CAPITOLO 14 IMPIANTI FOTOVOLTAICI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CAPITOLO 14 IMPIANTI FOTOVOLTAICI"

Transcript

1 CAPITOLO 14 IMPIANTI FOTOVOLTAICI 14.1 Introduzione La tecnologia fotovoltaica si basa sulla conversione diretta dell energia irradiata dal Sole, generata dalle reazioni di fusione nucleare che avvengono al suo interno, in energia elettrica. La radiazione solare proveniente dal Sole, prima di arrivare sulla superficie della Terra abitata, incontra un filtro naturale costituito dai differenti strati dell atmosfera Figura 1: strati dell atmosfera terrestre. Si definisce costante solare G 0 la quantità di radiazione solare incidente la Terra per unità di tempo, su una superficie unitaria orientata in direzione ortogonale ai raggi solari e posta sull area superiore dell'atmosfera terrestre. Il valore della costante solare è pari a W/m 2. Questo valore può variare di qualche punto percentuale in più in inverno e in meno in estate principalmente a causa della variazione della distanza della Terra dal Sole. La costante solare, inoltre, varia a seconda anche dell'attività delle macchie solari. La potenza irraggiata dal Sole pertanto si può calcolare come: m W = 4 π R G0 = 4 π ( ) 1350 = 3, m P Sole 26 W Ove 9 R = m è la distanza media tra la Terra ed il Sole La costante solare include tutte le frequenze dello spettro della radiazione solare, non soltanto quelle della banda visibile. Infatti i fotoni emessi dal Sole hanno una frequenza piuttosto eterogenea che comprende la quasi totalità dello spettro elettromagnetico, dalle radioonde fino ai raggi gamma. Nella figura seguente si mostra lo spettro di emissione solare che arriva sulla Terra, prima di attraversare l'atmosfera terrestre. Le ordinate sono su scala logaritmica; appare quindi evidente come la maggior parte dei fotoni sia concentrata tra i 200 nm e i nm. 1

2 Figura 2: spettro della radiazione solare sulla superficie esterna dell atmosfera terrestre. L'enorme quantità di energia solare che arriva sulla superficie esterna dell atmosfera non raggiunge tutta la superficie terrestre, ma subisce fenomeni di attenuazione, riflessione, scattering nel percorso verso il suolo. In particolare una volta attraversata l'atmosfera terrestre, una parte dei fotoni interagiscono con i gas che compongono i vari strati dell'atmosfera come idrogeno, vapore acqueo, anidride carbonica e ozono. La porzione di spettro di emissione solare che raggiunge la superficie terrestre, al netto dell'azione filtrante dell'atmosfera, è comunque variabile ed è influenzato dalle condizioni meteo, dall'altitudine, dalla posizione del sole nell arco dell anno e anche dall'inquinamento. Nella figura seguente è riportato uno spettro tipico a livello del mare Figura 3: spettro tipico della radiazione solare a livello del mare. Di tutto lo spettro che rimane dall'azione di "filtro" dell'atmosfera terrestre, soltanto la porzione dei fotoni con lunghezza d'onda compresa tra i 380 e i 780 nanometri sono visibili, nel senso che vengono "captati" dai nostri occhi, cioè costituisce la luce visibile. Tutti i fotoni con frequenza immediatamente superiore (lunghezza d'onda inferiore ai 380 nm), fanno parte della "porzione" ultravioletta, mentre quelli dell'infrarosso partono da lunghezze d'onda oltre i 700 nanometri. 2

3 Figura 4: suddivisione dello spettro tipico della radiazione solare a livello del mare. Nelle norme, così come nella pratica impiantistica di progettazione, il valore di massima radiazione al suolo viene assunto pari a W/m Effetto fotovoltaico Quando la radiazione solare investe un qualsivoglia materiale cede energia agli elettroni più esterni degli atomi, che lo costituiscono; se tale energia è sufficiente, l'elettrone (portatore di carica negativa) risulta libero di allontanarsi dall'atomo di origine, dando luogo alla formazione di una lacuna (portatore di carica positiva). Si rendono pertanto disponibili portatori di carica, che possono essere sfruttati per generare una corrente. Al fine di generare tale corrente è necessario creare un campo elettrico interno al materiale e ciò è ottenuto stabilendo un eccesso di atomi caricati negativamente (anioni) in una parte del semiconduttore e un eccesso di atomi caricati positivamente (cationi) nell altro. Tali eccessi di cariche positive e negative all interno del semiconduttore sono ottenuti attraverso un processo detto di drogaggio. Il processo di drogaggio è ottenuto inserendo all interno della struttura cristallina del semiconduttore degli atomi del terzo gruppo, come ad esempio il boro (B), e del quinto gruppo, quale ad esempio il fosforo (P), per ottenere rispettivamente una struttura di tipo p (con un eccesso di lacune, aventi carica positiva, da cui la dizione tipo p ) e una di tipo n (con un eccesso di elettroni, aventi carica negativa, da cui la dizione tipo n ). Nel caso del Silicio, essendo questo un semiconduttore avente quattro elettroni di valenza, il drogaggio con un elemento del terzo gruppo, quale il boro, che ha pertanto tre elettroni di valenza, non permette la chiusura dell ottetto, dando luogo quindi alla formazione di una lacuna, portatore di carica positiva. Mentre il drogaggio con un elemento del quinto gruppo, quale il fosforo, che ha cinque elettroni di valenza, di cui quattro concorrono alla chiusura dell ottetto, mentre il quinto resta libero di spostarsi all interno del reticolo cristallino del semiconduttore fungendo da portatore di carica negativa. 3

4 Elettroni di valenza Si Si Elettroni di valenza Si Elettroni di valenza Si Si Si Si B Si Si P Si Si Si lacuna Si Elettrone di conduzione Figura 5: struttura cristallina del Silicio. Figura 6: Silicio drogato con boro. Figura 7: Silicio drogato con fosforo. Va sottolineato che il materiale risulta essere globalmente neutro, dato che il drogaggio viene realizzato con atomi neutri (non ioni), quello che cambia è l'eccesso di elettroni nei legami covalenti, da una parte, e il difetto degli stessi dall'altra. Quindi sia la struttura di tipo p che quella di tipo n sono neutre. Lo strato drogato tipo n, presenta una carica negativa debolmente legata, costituita da un elettrone in eccesso per ogni atomo drogante. Nello stesso modo, nello strato drogato di tipo p, si ottiene un eccesso di carica positiva, data dalle lacune degli atomi droganti. Se si congiungono due semiconduttori, uno di tipo p e uno di tipo n, si ottiene, in corrispondenza della zona di contatto, una zona di separazione detta giunzione p-n (Figura 8). Mettendo a contatto i due materiali così ottenuti, si viene a verificare un flusso di diffusione di elettroni dalla zona n alla zona p e di lacune in direzione opposta (gli elettroni e le lacune si spostano fino al raggiungimento dell'equilibrio elettrostatico, che determina un eccesso di carica positiva nella zona n, un eccesso di elettroni nella zona p e una regione intermedia detta regione di svuotamento. Il risultato è un campo elettrico interno al dispositivo che si estende a cavallo della regione di svuotamento, generalmente spessa pochi micrometri. E 0 ZONA P ZONA N REGIONE DI SVUOTAMENTO Figura 8: rappresentazione schematica della giunzione p-n. Quando la giunzione p-n è investita dalla parte del silicio tipo n da un flusso luminoso questo cede energia agli atomi di Silicio portando alcuni elettroni dalla banda di valenza a quella di conduzioni, 4

5 liberando quindi, sia sul lato n che su quello p della coppie elettrone / lacuna, libere a questo punto di muoversi all interno del semiconduttore. Il campo elettrico separa gli elettroni in eccesso generati dall assorbimento della luce dalle rispettive lacune, spingendoli in direzioni opposte, gli elettroni verso la zona n e le lacune verso la zona p. Una volta attraversato il campo, gli elettroni liberi non tornano più indietro, perché il campo, agendo come un diodo, impedisce loro di invertire la marcia. Quindi, se si connette la giunzione p-n con un conduttore, nel circuito esterno si otterrà un flusso di elettroni che parte dallo strato n, a potenziale maggiore, verso lo strato p, a potenziale minore. Fino a quando la cella resta esposta alla luce, l'elettricità fluisce con regolarità sotto forma di corrente continua Efficienza di conversione L energia trasportata dal flusso luminoso è pari a: E = h*υ dove h è la costante di Plank e υ è la frequenza, che è pari al reciproco della lunghezza d onda della radiazione luminosa. υ = 1/λ Nel caso del Silicio l energia necessaria a liberare una coppia elettrone / lacuna è pari all energia associata ad un flusso luminoso avente una lunghezza d onda al massima pari a λ max = 1,15 mm infatti al crescere di λ diminuisce l energia trasportata. 5

6 Pertanto quella parte di radiazione luminosa, pari a circa il 25%, che ha una lunghezza d onda superiore a λ max non sarà in grado di liberare coppie elettrone / lacuna e quindi non potrà essere convertita in energia elettrica, inoltre la restante parte, avente una lunghezza d onda minore di λ max, trasporta una quantità di energia superiore a quanto necessario alla liberazione della coppia elettrone / lacuna, energia che pertanto non potrà essere convertita in energia elettrica ma verrà persa sotto forma di calore. Colore Lunghezza d onda Rosso 0,700 0,645 mm Arancione 0,645 0,585 mm Giallo 0,585 0,575 mm Verde 0,575 0,490 mm Azzurro 0,490 0,455 mm Indaco 0,455 0,425 mm Violetto 0,425 0,380 mm In totale solamente il 44% dell energia incidente sul pannello fotovoltaico ha la lunghezza d onda giusta per liberare l elettrone di valenza, facendolo saltare a elettrone do conduzione. Quindi anche realizzando un pannello ideale questo non potrà mai avere un rendimento superiore al 44%. Fattori che contribuiscono a ridurre il rendimento di conversione al disotto del valore ideale del 44% sono: la riflessione, non tutti i fotoni che incidono sulla cella penetrano al suo interno, dato che in parte vengono riflessi dalla superficie della cella e in parte incidono sulla griglia metallica dei contatti; ricombinazione, non tutte le coppie elettrone-lacuna generate vengono raccolte dal campo elettrico di giunzione e inviate al carico esterno, dato che nel percorso dal punto di generazione verso la giunzione possono incontrare cariche di segno opposto e quindi ricombinarsi; resistenze parassite, le cariche generate e raccolte nella zona di svuotamento devono essere inviate all'esterno tramite contatti metallici posti sul fronte e sul retro della cella. Anche se durante la fabbricazione viene effettuato un processo di lega tra silicio e alluminio dei contatti, resta una certa resistenza all'interfaccia, che provoca una dissipazione che riduce la potenza trasferita al carico Corrente e tensione di cella La cella è l unità costitutiva il pannello fotovoltaico. Ogni cella colpita dalla radiazione solare genera una densità di corrente dell ordine delle decine di milliampere per cm 2 determinando un potenziale di 0,5 1 V. I moduli fotovoltaici in silicio cristallino sono realizzati collegando in serie, normalmente, 28, 36, 64 o 72 celle. Le celle sono collegate in serie tra loro al fine di ottenere la tensione di modulo voluta, pari solitamente a 12 V in condizioni standard. Tipo di cella Area [cm 2 ] V OC I SC Efficienza di cella [%] Silicio monocristallino 4,0 0,706 42,2 24,7 6

7 Silicio policristallino 1,1 0,654 38,1 19,8 Silicio amorfo 1,0 0,887 19,4 12,7 CuInGaSe 2 (CIGS) 1,0 0,669 35,7 18,4 CdTe 1,1 0,848 25,9 16,4 Tabella 1: area, tensione a vuoto, corrente di corto circuito e efficienza di cella Struttura di un impianto fotovoltaico Gli impianti fotovoltaici possono essere suddivisi in due macrofamiglie: gli impianti in isola (stand-alone); gli impianti in rete (grid-connected). I principali elementi che costituiscono un impianto fotovoltaico sono: i pannelli fotovoltaici; le stringhe; i quadri di capo; gli inverter; i trasformatori. A seconda del tipo di impianto fotovoltaico, della sua taglio e dell uso che si fa dell energia prodotta alcuni degli elementi sopra riportati potrà essere presente nella struttura dell impianto o meno e potranno esservi ulteriori componenti Impianti isolati Gli impianti isolati (stand-alone) sono impiegati la dove l utenza presenta carichi elettrici di piccola potenza in servizio isolato dalla rete, quali ad esempio l alimentazione di piccoli ripetitori telefonici e radio, rifugi alpini, ecc.. Negli impianti stand-alone l energia elettrica prodotta dall impianto fotovoltaico deve essere accumulata in batterie, per poter essere impiegata nelle ore a bassa o nulla produzione elettrica, quali ad esempio la notte Impianti connessi in rete Gli impianti connessi in rete (grid-connected) sono impianti in grado di cedere l energia prodotta alla rete elettrica. Pertanto non richiedono l accumulo di energia Pannelli fotovoltaici La maggior parte delle celle fotovoltaiche attualmente in commercio sono realizzate tramite semiconduttori in silicio. Le principali tipologie di celle fotovoltaiche sono: celle in silicio monocristallino; celle in silicio policristallino; celle a film sottile. Celle in silicio monocristallino 7

8 Le celle in silicio monocristallino (Figura 9) sono realizzate a partire da cristalli di silicio ad elevato grado di purezza, che vengo prima fusi e poi fatti solidificare in modo da ottenere un lingotto di forma cilindrica costituito da un monocristallo, avente un diametro compreso tra i 13 e i 20 cm e un altezza di circa 200 cm. Il cristallo viene successivamente tagliato a fette sottili dello spessore di µm, dette celle, che andranno a costituire i moduli o pannelli fotovoltaici, ottenuti collegando tra loro più celle. I pannelli fotovoltaici monocristallini presentano rendimenti tipici minori o uguali al 16%. Figura 9 Celle in silicio policristallino Le celle in silicio policristallino (Figura 10) hanno costi minori delle monocristalline e sono tipicamente ottenute per fusione degli scarti del processo industriale di produzione dei moduli monocristallini. I pannelli fotovoltaici policristallini presentano rendimenti tipici minori o uguali al 14%. Figura 10 Celle a film sottile Le celle a film sottile (Figura 11 e Figura 12) sono composte da strati di materiale semiconduttore (non sempre è presente il silicio), quali silicio amorfo, telloruro di cadmio, solfuro di cadmio, ecc., depositati generalmente come miscela di gas su supporti a basso costo (vetro, polimeri, alluminio) che danno consistenza fisica alla miscela. I pannelli fotovoltaici a film sottile presentano rendimenti tipici dell ordine del 5 8%. 8

9 Figura 11 Figura 12 Calcolo del rendimento di pannello Si definiscono condizioni standard (STC standard test condition) per l effettuazione dei test di laboratorio sui pannelli al fine di definirne l efficienza: irraggiamento 1000 W/m 2 ; temperatura del modulo 25 C. Tra i principali dati riportati nella scheda tecnica di un pannello fotovoltaico vi sono: la potenza nominale del pannello; le dimensioni del pannello. Si definisce rendimento di pannello il rapporto tra la potenza in watt e la superficie del pannello in m 2. Ad esempio un pannello da 220 W, avente le seguenti dimensioni: altezza 1644 mm; larghezza 992 mm; profondità 46 mm; avrà un rendimento di pannello pari a: 220 η = potenza = W = 134,89 W = 0,13489 kw sup erficie (1, 644 0,992) m m m si dice, anche se impropriamente essendo il risultato ottenuto non un vero rendimento, il quale dovrebbe essere dimensionale, che il modulo ha un rendimento del 14,45%. Ciò deriva dal fatto che se si divide il risultato ottenuto con un valore d irraggiamento di riferimento, quale ad 1000 W/m 2 si ottiene la percentuale di conversione della potenza solare in potenza elettrica, cioè un rendimento. W 134,89 2 η = m = 0,13489 = 13, 49% W m Il pannello in condizioni standard genererà quindi una potenza di 220 W, pari a un rendimento di conversione dell energia solare in energia elettrica del 13,49%. 9

10 In presenza di un valore di irraggiamento superiore o inferiore ai W/m 2, e al variare della percentuale di luce diretta e diffusa, di temperature di pannello superiori o inferiori a 25 C e di un angolo di incidenza della radiazione solare superiore o inferiore ai 90 la potenza generata dal pannello potrà essere maggiore o minore di 220 W. Radiazione diretta e diffusa La luce che investe il pannello fotovoltaico si divide in irraggiamento: diretto; diffuso; albedo (emissioni elettromagnetiche dei corpi circostanti). La componente di luce diffusa in presenza di celo nuvoloso o nebbia può essere anche maggioritaria. Figura 13: irraggiamento diretto, diffuso e albedo. Figura 14: composizione dell'irraggiamento. Le diverse tecnologie di pannelli fotovoltaico hanno una capacità più o meno spinta di percepire la radiazione diffusa. I pannelli in silicio monocristallino sono quelli con minor capacità di conversione della componente diffusa, i policristallino presentano prestazioni migliori in tal senso e 10

11 i film sottili sono quelli più idonei all installazione in presenza di una rilevante componente di luce diffusa. Nel nord Italia, dove per la presenza di frequenti annuvolamenti o di nebbia i pannelli policristallini risultano più adatti all impiego dei monocristallini. In generale, nel caso di installazione su superfici orientate a nord o a sud \ est o sud \ ovest con forte scostamento da sud, e quindi scarso irraggiamento diretta e conseguente elevata rilevante importanza della componente diffusa, l uso di pannelli a film sottile permette di avere producibilità pari a quelle di un pannello in silicio cristallino perfettamente orientato a sud. Confronto tra pannelli monocristallini, policristallini e amorfi Si monocrstallino Si policrstallino Si amorfo η cella 14% 20% 12% - 15% 5% 10% Vantaggi Rendimento elevato e stabile. Tecnologia affidabile. Minor costo. Tecnologia affidabile. Minori costi. Buon rendimento in presenza di basso irraggiamento e alte temperature. Possibilità d impiego su supporti flessibili. Svantaggi Elevato costo. Minor rendimento. Tabella 2: confronto tra pannelli monocristallini, policristallini e amorfi. Elevata necessità di spazi a causa del basso rendimento Stringhe Ogni pannello fotovoltaico è costituito da un certo numero di celle, solitamente 36 o 72, ogni cella ha ai suoi capi una tensione dell ordine dei 0,5 0,6 V. Un modulo presenta quindi una tensione hai suoi capi dell ordine, tipicamente, di 35 V e una corrente massima di qualche amper (es.: 5 A). Al fine di ottenere la potenza elettrica desiderata, che è data dal prodotto della tensione per la corrente P el [ W ] = V * I Si collegano più pannelli tra loro in serie, a formare delle stringhe. La tensione ai capi di n pannelli posti in serie è pari alla somma delle tensioni a capi di ogni pannello. V stringa [ volt] = n i= 1 ΣV i La scelta del valore della tensione generata si basa su considerazioni di ingegneria elettrica relative ad aspetti di sicurezza ed efficienza del sistema, che vanno oltre gli obiettivi di questo corso. In generale i sistemi fotovoltaici per l alimentazione di utenze isolate hanno tensioni nominali in corrente continua piuttosto standardizzate (12, 24, 48, 110 V), in quanto i carichi utilizzati sul mercato (lampade, frigoriferi, televisori, pompe, ecc.) sono disponibili in queste tensioni. Diverso è il discorso per gli impianti fotovoltaici collegati in rete. La rete di distribuzione in media tensione è a V. La tensione, per poter immettere l energia prodotta, dall impianto fotovoltaico, in rete dovrà quindi essere innalzata dal valore a cui è generata al valore di V (paragrafo ). In generale tanto maggiore sarà la potenza installata, tanto maggiore dovrà essere la tensione installata, così che a parità di potenza si avrà una minor corrente e quindi minori perdite di energia 11

12 per effetto joule lungo i cavi di distribuzione e minori perdite di conversione da continua ad alternata. Valori tipici di tensione per gli impianti connessi in rete sono: dal centinaio di volt per gli impianti di piccola taglia; volt per gli impianti di taglia maggiore. La potenza ai capi di una singola stringa sarà pari alla corrente di stringa, pari alla corrente di singolo modulo, per la tensione di stringa. Figura 15: collegamento in serie. Definita la potenza nominale desiderata, ne deriva il numero di moduli da installare. Gli inverter hanno un range ottimale di tensioni in ingresso, per ottenere tale valore di tensione si mettono più moduli in serie, a costituire una stringa, ottenendo così un certo numero di stringhe che collegherò tra loro in parallelo a dare la potenza nominale d impianto desiderata, tramite l impiego di quadri di campo. Ad esempio si considerino 10 pannelli collegati in serie aventi una potenza nominale di 200 W l uno, collegandoli in serie si ottiene una potenza ai capi della stringa di W Quadri di campo Al fine di ottenere una potenza ancora maggiore la stringhe sono collegate tra loro in parallelo tramite dei quadri di campo. I quadri di campo sono provvisti di un sezionatore, solitamente manuale, per togliere tensione lungo la linea che va dal quadro di campo all inverter. I cavi in corrente continua, posti a monte dei quadri di campo, e le stringhe, a cui sono collegati, rimangono invece comunque in tensione. Ponendo n stringhe in parallelo si ottiene una potenza pari alla somma delle potenze delle singole stringhe. P[ W ] = n i= 1 ΣP i 12

13 I 1 A I 2 B I 3 P[ W ] = V I = V ( I + I + I ) = V I + V I + V I = P + P + P AB tot AB AB 1 AB 2 AB Al fine di ottenere un buon bilanciamento del sistema le stringhe sono progettate, in termini di numero, tipologia e orientamento dei moduli, per avere tutte circa la stessa potenza. Analogamente a quanto visto per le stringhe si supponga di collegare in parallelo 10 stringhe da W l una, quello che si ottiene è un sistema avente una potenza di 20 kw Inverter I pannelli fotovoltaici generano corrente continua. La maggior parte delle apparecchiature elettromeccaniche funziona con corrente alternata, così come la rete di distribuzione in media e alta tensione è in alternata. Vi sono delle reti di distribuzione in altissima tensione in continua ma sono la minoranza. L inverter (Figura 16) è un dispositivo la cui funzione è convertire la corrente da continua ad alternata. Per piccoli impianti è possibile adottare inverter da esterni, ovvero inverte provvisti di certificazione per l installazione in ambiente esterno, in grado pertanto di sopportare gli agenti atmosferici. E in ogni caso opportuno proteggere tali dispositivi dall irraggiamento solare diretto, per evitare che d estate si surriscaldino, con conseguente perdita di efficienza di conversione. Per fare ciò è sufficiente installarli a ridosso di un cornicione del tetto o di una parete, che li protegga almeno in parte dalle intemperie e realizzare sul posto una piccola tettoia protettiva. Evitare in ogni caso di installarli in ambienti dove d estate si possono raggiungere temperature troppo elevate. Ad esempio quando il tetto su cui si stanno installando i moduli è realizzato in lamiera, anche qualora al di sotto di questo vi fosse disponibile uno spazio chiuso, Figura 16: inverter aurora da 330 kw (non installabile in esterno). 13

14 quindi protetto dal sole e dalla pioggia, ricordarsi che in simili spazi destate si raggiungono con facilità i 50 C, tali volumi non sono quindi inidonei a ospitare gli inverter. Gli inverter per applicazioni grid-connected hanno lo scopo primario di permettere una conversione della corrente da cc \ ca la più efficiente possibile e sono pertanto provvisti di un dispositivo di inseguimento del punto di massima potenza (MPPT- Maximum Power Point Tracker). Il dispositivo MPPT ha lo scopo di individuare istante per istante il punto sulla curva caratteristica (I;V) (Figura 17) dei moduli fotovoltaici che massimizza la potenza generata. Al variare della radiazione solare varia la curva I-V del pannello, l inverter regola la corrente delle stringhe ad esso collegato così da modificarne i valori di I e V al fine di massimizzare la potenza generata. Figura 17: curva I-V per celle fotovoltaiche e sistema MPPT Trasformatore Compito del trasformatore è innalzare la tensione dal valore di uscita dagli inverter al valore di rete. Abbiamo visto che negli impianti grid-connected l energia elettrica è generata con valori di tensione nell ordine dei V. Nel caso di allacciamento alla rete elettrica in media tensione (vedasi paragrafo ) la tensione dovrà essere innalzata a V. Esistono due macrofamiglie di trasformatori: trasformatori in resina; trasformatori ad olio. Entrare nel merito delle differenze tra i due dispositivi e sull opportunità di impiego dell uno piuttosto che dell altro prescinde dagli obiettivi del presente corso. I trasformatori standard sono progettati per innalzare la tensione dai 380 V ai V. Se il sistema fotovoltaico produce corrente a tensione inferiore ai 380 V, che indicheremo con V1, con V1 < 380 V, è necessario o prevedere l installazione di uno o più trasformatori che innalzino la tensione da V1 fino a 380 V, prima del trasformatore 380 / V, o adottare un trasformatore speciale a / V. Esistono inverter provvisti di trasformatori integrati per l innalzamento della tensione dai valori di campo a 380 V. Il vantaggio di adottare una soluzione con trasformatori associati agli inverter per l innalzamento della tensione a 380 V è di poter utilizzare un trasformatore finale 380 / V che essendo standard è di facile e rapide reperibilità sul mercato al contrario di un trasformatore speciale a / V. 14

15 Svantaggio di una simile soluzione sono le maggiori perdite di conversione. I piccoli trasformatori, per l innalzamento della tensione a 380 V, hanno rendimenti di conversione minori dei trasformatori per l innalzamento a V, con perdite aggiuntive dell ordine dei 2 3 punti percentuali della produzione. Figura 18: trasformatore 400 \ V Punto di consegna Il punto di consegna è fisicamente una sala all interno della quale si trova la quadristica elettrica dove arrivano i cavi elettrici che portano l energia elettrica prodotta dall impianto fotovoltaico e ripartono i cavi elettrici della rete pubblica Perdite del sistema Il rendimento dei pannelli fotovoltaici, che nelle migliori delle ipotesi si aggira intorno al 16% non è il rendimento dell impianto fotovoltaico. Una volta prodotta la corrente in continuo, ai capi delle stringhe, questa andrà ceduta in rete, per gli impianti grid-connected, la corrente dovrà quindi percorrere un tragitto lungo il quale si avranno le seguenti perdite: perdite distribuite lungo i cavi di continua dai moduli fino agli inverter (i cavi in continua sono soggetti a perdite maggiori di trasporto dei cavi in alternata); perdite concentrate di conversione da cc /ca; perdite concentrate di trasformazione per l innalzamento della tensione dalla tensione di campo a 380 V; 15

16 perdite distribuite lungo i cavi di alternata che collegano gli inverter alla sala quadri di BT e al trasformatore; perdite concentrate di trasformazione per l innalzamento della tensione da 380 / V, solo nel caso in cui l allacciamento alla rete pubblica non possa avvenire in BT; perdite distribuite sulla linea di MT che va dal trasformatore al punto di consegna alla rete pubblica; perdite per minori per minor rendimento di pannello dovuto all innalzamento della temperatura del modulo Allacciamento alla rete di distribuzione L allacciamento di impianti di generazione elettrica alla rete di distribuzione dell energia è regolamentata dalla norma CEI IV, agosto 2000, e dalla CEI La prima fa riferimento all allacciamento a reti di BT e MT e la seconda tratta il caso dell allacciamento alla rete di alta tensione (AT V). Recentemente è stata emessa una variante della CEI denominata V1 che tiene conto delle specificità degli impianti fotovoltaici. Potenza impianto Allacciamento BT Allacciamento MT < 100 kw X > 100 kw e < kw X Tabella 3: modalità di allacciamento alla rete di distribuzione. Le norme CEI e la variante V1 prescrivono alcuni dispositivi di protezione che devono intervenire nel caso di guasto o mal funzionamento della rete di distribuzione alla quale l impianto fotovoltaico è collegato. Tali dispositivi sono: dispositivo generale; dispositivo d interfaccia; dispositivo di generatore. 16

17 Figura 19: dispositivi richiesti per l'allacciamento di un impianto fotovoltaico alla rete di distribuzione. Dispositivo generale e dispositivo di generatore Si tratta di un dispositivo automatico posto tra il punto di consegna e il trasformatore, all interno del quadro di MT. Il suo scopo è, in caso di malfunzionamento della rete pubblica o dell impianto, inclusa la necessità di togliere corrente a questo per interventi di manutenzione, sganciare l impianto dalla rete pubblica, togliendo tensione al trasformatore sul lato di MT. Il trasformatore sarà comunque ancora in tensione essendo collegato ai quadri di BT. In ragione di ciò insieme al dispositivo generale dovrà azionarsi il dispositivo d interfaccia (vedasi paragrafo seguente). Nel caso d impianti elettrici tradizionali, quali ad esempio una centrale a turbogas una volta spenta la turbina l impianto non produce più energia elettrica, ma è comunque in tensione essendo collegato fisicamente alla rete pubblica che a sua volta è in tensione. Attivando l interruttore generale si sgancia l impianto, interrompendo fisicamente il collegamento dalla rete pubblica e questo non è più in tensione. Ciò rende possibile effettuare interventi manutentivi in sicurezza, su quelle parti dell impianto usualmente in tensione. Nel caso d impianti fotovoltaici, non essendo possibile spegnere il sole, sganciando l interruttore generale si evita che l impianto sia posto in tensione dalla rete pubblica, ma questo, resta comunque in tensione essendo i pannelli esposti al sole. Alternativamente il dispositivo generale può anche essere installato sul quadro di BT, con il compito di sezionare l impianto tra il trasformatore e il quadro di BT. 17

18 Dispositivo e protezione d interfaccia Quasi tutti gli inverter sono provvisti di protezione e dispositivo d interfaccia, le quali consentono il sezionamento dell impianto scollegando l inverter dalla rete di BT, sezionando quindi la parte d impianto a monte dell inverter (inverter e pannelli) da quanto vi è a valle (cavi in ca, quadristica di BT, trasformatore e linea di MT). Il dispositivo d interfaccia è un interruttore, che è comandato dalla protezione d interfaccia, il quale è un dispositivo costituito da relè di frequenza e di tensione: minima frequenza; massima frequenza; minima tensione; massima tensione. La protezione d interfaccia interviene in caso di sovraccarico o cortocircuito sulla rete Enel o del distributore locale, o mancata alimentazione da parte della rete di distribuzione Poiché spesso capita che siano collegati in parallelo più inverter al fine di raggiungere la potenza voluta la normativa CEI V1 prevede che per un numero di inverter massimo di tre e per potenze minori di 20 kw siano sufficienti i dispositivi d interfaccia presenti sui singoli inverter, in caso contrario è necessario installare un dispositivo / protezione d interfaccia esterno e comune a tutti gli inverter posti a valle di questi, cioè tra questi e il dispositivo generale. Il dispositivo di generatore, dove con generatore s intende l inverter stesso, interviene invece in caso di guasti interni all inverter, staccandolo dal resto dell impianto. Anche in caso di intervento del dispositivo d interfaccia resta comunque in tensione la parte d impianto a valle dell inverter, la quale rimarrà sempre almeno parzialmente in tensione. I quadri di campo sono, a loro volta, provvisti di sezionatori manuali, che permettono di togliere tensione tra i quadri di campo e l inverter, ma anche così resta in tensione la parte dell impianto che va dai pannelli, via cavi in continua, ai quadri di campo, con i conseguenti rischi in caso di interventi manutentivi o eccezionali, quale ad esempio un intervento dei vigili del fuoco in caso d incendio. 18

19 Figura 20: schema di connessione alla rete in BT con dispositivo di interfaccia integrato nell'inverter. Figura 21: schema di connessione alla rete di BT con dispositivo / protezione d'interfaccia unico per più inverter. Dispositivo generale e dispositivo d interfaccia integrati Il dispositivo generale e quello d interfaccia possono coincidere in un unico dispositivo, comandato dalla protezione d interfaccia. 19

20 In Figura 22 il dispositivo generale e quello d interfaccia coincidono in un unico dispositivo posto nel quadro di sinistra. Tra il quadro di sinistra e quello di destra si trova la barra di collegamento alla linea di BT (Figura 23). Mentre nel quadro di destra si trova la protezione d interfaccia con sotto di essa le protezioni di linea, il cui compito e sezionare le linee elettriche di ca dei singoli inverter così da permettere interventi manutentivi su di essi, presi singolarmente, senza dover sezionare l intero impianto. DISPOSITIVO GENERALE E DI INTERFACCIA CON DI FRONTE IL MOTORE DI TRASCINAMENTO PROTEZIONE DI INTERFACCIA PROTEZIONI DI LINEA BARRA DI BT Figura 22: quadro di BT. 20

21 BARRA DI BT MOTORINO DI TRASCINAMENTO DISPOSITIVO GENERALE E D INTERFACCIA Figura 23: vista lato sinistro quadro BT. 21

22 14.4 Dimensionamento di un impianto fotovoltaico Nel dimensionamento di massima di un impianto fotovoltaico si deve tenere conto di due aspetti: la superficie utile disponibile, dalla quale dipende la potenza massima installabile; il fabbisogno elettrico dell utente, almeno che l obiettivo non sia di cedere tutta o buona parte dell energia prodotta in rete Potenza massima installabile La potenza complessiva di picco dell impianto, di prima approssimazione, è calcolata in base alle superfici a disposizione, sulla base delle planimetrie dell area interessata e di un sopralluogo necessario ad individuare eventuali superfici non utilizzabili a causa di fenomeni di ombreggiamento, ad esempio dovuti a palazzi vicini, alberi, impiantistica di servizio presente sui tetti, ecc.. Superfici piane Per superfici perfettamente piane la potenza massima installabile può essere calcolata, tenendo conto degli ombreggiamenti tra file successive di pannelli, secondo la seguente legge ingegneristica: P (kwp) = AREA UTILE (m 2 ) / (8*2.5) (m 2 /kwp) Superfici inclinate Per superfici inclinate la potenza massima installabile può essere calcolata secondo la seguente legge ingegneristica: P (kwp) = AREA UTILE (m 2 ) / 8 (m 2 /kwp) L area utile è calcolata escludendo tutti quegli ostacoli che possono essere causa di ombreggiamento o rendere difficoltoso l accesso all area in fase d installazione, posa cavi e manutenzione, quali: cornici; antenne; impiantistica di servizio (tubazioni; lucernari, impianti di condizionamento, ecc..) Producibilità L irraggiamento, quindi l energia solare disponibile al suolo, è diverso a seconda della latitudine. Tale valore non solo varia molto tra l equatore e i poli ma varia in modo significativo anche tra il Nord e il Sud Italia. Le coordinate geografiche di riferimento utili per determinare l irraggiamento medio annuo sono: - latitudine; - longitudine. In Italia un impianto fotovoltaico con moduli orientati a sud con inclinazione (angolo di tilt, vedasi paragrafo seguente) di 30 presenta valori di producibilità media annua netta molto diversi a seconda della localizzazione. 22

23 I dati sull irraggiamento sono reperibili sul sito: Producibilità Nord kwh/kwp Centro kwh/kwp Sud kwh/kwp dove è sufficiente inserire le coordinate (longitudine e latitudine) del sito dove si intende fare l impianto fotovoltaico per ottenere il valore dell irraggiamento, nonché l angolo di tilt ottimale. Angolo di tilt e azimut L angolo di tilt è l inclinazione del pannello rispetto all asse orizzontale. 30 Più l angolo di incidenza della radiazione solare tende ad essere normale al pannello minore sarà la componente riflessa e quindi maggiore la produzione del pannello. Durante il giorno la posizione del sole varia in cielo, quindi a meno di non utilizzare pannelli ad inseguimento, ovvero pannelli provvisti di un supporto mobile che li orienta costantemente nella direzione del sole, è necessario installare i moduli con un inclinazione che ne massimizzi la produzione. Area geografica Angolo di tilt Italia Bolzano 35 Siracusa 30 Polo Nord 90 Equatore 0 Si definisce angolo di azimut lo scostamento rispetto al sud. L orientamento del pannello deve essere il più possibile verso sud. Il sole sorge a est e tramonta a ovest, e per quasi tutto l anno si trova localizzato nell emisfero sud, per paesi come il nostro che si trovano a nord dell equatore. Pertanto orientando i pannelli a sud si ha la loro massima esposizione al sole durante l anno. Se i pannelli dovessero essere installati con un orientamento non perfettamente sud nord, tanto più l angolo di azimut dovesse essere grande e tanto minore sarà la producibilità del pannello. 23

24 ORIENTAMENTO INCLINAZIONE (orizzontale = 0 - verticale = 90 ) Sud = 0 e Est/Ovest = ,89 0,97 1 0,99 0,93 0,83 0, ,89 0,96 1 0,98 0,93 0,83 0, ,89 0,96 0,99 0,97 0,92 0,82 0, ,89 0,94 0,97 0,95 0,90 0,81 0, ,89 0,93 0,94 0,92 0,87 0,79 0, ,89 0,91 0,91 0,88 0,83 0,76 0, ,89 0,88 0,87 0,83 0,78 0,71 0,62 Tabella 4: energia solare al variare dell'orientamento e dell'inclinazione (dati orientativi) in Italia. Dai dati in Tabella 4 si evince che installando i pannelli con un orientamento (angolo di azimut) di 90, cioè in direzione est o ovest, complanari ad un tetto avente un inclinazione di 90 o su una struttura di supporto a 90 (angolo di tilt) i kwh prodotti per kwp installato saranno il 62% di quelli ottenibili installando il pannello in modo ottimale, si avrà quindi una perdita del 38% della producibilità massima ottenibile installando i pannelli con orientameno a sud e inclinazione dei moduli di 30. Ombreggiamento e diodi di by-pass Se un pannello è parzialmente ombreggiato può essere soggetto o ha un calo di produzione o all annullamento completo della produzione, con conseguente riduzione o completa perdita di produzione dell intera stringa all interno della quale il pannello è inserito. Nella scelta e valutazione delle superfici su cui installare un impianto fotovoltaico si deve fare quindi particolare attenzione alla presenza di elementi che possano proiettare un ombra sui moduli durante le varie ore della giornata. Nel far ciò si deve considerare che: di giorno il movimento del sole modifica la posizione delle ombre proiettate dagli oggetti per terra facendo descrivere a queste un semicerchio; al mattino e al tramonto le ombre sono più lunghe essendo il sole più basso in cielo. In generale dato un oggetto avente un altezza h eventuali pannelli che dovessero essere installati in prossimità di questo andranno posti ad una distanza di almeno 3 volte h. Gli stessi pannelli tendono a farsi ombra tra loro, se posti su strutture di supporto, non è quindi il caso di pannelli posti complanari al tetto, in ragione di ciò ogni fila di pannelli dovrà essere distanziata dalla fila precedente di una distanza pari a 3 volte l altezza della fila precedente. 24

25 h d = 3h I diodi sono dei dispositivi che permettono alla corrente di attraversarli in una solo direzione. Ogni modulo fotovoltaico in silicio cristallino è suddiviso in più zone ognuna provvista di un proprio diodo di by-pass. Se una zona del modulo è soggetta a ombreggiamento le celle che la compongono possono subire o una riduzione della producibilità o in caso di forte ombreggiamento possono arrivare a bloccarsi, impedendo il passaggio della corrente. Un modulo è un sistema costituito da più celle in serie, se una cella ha una riduzione della producibilità tutto il modulo è soggetto a una proporzionale analoga riduzione, inoltre basta che una cella si blocchi per annullare la produzione elettrica dell intero modulo. Ogni diodo è posto in parallelo alla zona del pannello a cui è associato e quindi tale zona del pannello e il diodo si comportano come se fossero due resistenze in parallelo. Dall elettrotecnica sappiamo che la corrente in presenza di due resistenze in parallelo tende a fluire verso la resistenza minore il risultato è che la zona di pannello ombreggiata viene bypassata dalla corrente e si dirige attraverso il diodo, evitando così il blocco del modulo. A sua volta ogni modulo è collegato in serie con altri moduli, a costituire una stringa. Quindi l ombreggiamento di un modulo rischia di compromettere la produzione dell intera stringa, in ragione di ciò spesso i pannelli sono provvisti di un ulteriore diodo di by-pass che in caso di necessità INSTALLAZIONE IN VERTICALE interviene bypassando l intero modulo. 4 file e 3 diodi Ad esempio i moduli in silicio monocristallino sono suddivisi in quattro file, con tre diodi di by-pass. Se l ombra investe una fila di celle, interviene il diodo di fila permettendo alla corrente di bypassare la fila ombreggiata e dirigersi verso la successiva. Nell esempio in Figura 24 un modulo in silicio monocristallino è parzialmente coperto da un ombra, la quale investe esclusivamente la quarta fila di celle. Ciò causa l intervento del terzo diodo che esclude la quarta fila permettendo al modulo di continuare a lavorare. OMBRA Figura 24: modulo in silicio monocristallino, ombra sulla quarta fila. 25

26 INSTALLAZIONE IN ORIZZONTALE Nell esempio in Figura 25 un modulo in silicio monocristallino è parzialmente coperto dalla stessa ombra dell esempio precedente, la disposizione del modulo in assetto orizzontale fa si che l ombra investa tutte e quattro le file di celle. Ciò causa l intervento di tutti i diodi e il non funzionamento dell intero modulo. Con il rischio di perdere l intera produzione di stringa. 4 file e 3 diodi OMBRA Figura 25: modulo in silicio monocristallino, ombra su tutte le quattro file. Calcolo della producibilità attesa Il calcolo della producibilità di un impianto fotovoltaico si calcola a partire dall irraggiamento al metro quadro medio annuo, in presenza di un inclinazione ottimale della superficie incidente. Figura 26: irraggiamento medio annuo per m 2, inclinazione ottimale della superficie incidente. 26

27 A partire dall irraggiamento, kwh / m2, si ricava, noto il rendimento atteso di pannello, e le perdite del sistema attese, la producibilità annua per kwp installato, misurata in kwh / kwp. La producibilità lorda attesa sarà pari a: Producibilità lorda (kwh/kwp) = Irraggiamento (kwh/m^2) * rendimento pannello * superficie al kwp (m^2/kwp) Mentre la producibilità netta si calcola tenendo conto delle perdite del sistema: Producibilità netta (kwh/kwp) = producibilità lorda (kwh/kwp) * (1 perdite concentrate perdite distribuite perdite per riflessione perdite per temperatura) Esempio di calcolo della producibilità attesa per un impianto sito in Brescia Irraggiamento Brescia: kwh/m^2. Rendimento pannello policristallino: 0,14. Superficie al kwp: ~ 8 m^2/kwp. Perdite: temperatura (9,5%) + riflessione (2,5%) + concentrate, distribuite e inverter (14%) + trasformatore (2%) = 28%. Producibilità lorda (kwh/kwp) = (kwh/m 2 ) * 0,14 * 8 (m 2 /kwp) = (kwh/kwp) Producibilità netta (kwh/kwp) = (kwh/kwp) * (1-0,28) = (kwh/kwp) Esempio di calcolo della producibilità attesa per un impianto sito ad Augusta (Sicilia) In meridione si hanno valori di producibilità significativamente maggiori grazie al maggior valore di irraggiamento, controbilanciati, in piccola parte, da maggiori perdite per temperatura. Irraggiamento Augusta: kwh/m^2. Rendimento pannello policristallino: 0,14. Superficie al kwp: ~ 8 m^2/kwp. Perdite: temperatura (11%) + riflessione (2,5%) + concentrate, distribuite e inverter (14%) + trasformatore (2%) = 29,5%. Producibilità lorda (kwh/kwp) = (kwh/m 2 ) * 0,14 * 8 (m 2 /kwp) = (kwh/kwp) Producibilità netta (kwh/kwp) = (kwh/kwp) * (1-0,295) = (kwh/kwp) 27

28 Figura 27: irraggiamento e producibilità attesa in Italia. I valori di producibilità attesa, in funzione della località considerata, possono essere presi dal sito: 28

29 Figura 28: pagina internet per il calcolo della producibilità attesa. 29

30 Figura 29: una volta indicata la località, schermata precedente, selezionare Calculate. Il sito fornisce anche l indicazione dell azimut e dell angolo di tilt ottimali e i valori ipotizzati di rendimento di pannello e le perdite stimate. Tutti questi valori possono essere all occorrenza settati diversamente. Figura 30: ipotesi del sistema. 30

31 Figura 31: producibilità attesa per Augusta. Come si può vedere il valore di producibilità attesa calcolata dal sito, kwh/kwp, non si discosta di molto dal valore da noi stimato, sulla base di una valore di irraggiamento medio annuo atteso preso dalla cartina di Figura 27, lato destro. 31

32 14.5 Bibliografia Impianti solari fotovoltaici a norme CEI Guida per progettisti e installatori Francesco Groppi e Carlo Zuccaio, Editoriale Delfino; Il nuovo fotovoltaico Dal fil sottile alle celle a colorante, Mario Pagliaro, Giovanni Palmisano, Rosaria Criminna, Dario Flaccovio Editore; Solar Energy Report 2009 scaricabile dal sito 32

CORSO SULLA TECNOLOGIA DEL SOLARE FOTOVOLTAICO. Bergamo, anno accademico 2013/2014

CORSO SULLA TECNOLOGIA DEL SOLARE FOTOVOLTAICO. Bergamo, anno accademico 2013/2014 LA TECNOLOGIA FOTOVOLTAICA Bergamo, anno accademico 2013/2014 1 La fonte di energia: il sole 2 La fonte di energia: il sole Potenza emessa dal sole: 175.000.000.000.000.000 W (175 miliardi di megawatt).

Dettagli

Producibilità. Nord 1.000 1.200 kwh/kwp. Centro 1.100 1.300 kwh/kwp. Sud 1.300 1.500 kwh/kwp

Producibilità. Nord 1.000 1.200 kwh/kwp. Centro 1.100 1.300 kwh/kwp. Sud 1.300 1.500 kwh/kwp La fonte di energia: il sole 2 La fonte di energia: il sole Potenza emessa dal sole: 175.000.000.000.000.000 W (175 miliardi di megawatt). Potenza che raggiunge terrestre:1.350 W/m 2. l atmosfera Potenza

Dettagli

IMPIANTI FOTOVOLTAICI

IMPIANTI FOTOVOLTAICI IMPIANTI FOTOVOLTAICI 1 Introduzione La tecnologia fotovoltaica si basa sulla conversione diretta dell energia irradiata dal Sole, generata dalle reazioni di fusione nucleare che avvengono al suo interno,

Dettagli

INTRODUZIONE ALLA TECNOLOGIA FOTOVOLTAICA. (Ing. Adriano Carrara, Ph.D)

INTRODUZIONE ALLA TECNOLOGIA FOTOVOLTAICA. (Ing. Adriano Carrara, Ph.D) INTRODUZIONE ALLA TECNOLOGIA FOTOVOLTAICA (Ing. Adriano Carrara, Ph.D) 1 IMPIANTI FOTOVOLTAICI 1 Introduzione La tecnologia fotovoltaica si basa sulla co dalle reazioni di fusione nucleare che avvengono

Dettagli

CORSO SULLA TECNOLOGIA DEL SOLARE FOTOVOLTAICO

CORSO SULLA TECNOLOGIA DEL SOLARE FOTOVOLTAICO Nel dimensionamento di massima di un impianto fotovoltaico si deve tenere conto diduedue aspetti: - la superficie utile disponibile, dalla quale dipende la potenza massimainstallabile; -il fabbisogno elettrico

Dettagli

rendimento di un impianto) 4. Superficie a disposizione. Se si dispone di uno spazio sufficientemente

rendimento di un impianto) 4. Superficie a disposizione. Se si dispone di uno spazio sufficientemente CRITERI DI DIMENSIONAMENTO Impianti Fotovoltaici - Dimensionamento 1 CRITERI DI DIMENSIONAMENTO Entrano in gioco molteplici fattori, per esempio: 1. Posizione geografica dell impianto (latitudine) 2. Irraggiamento

Dettagli

IMPIANTI FOTOVOLTAICI: VALUTAZIONI SULLA FATTIBILITA E CONVENIENZA ECONOMICA

IMPIANTI FOTOVOLTAICI: VALUTAZIONI SULLA FATTIBILITA E CONVENIENZA ECONOMICA VALUTAZIONI SULLA FATTIBILITA E CONVENIENZA ECONOMICA partner of: 13.10.2008 1 IRRAGGIAMENTO SOLARE - E l energia irradiata dal sole a seguito della fusione dell idrogeno in elio - Trasferimento dell energia

Dettagli

COS'E' UN IMPIANTO FOTOVOLTAICO E COME FUNZIONA

COS'E' UN IMPIANTO FOTOVOLTAICO E COME FUNZIONA COS'E' UN IMPIANTO FOTOVOLTAICO E COME FUNZIONA Il principio di funzionamento: la cella fotovoltaica Le celle fotovoltaiche consentono di trasformare direttamente la radiazione solare in energia elettrica,

Dettagli

Energenia sponsorizza eventi a favore della bioagricoltura e dello sport per ragazzi

Energenia sponsorizza eventi a favore della bioagricoltura e dello sport per ragazzi Energenia sponsorizza eventi a favore della bioagricoltura e dello sport per ragazzi Via Positano 21, 70014 Conversano (BA) Tel.080 2141618 Fax 080 4952302 WWW.ENERGENIA.NET www.energenia.net 1 EDUCARSI

Dettagli

LA TECNOLOGIA FOTOVOLTAICO CORSO DI GESTIONE DELL ENERGIA E DEI SISTEMI ENERGETICI. prof. Davide Alberti

LA TECNOLOGIA FOTOVOLTAICO CORSO DI GESTIONE DELL ENERGIA E DEI SISTEMI ENERGETICI. prof. Davide Alberti LA TECNOLOGIA FOTOVOLTAICO CORSO DI GESTIONE DELL ENERGIA E DEI SISTEMI ENERGETICI prof. Davide Alberti ing. Adriano Carrara 1 2 INDICE 1. Premessa... 5 2. Effetto fotovoltaico... 5 2.1. Efficienza di

Dettagli

I moduli fotovoltaici saranno prodotti con celle in silicio policristallino ad alta efficenza, tolleranza di resa ± 4,5%, collegamento delle celle

I moduli fotovoltaici saranno prodotti con celle in silicio policristallino ad alta efficenza, tolleranza di resa ± 4,5%, collegamento delle celle RELAZIONE TECNICA La presente relazione tecnica ha per oggetto gli impianti solari fotovoltaici da realizzare presso i seguenti edifici di proprietà comunale: Scuola media P.D. Frattini potenza 20 kwp;

Dettagli

Chilowattora (kwh) Unità di misura dell energia elettrica. Un chilowattora è l energia consumata in un ora da un apparecchio utilizzatore da 1 kw.

Chilowattora (kwh) Unità di misura dell energia elettrica. Un chilowattora è l energia consumata in un ora da un apparecchio utilizzatore da 1 kw. Acquirente unico (AU) Acquirente Unico è la società per azioni del gruppo Gestore dei Servizi Energetici GSE Spa, alla quale è affidato per legge il ruolo di garante della fornitura di energia elettrica

Dettagli

IL FOTOVOLTAICO E L ARCHITETTURA

IL FOTOVOLTAICO E L ARCHITETTURA IL FOTOVOLTAICO E L ARCHITETTURA Prof. Paolo ZAZZINI Ing. Nicola SIMIONATO COME FUNZIONA UNA CELLA FOTOVOLTAICA EFFETTO FOTOVOLTAICO: Un flusso luminoso che incide su un materiale semiconduttore opportunamente

Dettagli

Gli impianti fotovoltaici

Gli impianti fotovoltaici Gli impianti fotovoltaici 1. Principio di funzionamento degli impianti fotovoltaici La tecnologia fotovoltaica permette di trasformare direttamente l energia solare incidente sulla superficie terrestre

Dettagli

FOTOVOLTAICO FOTOVOLTAICO

FOTOVOLTAICO FOTOVOLTAICO 284 KIT 3 kw 285 KIT 6 kw 286 KIT 10 kw 287 KIT 20 kw KIT 280 Il fotovoltaico Fondital propone oggi gli strumenti per contribuire, con una energia amica della natura, a raggiungere gli ambiziosi obiettivi

Dettagli

I CIRCUITI ELETTRICI

I CIRCUITI ELETTRICI I CIRCUITI ELETTRICI Ogni dispositivo elettronico funziona grazie a dei circuiti elettrici. Le grandezze che descrivono un circuito elettrico sono: l intensità di corrente elettrica (i), cioè la carica

Dettagli

SIEL Spa e SIAC Srl. Impianti fotovoltaici. connessi alla rete. grid connected

SIEL Spa e SIAC Srl. Impianti fotovoltaici. connessi alla rete. grid connected SIEL Spa e SIAC Srl Impianti fotovoltaici connessi alla rete grid connected 1 Cella fotovoltaica La cella fotovoltaica è l elemento base del generatore fotovoltaico, è costituita da materiale semiconduttore

Dettagli

IMPIANTI DI PRODUZIONE DI ENERGIA ELETTRICA MEDIANTE L USO DI PANNELLI FOTOVOLTAICI

IMPIANTI DI PRODUZIONE DI ENERGIA ELETTRICA MEDIANTE L USO DI PANNELLI FOTOVOLTAICI SELITECH IMPIANTI DI PRODUZIONE DI ENERGIA ELETTRICA MEDIANTE L USO DI PANNELLI FOTOVOLTAICI Agosto 2012 L energia prodotta da un impianto fotovoltaico dipende dalla quantità di energia solare che incide

Dettagli

Il solare fotovoltaico in Italia. Confronto con i dati della Provincia di Brescia

Il solare fotovoltaico in Italia. Confronto con i dati della Provincia di Brescia Il solare fotovoltaico in Italia Confronto con i dati della Provincia di Brescia Perché il solare fotovoltaico? Protocollo di Kyoto: riduzione delle emissioni di gas ad effetto serra (CO 2 ) dell 8% entro

Dettagli

ANALISI DELL IMPIANTO FOTOVOLTAICO

ANALISI DELL IMPIANTO FOTOVOLTAICO n ANALISI DELL IMPIANTO FOTOVOLTAICO Il presente progetto è relativo alla realizzazione di un impianto di produzione di energia elettrica tramite conversione fotovoltaica, avente una potenza di picco pari

Dettagli

ANALISI DELL IMPIANTO FOTOVOLTAICO

ANALISI DELL IMPIANTO FOTOVOLTAICO ANALISI DELL IMPIANTO FOTOVOLTAICO Il presente progetto è relativo alla realizzazione di un impianto di produzione di energia elettrica tramite conversione fotovoltaica, avente una potenza di picco pari

Dettagli

ANALISI DELL IMPIANTO FOTOVOLTAICO

ANALISI DELL IMPIANTO FOTOVOLTAICO ANALISI DELL IMPIANTO FOTOVOLTAICO Il presente progetto è relativo alla realizzazione di un impianto di produzione di energia elettrica tramite conversione fotovoltaica, avente una potenza di picco pari

Dettagli

Question 1 Perché è utile produrre l'energia elettrica in prossimità del luogo in cui serve? Scegliere una risposta.

Question 1 Perché è utile produrre l'energia elettrica in prossimità del luogo in cui serve? Scegliere una risposta. Question 1 Perché è utile produrre l'energia elettrica in prossimità del luogo in cui serve? a. Si produce energia nelle ore di maggior richiesta b. Si limita il tempo di ritorno energetico dell'impianto

Dettagli

Mediamente per realizzare 1 kw di impianto fotovoltaico occorrono almeno 7 m2.

Mediamente per realizzare 1 kw di impianto fotovoltaico occorrono almeno 7 m2. Cos'è un impianto fotovoltaico? Un impianto fotovoltaico è un impianto che consente la produzione di energia elettrica attraverso l energia solare, sfruttando le proprietà di materiali sensibili alla luce

Dettagli

In anticipo sul futuro. La tecnica termografica come strumento di verifica e diagnosi di malfunzionamenti

In anticipo sul futuro. La tecnica termografica come strumento di verifica e diagnosi di malfunzionamenti La tecnica termografica come strumento di verifica e diagnosi di malfunzionamenti La tecnica termografica genesi e definizioni Termografia: definizioni e principio di misura Dal greco: Scrittura del calore

Dettagli

Fotovoltaico Solare Termico

Fotovoltaico Solare Termico PascaleCave e Costruzioni S.r.l. Fotovoltaico Solare Termico Fotovoltaico Un impianto fotovoltaico è un impianto per la produzione di energia elettrica. La tecnologia fotovoltaica permette di trasformare

Dettagli

Principi fisici di funzionamento di una cella fotovoltaica

Principi fisici di funzionamento di una cella fotovoltaica Principi fisici di funzionamento di una cella fotovoltaica L'effetto fotoelettrico I materiali, a seconda della loro attitudine alla conduzione della corrente, vengono suddivisi in conduttori, semiconduttori

Dettagli

SPECIFICA TECNICA DI FORNITURA. PER LA REALIZZAZIONE DI IMPIANTI FOTOVOLTAICI STAND-ALONE DI POTENZA NOMINALE NON SUPERIORE A 20 kw

SPECIFICA TECNICA DI FORNITURA. PER LA REALIZZAZIONE DI IMPIANTI FOTOVOLTAICI STAND-ALONE DI POTENZA NOMINALE NON SUPERIORE A 20 kw ALLEGATO A2 SPECIFICA TECNICA DI FORNITURA PER LA REALIZZAZIONE DI IMPIANTI FOTOVOLTAICI STAND-ALONE DI POTENZA NOMINALE NON SUPERIORE A 20 kw SCOPO Lo scopo della presente specifica è quello di fornire

Dettagli

900 1200 kwh/kwp 1100 1400 kwh/kwp 1300 1600 kwh/kwp

900 1200 kwh/kwp 1100 1400 kwh/kwp 1300 1600 kwh/kwp 900 1200 900 1200 kwh/kwp 1100 1400 kwh/kwp 1300 1600 kwh/kwp kwh/kw Dimensione impianto fotovoltaico P = Fabbisogno di Energia / Produzione prevista impianto P = 7990 [kwh] / 1330 [kwh/kwp] = 6,0075

Dettagli

I PANNELLI SOLARI FOTOVOLTAICI

I PANNELLI SOLARI FOTOVOLTAICI I PANNELLI SOLARI FOTOVOLTAICI In un epoca in cui il problema delle fonti energetiche si sta facendo sentire a tutti i livelli e in tutte le strutture della vita quotidiana, i pannelli fotovoltaici si

Dettagli

Energia Fotovoltaica

Energia Fotovoltaica Energia Fotovoltaica Energia Fotovoltaica Tech Impianti possiede know-how nella realizzazione di impianti fotovoltaici. Offre un servizio "chiavi in mano" in tutta Italia. Tech Impianti affianca il cliente

Dettagli

Preferenza dei pannelli Fotovoltaici a quelli a Liquido refrigerante

Preferenza dei pannelli Fotovoltaici a quelli a Liquido refrigerante Preferenza dei pannelli Fotovoltaici a quelli a Liquido refrigerante L'effetto fotovoltaico si realizza quando un elettrone, presente nella banda di valenza di un materiale (generalmente semiconduttore),

Dettagli

ESERCITAZIONE IMPIANTI FOTOVOLTAICI APPROFONDIMENTO

ESERCITAZIONE IMPIANTI FOTOVOLTAICI APPROFONDIMENTO ESERCITAZIONE IMPIANTI FOTOVOLTAICI APPROFONDIMENTO STIMA RADIAZIONE SOLARE I Valori di Radiazione si possono ottenere: Approssimati (tabelle, abachi) Stima dell energia su piano orizzontale in base alla

Dettagli

Esempi di Progettazione Fotovoltaica. Relatore: Ing. Raffaele Tossini

Esempi di Progettazione Fotovoltaica. Relatore: Ing. Raffaele Tossini Esempi di Progettazione Fotovoltaica ESEMPI:IMPIANTO DA 55 KWP Radiazione solare ESEMPI:IMPIANTO DA 55 KWP DIAGRAMMA DELLE OMBRE ESEMPI:IMPIANTO DA 55 KWP ESEMPI:IMPIANTO DA 55 KWP INVERTER ESEMPI:IMPIANTO

Dettagli

L ENERGIA DAL SOLE. Caratteristiche della fonte solare

L ENERGIA DAL SOLE. Caratteristiche della fonte solare L ENERGIA DAL SOLE Caratteristiche della fonte solare 1 L ENERGIA SOLARE Il Sole emette un'enorme quantità di energia sotto forma di luce e di calore. Senza questa energia non potrebbe esistere alcuna

Dettagli

Il presente documento ha lo scopo di fornire una panoramica di queste due applicazioni. Pagina 1 di 7

Il presente documento ha lo scopo di fornire una panoramica di queste due applicazioni. Pagina 1 di 7 IMPIANTI FOTOVOLTAICI Un impianto fotovoltaico è un impianto per la produzione di energia elettrica. La tecnologia fotovoltaica permette di trasformare direttamente l energia solare incidente sulla superficie

Dettagli

Calcoli statistici e calcoli reali in un impianto fotovoltaico Ibrido

Calcoli statistici e calcoli reali in un impianto fotovoltaico Ibrido Calcoli statistici e calcoli reali in un impianto fotovoltaico Ibrido Una piccola premessa tecnica solo per capire perché si è introdotto il concetto di NOCT. Al fine di paragonare le prestazioni di tutti

Dettagli

FOTOVOLTAICO. www.si-web.it

FOTOVOLTAICO. www.si-web.it FOTOVOLTAICO Il TEAM di Si-Web ha lavorato con impegno e professionalità utilizzando informazioni provenienti da autorevoli fonti sia nazionali che internazionali, ciò nonostante quanto predisposto deve

Dettagli

I semiconduttori Semiconduttori intrinseci

I semiconduttori Semiconduttori intrinseci I semiconduttori Semiconduttori intrinseci I semiconduttori naturali usati per la produzione di dispositivi elettronici sono stati per molti anni il silicio e il germanio. Il germanio è andato, con il

Dettagli

I PANNELLI FOTOVOLTAICI. Belotti, Dander, Mensi, Signorini

I PANNELLI FOTOVOLTAICI. Belotti, Dander, Mensi, Signorini I PANNELLI FOTOVOLTAICI Belotti, Dander, Mensi, Signorini L ENERGIA FOTOVOLTAICA Gli impianti fotovoltaici consentono di trasformare l energia solare in energia elettrica senza l uso di alcun combustibile,

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

IMPIANTI FOTOVOLTAICI: Dal fotone alla realizzazione pratica

IMPIANTI FOTOVOLTAICI: Dal fotone alla realizzazione pratica IMPIANTI FOTOVOLTAICI: Dal fotone alla realizzazione pratica Per Ubisol srl: Ing. Mattia Fantini Ing. Matteo Sarti 14 Marzo 2012 Facoltà di Ingegneria di Cesena Sommario L energia Solare Modello a bande

Dettagli

CORSO DI SISTEMI ENERGETICI. Ing. Adriano Carrara P.h.D.

CORSO DI SISTEMI ENERGETICI. Ing. Adriano Carrara P.h.D. CORSO DI SISTEMI ENERGETICI Ing. Adriano Carrara P.h.D. 1 2 CASO A VALUTAZIONE DI FATTIBILITA TECNICO / ECONOMICA DI UN IMPIANTO FOTOVOLTAICO GRID-CONNECTED Si consideri la possibilità di realizzare un

Dettagli

PROGETTO SOLE La realizzazione di un impianto fotovoltaico

PROGETTO SOLE La realizzazione di un impianto fotovoltaico PROGETTO SOLE La realizzazione di un impianto fotovoltaico Il Governo italiano ha presentato il 19 febbraio scorso il "Nuovo piano sull'efficienza energetica, sulle rinnovabili e sull'eco industria", con

Dettagli

Energia Solare Fotovoltaica

Energia Solare Fotovoltaica Energia Solare Fotovoltaica Sezione 5 Il Progetto di un impianto fotovoltaico Corso di ENERGETICA A.A. 011/01 Docente: Prof. Renato Ricci Dipartimento di Ingegneria Industriale e Scienze Matematiche Dati

Dettagli

Criteri di progettazione elettrica di impianti gridconnected

Criteri di progettazione elettrica di impianti gridconnected Criteri di progettazione elettrica di impianti gridconnected Per quanto attiene gli impianti connessi alla rete elettrica, vengono qui presentati i criteri di progettazione elettrica dei principali componenti,

Dettagli

Impianti Solari Fotovoltaici

Impianti Solari Fotovoltaici Impianti Solari Fotovoltaici Sono da considerarsi energie rinnovabili quelle forme di energia generate da fonti che per loro caratteristica intrinseca si rigenerano o non sono "esauribili" nella scala

Dettagli

ASPETTI INSTALLATIVI DELL IMPIANTO FOTOVOLTAICO

ASPETTI INSTALLATIVI DELL IMPIANTO FOTOVOLTAICO Seminario Tecnico GLI IMPIANTI FOTOVOLTAICI Novità legislative (nuovo conto energia), problematiche tecniche, problematiche di installazione, rapporti con gli Enti ASPETTI INSTALLATIVI DELL IMPIANTO FOTOVOLTAICO

Dettagli

Studio Ing. Giuseppe Fratelli Febbraio 2012 1

Studio Ing. Giuseppe Fratelli Febbraio 2012 1 La luce solare possiede importanti caratteristiche, oltre all illuminamento, che sono state scoperte ed usate nella storia fin tempi remoti: il più famoso è l assedio di Siracusa, quando gli apparecchi

Dettagli

Progettazione, installazione e verifica di un impianto fotovoltaico Francesco Groppi Responsabile GDL2 CEI-CT82

Progettazione, installazione e verifica di un impianto fotovoltaico Francesco Groppi Responsabile GDL2 CEI-CT82 Lo stato dell arte della normativa legislativa e tecnica per impianti elettrici in particolare fotovoltaici Guida CEI 82-25 Sala conferenze CNA, Ragusa 30 Maggio 2009 Progettazione, installazione e verifica

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Che cos è la corrente elettrica? Nei conduttori metallici la corrente è un flusso di elettroni. L intensità della corrente è il rapporto tra la quantità

Dettagli

Progetto Luce. Come catturare l energia della luce solare

Progetto Luce. Come catturare l energia della luce solare Progetto Luce Come catturare l energia della luce solare Luce - Energia Tutta l energia disponibile sulla terra ci proviene dal sole Il sole emette energia come un corpo nero Solo una parte di questa energia

Dettagli

I SISTEMI SOLARI ATTIVI

I SISTEMI SOLARI ATTIVI I SISTEMI SOLARI ATTIVI Sistemi solari termici Sistemi Fotovoltaici Energia irraata dal sole: Differente lunghezza d onda che costituisce il principale criterio classificazione delle onde elettromagnetiche

Dettagli

Impianto posato su copertura in pannelli. Impianto posato su copertura piana. Bonifica amianto ed integrazione sistemi fotovoltaici

Impianto posato su copertura in pannelli. Impianto posato su copertura piana. Bonifica amianto ed integrazione sistemi fotovoltaici Impianto posato su copertura in pannelli Impianto posato su copertura piana Impianto installato su terreno agricolo Impianto in fase di installazione IMPIANTI FOTOVOLTAICI Bonifica amianto ed integrazione

Dettagli

ALLEGATO A: La tecnologica fotovoltaica

ALLEGATO A: La tecnologica fotovoltaica ALLEGATO A: La tecnologica fotovoltaica A. 1 La radiazione solare La radiazione solare è definita come l energia elettromagnetica emessa dal sole. All'interno del sole, a temperature di alcuni milioni

Dettagli

Impianti fotovoltaici connessi alla rete

Impianti fotovoltaici connessi alla rete Aspetti tecnici legati alla progettazione e realizzazione di impianti di generazione e alla loro connessione alla rete La Guida CEI 82-25: Guida alla realizzazione di sistemi di generazione fotovoltaica

Dettagli

LE ENERGIE RINNOVABILI: LA NUOVA RIVOLUZIONE ENERGETICA

LE ENERGIE RINNOVABILI: LA NUOVA RIVOLUZIONE ENERGETICA LE ENERGIE RINNOVABILI: LA NUOVA RIVOLUZIONE ENERGETICA Ing. Mattia Fantini Ing. Matteo Sarti 21 Maggio 2013 Facoltà di Ingegneria di Cesena Indice 1) Teoria del fotovoltaico 2) Struttura dell impianto

Dettagli

Verifiche tecnico-funzionali

Verifiche tecnico-funzionali Verifiche tecnico-funzionali Dopo la messa in opera dell impianto la ditta installatrice deve effettuarne il collaudo verificando che lo stesso risponde alle specifiche funzionali del progetto. 1 Strumenti:

Dettagli

Il solare fotovoltaico

Il solare fotovoltaico Il solare fotovoltaico Energia dal Sole L'energia solare è pulita non solo l'energia solare si può convertire in altre forme senza produrre inquinanti ma, anche la fabbricazione dei materiali che costituiscono

Dettagli

Vetro e risparmio energetico 29 ottobre 2009 Fiera Milano Rho

Vetro e risparmio energetico 29 ottobre 2009 Fiera Milano Rho Vetro e risparmio energetico 29 ottobre 2009 Fiera Milano Rho Il settore fotovoltaico: Quadro della situazione tecnica e normativa Argomenti trattati 2 La conversione fotovoltaica della luce solare Le

Dettagli

TIPI DI IMPIANTI FOTOVOLTAICI

TIPI DI IMPIANTI FOTOVOLTAICI TIPI DI IMPIANTI FOTOVOLTAICI Impianto o sistema fotovoltaico è un insieme di componenti meccanici, elettrici e elettronici che concorrono a captare e trasformare l energia solare rendendolo disponibile

Dettagli

Pannelli solari Fotovoltaici

Pannelli solari Fotovoltaici Pannelli solari Fotovoltaici Che cos'è un pannello solare fotovoltaico? I pannelli fotovoltaici rappresentano il cuore di un impianto fotovoltaico di qualsiasi potenza o dimensione. Il loro scopo è di

Dettagli

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. PREMESSA: Anche intuitivamente dovrebbe a questo punto essere ormai chiaro

Dettagli

PANNELLI SOLARI TERMICI PANNELLI SOLARI FOTOVOLTAICI

PANNELLI SOLARI TERMICI PANNELLI SOLARI FOTOVOLTAICI PANNELLI SOLARI I pannelli solari utilizzano l'energia solare per trasformarla in energia utile e calore per le attività dell'uomo. PANNELLI SOLARI FOTOVOLTAICI PANNELLI SOLARI TERMICI PANNELLI SOLARI

Dettagli

Impianto Fotovoltaico di potenza pari a 58,375 kwp sito nel Comune di Messina (ME) Committente: Comune di Messina

Impianto Fotovoltaico di potenza pari a 58,375 kwp sito nel Comune di Messina (ME) Committente: Comune di Messina Relazione Tecnica Impianto Fotovoltaico di potenza pari a 58,375 kwp sito nel Comune di Messina (ME) Committente: Comune di Messina 1 / 8 INDICE I. TIPOLOGIA E SITO DI INSTALLAZIONE... 3 II. MODULI FOTOVOLTAICI...

Dettagli

SPD: che cosa sono e quando devono essere usati

SPD: che cosa sono e quando devono essere usati Antonello Greco Gli SPD, o limitatori di sovratensione, costituiscono la principale misura di protezione contro le sovratensioni. La loro installazione può essere necessaria per ridurre i rischi di perdita

Dettagli

Energia alternativa: L A N G O L O T E C N I C O. gli impianti fotovoltaici. obiettivo sicurezza. Come funziona il generatore fotovoltaico

Energia alternativa: L A N G O L O T E C N I C O. gli impianti fotovoltaici. obiettivo sicurezza. Come funziona il generatore fotovoltaico Adriano De Acutis, Claudio Mastrobattista e Giuseppe Grammatico Energia alternativa: Come funziona il generatore Un generatore è un dispositivo che, se esposto al sole, è capace di convertire la radiazione

Dettagli

IL RISPARMIO ENERGETICO E GLI AZIONAMENTI A VELOCITA VARIABILE L utilizzo dell inverter negli impianti frigoriferi.

IL RISPARMIO ENERGETICO E GLI AZIONAMENTI A VELOCITA VARIABILE L utilizzo dell inverter negli impianti frigoriferi. IL RISPARMIO ENERGETICO E GLI AZIONAMENTI A VELOCITA VARIABILE L utilizzo dell inverter negli impianti frigoriferi. Negli ultimi anni, il concetto di risparmio energetico sta diventando di fondamentale

Dettagli

Impianti Fotovoltaici

Impianti Fotovoltaici Impianti Fotovoltaici Gianluca Gatto Università degli Studi di Cagliari Dipartimento di ingegneria Elettrica ed Elettronica 1 INDICE Impiego dell energia solare Effetto fotovoltaico Tipologie Impianti

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

Relazione impianto fotovoltaico

Relazione impianto fotovoltaico Relazione impianto fotovoltaico 1.1 Generalità L impianto, oggetto del presente documento, si propone di conseguire un significativo risparmio energetico per la struttura che lo ospita, costituita dal

Dettagli

Candidato: Giacomo Argentero Relatore: Prof. Paolo Gambino. 20 Luglio 2010

Candidato: Giacomo Argentero Relatore: Prof. Paolo Gambino. 20 Luglio 2010 Candidato: Giacomo Argentero Relatore: Prof. Paolo Gambino 20 Luglio 2010 Converte l energia luminosa proveniente dal sole in energia elettrica mediante effetto fotovoltaico. È costituito da più celle

Dettagli

Relazione Tecnica Progetto dell Impianto Elettrico

Relazione Tecnica Progetto dell Impianto Elettrico Relazione Tecnica Progetto dell Impianto Elettrico Rotatoria ingresso cittadella universitaria Premessa: La presente relazione tecnica è finalizzata ad indicare la caratteristiche dei principali componenti

Dettagli

PANNELLO FOTOVOLTAICO

PANNELLO FOTOVOLTAICO PANNELLO FOTOVOLTAICO 12.1 7.2007 Il pannello fotovoltaico Riello MFV è di tipo monocristallino, adatto alle applicazioni in cui si richieda in poco spazio elevata potenza. Cornice con 10 fori asolati,

Dettagli

SPECIFICA TECNICA DI FORNITURA. PER LA REALIZZAZIONE DI IMPIANTI FOTOVOLTAICI DI POTENZA NOMINALE NON SUPERIORE A 20 kw CONNESSI ALLA RETE

SPECIFICA TECNICA DI FORNITURA. PER LA REALIZZAZIONE DI IMPIANTI FOTOVOLTAICI DI POTENZA NOMINALE NON SUPERIORE A 20 kw CONNESSI ALLA RETE SPECIFICA TECNICA DI FORNITURA PER LA REALIZZAZIONE DI IMPIANTI FOTOVOLTAICI DI POTENZA NOMINALE NON SUPERIORE A 20 kw CONNESSI ALLA RETE SCOPO Lo scopo della presente specifica è quello di fornire le

Dettagli

ENERGIA E CENTRALI SOLARI

ENERGIA E CENTRALI SOLARI ENERGIA E CENTRALI SOLARI Si dice solare l energia raggiante sprigionata dal Sole per effetto di reazioni nucleari (fusione dell idrogeno) e trasmessa alla Terra sotto forma di radiazione elettromagnetica.

Dettagli

Protezione dai contatti indiretti

Protezione dai contatti indiretti Protezione dai contatti indiretti Se una persona entra in contatto contemporaneamente con due parti di un impianto a potenziale diverso si trova sottoposto ad una tensione che può essere pericolosa. l

Dettagli

fotovoltaico ecologico inesauribile conveniente GUIDA AGLI IMPIANTI FOTOVOLTAICI

fotovoltaico ecologico inesauribile conveniente GUIDA AGLI IMPIANTI FOTOVOLTAICI il ecologico inesauribile conveniente GUIDA AGLI IMPIANTI FOTOVOLTAICI COS È L ENERGIA fotovoltaica La tecnologia fotovoltaica è un sistema che sfrutta l energia solare e la trasforma, direttamente e istantaneamente,

Dettagli

APPLICATION SHEET Luglio

APPLICATION SHEET Luglio Indice 1. Descrizione dell applicazione 2. Applicazione - Dati 3. Selezione del prodotto e dimensionamento 4. Soluzione Motovario 1. Descrizione dell applicazione Gli schermi per campi da cricket fanno

Dettagli

Progetti di impianti fotovoltaici: un caso di studio

Progetti di impianti fotovoltaici: un caso di studio Progetti di impianti fotovoltaici: un caso di studio Questo modulo è dedicato all illustrazione del progetto definitivo di un impianto da 9,9 kw situato nel comune di Roma. Progetto definitivo di un impianto

Dettagli

Comitato Tecnico 82 : Sistemi di conversione. fotovoltaica dell energia energia solare CEI 82-25

Comitato Tecnico 82 : Sistemi di conversione. fotovoltaica dell energia energia solare CEI 82-25 Comitato Tecnico 82 : Sistemi di conversione fotovoltaica dell energia energia solare CEI 82-25 25 Guida alla realizzazione di sistemi di generazione fotovoltaica collegati alle reti elettriche di media

Dettagli

Elettricità e magnetismo

Elettricità e magnetismo E1 Cos'è l'elettricità La carica elettrica è una proprietà delle particelle elementari (protoni e elettroni) che formano l'atomo. I protoni hanno carica elettrica positiva. Gli elettroni hanno carica elettrica

Dettagli

Generatore radiologico

Generatore radiologico Generatore radiologico Radiazioni artificiali alimentazione: corrente elettrica www.med.unipg.it/ac/rad/ www.etsrm.it oscar fiorucci. laurea.tecn.radiol@ospedale.perugia.it Impianto radiologico trasformatore

Dettagli

Miglioramenti Energetici Solare Termico. Aslam Magenta - Ing. Mauro Mazzucchelli Anno Scolastico 2014-2015 81

Miglioramenti Energetici Solare Termico. Aslam Magenta - Ing. Mauro Mazzucchelli Anno Scolastico 2014-2015 81 Miglioramenti Energetici Solare Termico Scolastico 2014-2015 81 Sostituzione Generatore di Calore Sostituzione adeguamento sistema di Distribuzione Sostituzione del sistema di emissione Installazione Solare

Dettagli

Metodologia di monitoraggio Impianti fotovoltaici

Metodologia di monitoraggio Impianti fotovoltaici Metodologia di monitoraggio Impianti fotovoltaici Per effettuare il monitoraggio degli impianti fotovoltaici è stato scelto il metodo di acquisizione dati proposto dal Dott. Ing. F. Spertino, Dott. Ing.

Dettagli

PROGETTO IMPIANTI TECNOLOGICI SECONDO D.M. 37/08 DEL 22.01.2008

PROGETTO IMPIANTI TECNOLOGICI SECONDO D.M. 37/08 DEL 22.01.2008 Comune di. Provincia di PROGETTO IMPIANTI TECNOLOGICI SECONDO D.M. 37/08 DEL 22.01.2008 PER LA REALIZZAZIONE DEGLI IMPIANTI TECNOLOGICI NON RIENTRANTI IN QUANTO PREVISTO DALL'ART. 5 COMMA 1 D.M. 37/08

Dettagli

FOTOVOLTAICO LA RADIAZIONE SOLARE

FOTOVOLTAICO LA RADIAZIONE SOLARE FOTOVOLTAICO LA RADIAZIONE SOLARE Il Sole Sfera di gas riscaldato da reazioni di fusione termonucleare che, come tutti i corpi caldi emette una radiazione elettromagnetica o solare. L energia solare è

Dettagli

Gli impianti fotovoltaici

Gli impianti fotovoltaici Gli impianti fotovoltaici 1. Principio di funzionamento Il principio di funzionamento dei pannelli fotovoltaici è detto "effetto fotovoltaico". L' effetto fotovoltaico si manifesta nel momento in cui una

Dettagli

ASSESSORATO ALLE ATTIVITA PRODUTTIVE SPECIFICA TECNICA DI FORNITURA

ASSESSORATO ALLE ATTIVITA PRODUTTIVE SPECIFICA TECNICA DI FORNITURA ALLEAGATO A1 SPECIFICA TECNICA DI FORNITURA PER LA REALIZZAZIONE DI IMPIANTI FOTOVOLTAICI DI POTENZA NOMINALE NON SUPERIORE A 20 kw CONNESSI ALLA RETE SCOPO Lo scopo della presente specifica è quello di

Dettagli

La progettazione dei sistemi FV allacciati alla rete elettrica

La progettazione dei sistemi FV allacciati alla rete elettrica La progettazione dei sistemi FV allacciati alla rete elettrica F. Groppi Torna al programma Indice degli argomenti Considerazioni introduttive Dimensionamento dell impianto Producibilità dell impianto

Dettagli

La corrente elettrica

La corrente elettrica PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio La corrente elettrica Sommario 1) Corrente elettrica

Dettagli

I SISTEMI SOLARI FOTOVOLTAICI

I SISTEMI SOLARI FOTOVOLTAICI QuickTime e un decompressore sono necessari per visualizzare quest'immagine. I SISTEMI SOLARI FOTOVOLTAICI CORSO INTRODUTTIVO IL SOLE FONTE DI ENERGIA Nel nucleo del sole avvengono incessantemente reazioni

Dettagli

Copertura metallica e sistema fotovoltaico: il gioco di squadra si vede sul campo.

Copertura metallica e sistema fotovoltaico: il gioco di squadra si vede sul campo. Copertura metallica e sistema fotovoltaico: il gioco di squadra si vede sul campo. solar roofing Garantire per 20 anni un sistema fotovoltaico se non poggia su solide basi? Il tetto sul quale sono installati

Dettagli

Tesina di scienze. L Elettricità. Le forze elettriche

Tesina di scienze. L Elettricità. Le forze elettriche Tesina di scienze L Elettricità Le forze elettriche In natura esistono due forme di elettricità: quella negativa e quella positiva. Queste due energie si attraggono fra loro, mentre gli stessi tipi di

Dettagli

ENERGIA SOLARE: Centrali fotovoltaiche e termosolari. Istituto Paritario Scuole Pie Napoletane - Anno Scolastico 2012-13 -

ENERGIA SOLARE: Centrali fotovoltaiche e termosolari. Istituto Paritario Scuole Pie Napoletane - Anno Scolastico 2012-13 - ENERGIA SOLARE: Centrali fotovoltaiche e termosolari L A V E R A N A T U R A D E L L A L U C E La luce, sia naturale sia artificiale, è una forma di energia fondamentale per la nostra esistenza e per quella

Dettagli

SOFTWARE PV*SOL. Programma di simulazione dinamica per calcolare dimensionamento e rendimento di impianti fotovoltaici

SOFTWARE PV*SOL. Programma di simulazione dinamica per calcolare dimensionamento e rendimento di impianti fotovoltaici SOFTWARE PV*SOL Programma di simulazione dinamica per calcolare dimensionamento e rendimento di impianti fotovoltaici Introduzione PV*SOL è un software per il dimensionamento e la simulazione dinamica,

Dettagli

La corrente elettrica

La corrente elettrica La corrente elettrica La corrente elettrica è un movimento di cariche elettriche che hanno tutte lo stesso segno e si muovono nello stesso verso. Si ha corrente quando: 1. Ci sono cariche elettriche; 2.

Dettagli

Genova 15 01 14 TIPOLOGIE DI LAMPADE

Genova 15 01 14 TIPOLOGIE DI LAMPADE Genova 15 01 14 TIPOLOGIE DI LAMPADE Le lampade a vapori di mercurio sono sicuramente le sorgenti di radiazione UV più utilizzate nella disinfezione delle acque destinate al consumo umano in quanto offrono

Dettagli

Lo sviluppo del progetto di un impianto fotovoltaico industriale

Lo sviluppo del progetto di un impianto fotovoltaico industriale Federico May Commercial Operations ForGreen SpA Lo sviluppo del progetto di un impianto fotovoltaico industriale Federico May ForGreen Spa Viale del Lavoro, 33 37135 Verona forgreen.it L impianto fotovoltaico

Dettagli

Le Regole Tecniche per. e la nuova edizione della Guida CEI 82-25

Le Regole Tecniche per. e la nuova edizione della Guida CEI 82-25 Le Regole Tecniche per la Connessione alle reti e la nuova edizione della Guida CEI 82-25 Ing. Francesco Iannello Responsabile Tecnico ANIE/Energia Vicenza, 16 Dicembre 2010 Indice Connessione alle reti

Dettagli