laurea in Ingegneria Industriale Università degli Studi di Cassino e del Lazio Meridionale Area Didattica di Ingegneria Corso di Laurea in Ingegneria Industriale Lezioni del Corso di Misure Industriali 1 Università degli Studi di Cassino

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI Fondamenti di segnali Fondamenti e trasmissione TLC Proprieta della () LINEARITA : la della combinazione lineare (somma pesata) di due segnali e uguale alla

Dettagli

Sistemi e modelli. Sistemi e modelli

Sistemi e modelli. Sistemi e modelli Sistemi e modelli Sistemi e modelli Sistema (processo): insieme di più parti legate da qualche forma di relazione. Sistema: oggetto, dispositivo o fenomeno la cui interazione con l ambiente circostante

Dettagli

Informatica per la Storia dell Arte

Informatica per la Storia dell Arte Università degli Studi di Palermo Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica Informatica per la Storia dell Arte Anno Accademico 2014/2015 Docente: ing. Salvatore Sorce Rappresentazione

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

Conversione analogico digitale

Conversione analogico digitale Conversione analogico digitale L elettronica moderna ha spostato la maggior parte delle applicazioni nel mondo digitale in quanto i sistemi a microprocessore sono diventati più veloci ed economici rispetto

Dettagli

Retroazione In lavorazione

Retroazione In lavorazione Retroazione 1 In lavorazione. Retroazione - introduzione La reazione negativa (o retroazione), consiste sostanzialmente nel confrontare il segnale di uscita e quello di ingresso di un dispositivo / circuito,

Dettagli

Il Campionameto dei segnali e la loro rappresentazione. 1 e prende il nome frequenza di

Il Campionameto dei segnali e la loro rappresentazione. 1 e prende il nome frequenza di Il Campionameto dei segnali e la loro rappresentazione Il campionamento consente, partendo da un segnale a tempo continuo ovvero che fluisce con continuità nel tempo, di ottenere un segnale a tempo discreto,

Dettagli

Amplificatori Audio di Potenza

Amplificatori Audio di Potenza Amplificatori Audio di Potenza Un amplificatore, semplificando al massimo, può essere visto come un oggetto in grado di aumentare il livello di un segnale. Ha quindi, generalmente, due porte: un ingresso

Dettagli

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6 ppunti di Controlli utomatici Capitolo 7 parte II Margini di stabilità Introduzione... Margine di ampiezza... Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di ode... 6 Introduzione

Dettagli

Sistemi LSTD: rappresentazione esplicita

Sistemi LSTD: rappresentazione esplicita Trasformata Zeta Outline Sistemi LSTD: rappresentazione esplicita x(k+1) = Ax(k)+Bu(k), x R n, u R m, k Z y(k) = Cx(k)+Du(k), y R p x R n : vettore delle variabili di stato; u R m : vettore dei segnali

Dettagli

Sensori e trasduttori. Dispense del corso ELETTRONICA L Luca De Marchi

Sensori e trasduttori. Dispense del corso ELETTRONICA L Luca De Marchi Sensori e trasduttori Dispense del corso ELETTRONICA L Luca De Marchi Gli Obiettivi Struttura generale di sistemi di controllo e misura Sensori, trasduttori, attuatori Prima classificazione dei sistemi-sensori

Dettagli

Sistemi e modelli (ver. 1.2)

Sistemi e modelli (ver. 1.2) Sistemi e modelli (ver..2). Elementi introduttivi L Automatica studia l analisi dei sistemi dinamici ed il progetto dei controlli automatici, ovvero la realizzazione di dispositivi utilizzati per imporre

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

RISONANZA. Introduzione. Risonanza Serie.

RISONANZA. Introduzione. Risonanza Serie. RISONANZA Introduzione. Sia data una rete elettrica passiva, con elementi resistivi e reattivi, alimentata con un generatore di tensione sinusoidale a frequenza variabile. La tensione di alimentazione

Dettagli

STRUMENTAZIONE E MISURE ELETTRICHE. Condizionamento ed acquisizione del segnale

STRUMENTAZIONE E MISURE ELETTRICHE. Condizionamento ed acquisizione del segnale STRUMENTAZIONE E MISURE ELETTRICHE Condizionamento ed acquisizione del segnale Prof. Salvatore Nuccio salvatore.nuccio@unipa.it, tel.: 0916615270 1 Circuito di condizionamento Un sensore/trasduttore (S/T)

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

TEORIA DEI SEGNALI. Introduzione. La Comunicazione

TEORIA DEI SEGNALI. Introduzione. La Comunicazione TEORIA DEI SEGNALI Introduzione L obiettivo principale di un servizio di telecomunicazione è il trasferimento dell'informazione emessa da una sorgente agli utenti cui è destinata, nell'ambito di una particolare

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Modellazione e Analisi di Reti Elettriche

Modellazione e Analisi di Reti Elettriche Modellazione e Analisi di eti Elettriche Modellazione e Analisi di eti Elettriche Davide Giglio Introduzione alle eti Elettriche e reti elettriche costituite da resistori, condensatori e induttori (bipoli),

Dettagli

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI Fondamenti di Automatica Unità 2 Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo

Dettagli

Esercizi proposti di Fondamenti di Automatica - Parte 4

Esercizi proposti di Fondamenti di Automatica - Parte 4 Esercizi proposti di Fondamenti di Automatica - Parte 4 2 Aprile 26 Sia dato il sistema di controllo a controreazione di Fig. 1, in cui il processo ha funzione di trasferimento P (s) = 1 (1 +.1s)(1 +.1s).

Dettagli

Strumenti Digitali. Corso di Misure Elettriche http://sms.unipv.it/misure/

Strumenti Digitali. Corso di Misure Elettriche http://sms.unipv.it/misure/ Strumenti Digitali Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

IL MODELLO DI MICHAELIS E MENTEN PER LA CINETICA ENZIMATICA.

IL MODELLO DI MICHAELIS E MENTEN PER LA CINETICA ENZIMATICA. CORSO DI CHIMICA E PROPEDEUTICA BIOCHIMICA FACOLTA DI MEDICINA E CHIRURGIA. IL MODELLO DI MICHAELIS E MENTEN PER LA CINETICA ENZIMATICA. Un enzima è una proteina capace di catalizzare una specifica reazione

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA

ISTITUTO D ISTRUZIONE SUPERIORE L. EINAUDI ALBA ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA CLASSE 5H Docenti: Raviola Giovanni Moreni Riccardo Disciplina: Sistemi elettronici automatici PROGETTAZIONE DIDATTICA ANNUALE COMPETENZE FINALI Al termine

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

Specializzazione Elettronica ed Elettrotecnica Articolazione Automazione. Elettronica ed Elettrotecnica - Classe 3^

Specializzazione Elettronica ed Elettrotecnica Articolazione Automazione. Elettronica ed Elettrotecnica - Classe 3^ Specializzazione Elettronica ed Elettrotecnica Articolazione Automazione Elettronica ed Elettrotecnica - Classe 3^ Elettrotecnica Tipologie di segnali Unità di misura delle grandezze elettriche Simbologia

Dettagli

INTRODUZIONE ALLE SERIE DI FOURIER. poi più in generale la somma dei termini da 0 ad n (che chiamerò s n )

INTRODUZIONE ALLE SERIE DI FOURIER. poi più in generale la somma dei termini da 0 ad n (che chiamerò s n ) INTRODUZIONE ALLE SERIE DI FOURIER. Definizione di Serie Data una successione di numeri reali a k posso considerare la somma dei numeri da 0 a 5 (che chiamerò s 5 ): 5 s 5 = a k = a 0 + a + a + a 3 + a

Dettagli

Corso di Elettronica di Potenza (12 CFU) ed Elettronica Industriale (6 CFU) Convertitori c.c.-c.c. 2/83

Corso di Elettronica di Potenza (12 CFU) ed Elettronica Industriale (6 CFU) Convertitori c.c.-c.c. 2/83 I convertitori c.c.-c.c. monodirezionali sono impiegati per produrre in uscita un livello di tensione diverso da quello previsto per la sorgente. Verranno presi in considerazione due tipi di convertitori

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

U 1 . - - . - - Interfaccia. U m

U 1 . - - . - - Interfaccia. U m Introduzione La teoria delle reti logiche tratta problemi connessi con la realizzazione e il funzionamento di reti per l elaborazione dell informazione (il termine logico deriva dalla stretta parentela

Dettagli

Trasformate di Laplace

Trasformate di Laplace TdL 1 TdL 2 Trasformate di Laplace La trasformata di Laplace e un OPERATORE funzionale Importanza dei modelli dinamici Risolvere equazioni differenziali (lineari a coefficienti costanti) Tempo t Dominio

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

INTRODUZIONE AL CONTROLLO OTTIMO

INTRODUZIONE AL CONTROLLO OTTIMO INTRODUZIONE AL CONTROLLO OTTIMO Teoria dei Sistemi Ingegneria Elettronica, Informatica e TLC Prof. Roberto Zanasi, Dott. Giovanni Azzone DII - Università di Modena e Reggio Emilia AUTOLAB: Laboratorio

Dettagli

Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo

Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo Esercitazioni di Controlli Automatici LS (Prof. C. Melchiorri) Si consideri il motore elettrico

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Funzioni di trasferimento

Dettagli

Generatore di forza elettromotrice f.e.m.

Generatore di forza elettromotrice f.e.m. Generatore di forza elettromotrice f.e.m. Un dispositivo che mantiene una differenza di potenziale tra una coppia di terminali batterie generatori elettrici celle solari termopile celle a combustibile

Dettagli

Parte II Indice. Operazioni aritmetiche tra valori rappresentati in binario puro. Rappresentazione di numeri con segno

Parte II Indice. Operazioni aritmetiche tra valori rappresentati in binario puro. Rappresentazione di numeri con segno Parte II Indice Operazioni aritmetiche tra valori rappresentati in binario puro somma sottrazione Rappresentazione di numeri con segno modulo e segno complemento a 2 esercizi Operazioni aritmetiche tra

Dettagli

SISTEMI DI ACQUISIZIONE

SISTEMI DI ACQUISIZIONE SISTEMI DI ACQUISIZIONE Introduzione Lo scopo dei sistemi di acquisizione dati è quello di controllo delle grandezze fisiche sia nella ricerca pura, nelle aziende e, per i piccoli utenti. I vantaggi sono:

Dettagli

Informatica. Rappresentazione binaria Per esempio +101010000 diventa +0.10101 10 18/10/2007. Introduzione ai sistemi informatici 1

Informatica. Rappresentazione binaria Per esempio +101010000 diventa +0.10101 10 18/10/2007. Introduzione ai sistemi informatici 1 Informatica Pietro Storniolo storniolo@csai.unipa.it http://www.pa.icar.cnr.it/storniolo/info200708 Numeri razionali Cifre più significative: : sono le cifre associate ai pesi maggiori per i numeri maggiori

Dettagli

L effetto prodotto da un carico attivo verrà, pertanto, analizzato solo nel caso di convertitore monofase.

L effetto prodotto da un carico attivo verrà, pertanto, analizzato solo nel caso di convertitore monofase. Come nel caso dei convertitori c.c.-c.c., la presenza di un carico attivo non modifica il comportamento del convertitore se questo continua a funzionare con conduzione continua. Nei convertitori trifase

Dettagli

Capitolo 2. Un introduzione all analisi dinamica dei sistemi

Capitolo 2. Un introduzione all analisi dinamica dei sistemi Capitolo 2 Un introduzione all analisi dinamica dei sistemi Obiettivo: presentare una modellistica di applicazione generale per l analisi delle caratteristiche dinamiche di sistemi, nota come system dynamics,

Dettagli

Acquisizione dati e digitalizzazione

Acquisizione dati e digitalizzazione Acquisizione dati e digitalizzazione Il trattamento digitale dei dati Informatica ed elettronica sono due discipline innovative che hanno caratterizzato l epoca moderna. Queste due discipline operano in

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI 31 CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI INTRODUZIONE L'obbiettivo di questo capitolo è quello di presentare in modo sintetico ma completo, la teoria della stabilità

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondamenti di segnali Fondamenti e trasmissione TLC Definizione di sistema Sistema: Da un punto di vista fisico e un dispositivo che modifica un segnale x(, detto ingresso,

Dettagli

E possibile classificazione i trasduttori in base a diversi criteri, ad esempio: Criterio Trasduttori Caratteristiche

E possibile classificazione i trasduttori in base a diversi criteri, ad esempio: Criterio Trasduttori Caratteristiche PREMESSA In questa lezione verranno illustrate la classificazione delle diverse tipologie di trasduttori utilizzati nei sistemi di controllo industriali ed i loro parametri caratteristici. CLASSIFICAZIONE

Dettagli

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente.

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente. CORRENTE ELETTRICA Si definisce CORRENTE ELETTRICA un moto ordinato di cariche elettriche. Il moto ordinato è distinto dal moto termico, che è invece disordinato, ed è sovrapposto a questo. Il moto ordinato

Dettagli

Criteri di stabilità (ver. 1.2)

Criteri di stabilità (ver. 1.2) Criteri di stabilità (ver. 1.2) 1 1.1 Il concetto di stabilità Il concetto di stabilità è piuttosto generale e può essere definito in diversi contesti. Per i problemi di interesse nell area dei controlli

Dettagli

5 Amplificatori operazionali

5 Amplificatori operazionali 5 Amplificatori operazionali 5.1 Amplificatore operazionale: caratteristiche, ideale vs. reale - Di seguito simbolo e circuito equivalente di un amplificatore operazionale. Da notare che l amplificatore

Dettagli

Gestione dei segnali analogici nei sistemi di automazione industriale con PLC.

Gestione dei segnali analogici nei sistemi di automazione industriale con PLC. Gestione dei segnali analogici nei sistemi di automazione industriale con PLC. Nelle automazioni e nell industria di processo si presenta spesso il problema di gestire segnali analogici come temperature,

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. Analisi

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

FUNZIONE REALE DI UNA VARIABILE

FUNZIONE REALE DI UNA VARIABILE FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A

Dettagli

Revisione dei concetti fondamentali dell analisi in frequenza

Revisione dei concetti fondamentali dell analisi in frequenza Revisione dei concetti fondamentali dell analisi in frequenza rgomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

Suono: aspetti fisici. Tutorial a cura di Aldo Torrebruno

Suono: aspetti fisici. Tutorial a cura di Aldo Torrebruno Suono: aspetti fisici Tutorial a cura di Aldo Torrebruno 1. Cos è il suono Il suono è generalmente prodotto dalla vibrazione di corpi elastici sottoposti ad urti o sollecitazioni (corde vocali, corde di

Dettagli

Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi.

Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. Algoritmi 1 Sommario Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. 2 Informatica Nome Informatica=informazione+automatica. Definizione Scienza che si occupa dell

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Sistema acquisizione dati

Sistema acquisizione dati 12 Sistema acquisizione dati 3.1 Introduzione: Per convertire i segnali analogici trasmessi dai sensori in segnali digitali dobbiamo usare i convertitori analogici digitali o più comunemente chiamati ADC(Analog-to-Digital

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

La funzione di trasferimento

La funzione di trasferimento Sommario La funzione di trasferimento La funzione di trasferimento Poli e zeri della funzione di trasferimento I sistemi del primo ordine Esempi La risposta a sollecitazioni La funzione di trasferimento

Dettagli

Lezione 8: Suono (1) Sommario. Informatica Multimediale. Docente: Umberto Castellani

Lezione 8: Suono (1) Sommario. Informatica Multimediale. Docente: Umberto Castellani Lezione 8: Suono (1) Informatica Multimediale Docente: Umberto Castellani Sommario Introduzione al suono Rappresentazione del suono Elaborazione digitale Standard MIDI Sintesi del suono Parlato (Speech)

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Attilio Piana, Andrea Ziggioto 1 egime variabile in un circuito elettrico. Circuito C. 1.1 Carica del condensatore

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi:

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi: Modulo 8 Elettronica Digitale Contenuti: Introduzione Sistemi di numerazione posizionali Sistema binario Porte logiche fondamentali Porte logiche universali Metodo della forma canonica della somma per

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale Circuiti Elettrici Corrente elettrica Legge di Ohm Elementi di circuito: resistori, generatori di differenza di potenziale Leggi di Kirchhoff Elementi di circuito: voltmetri, amperometri, condensatori

Dettagli

QUANTIZZAZIONE diverse fasi del processo di conversione da analogico a digitale quantizzazione

QUANTIZZAZIONE diverse fasi del processo di conversione da analogico a digitale quantizzazione QUANTIZZAZIONE Di seguito lo schema che illustra le diverse fasi del processo di conversione da analogico a digitale. Dopo aver trattato la fase di campionamento, occupiamoci ora della quantizzazione.

Dettagli