Statistical learning Strumenti quantitativi per la gestione

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Statistical learning Strumenti quantitativi per la gestione"

Transcript

1 Statistical learning Strumenti quantitativi per la gestione Emanuele Taufer Vendite Simbologia Reddito Statistical learning A cosa ci serve f? 1 Previsione 2 Inferenza Previsione Errore riducibile e errore irriducibile Inferenza Esempi Come stimare f una panoramica Metodi parametrici Metodi non parametrici Esempio: Income data 2.3 Vera f 2.4 Modello lineare 2.5 Thin plate spline basso adattamento 2.6 Thin plate spline alto adattamento Trade off flessibilità interpretabilità Supervised e unsupervised Statistical Learning Problemi di regressione e di classificazione Valutazione della bontà del modello Test MSE e training MSE Esempio 1: f non lineare Esempio 2: f lineare Esempio 3: f non lineare Bias Variance trade off Scomposizione Bias Var Esempi 1,2,3 Classificazione Tasso di errore training e test Il classificatore di Bayes Classificatore KNN Esempio K=3 Esempio 1 Esempio 1 Error rates Riferimenti bibliografici Vendite file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 1/19

2 Supponiamo di voler capire come migliorare le vendite di un determinato prodotto. Il Set di dati Advertising consiste nelle vendite del prodotto in 200 diversi mercati, insieme ai budget pubblicitari per il prodotto in ciascuno di quei mercati per tre diversi media: TV, radio, e giornali. Non è possibile aumentare direttamente le vendite del prodotto. D altra parte, si può controllare la pubblicità in ciascuno dei tre media. Pertanto, se stabiliamo che vi è un associazione tra pubblicità e vendite, allora possiamo agire sul budget pubblicitario, e quindi, indirettamente sulle vendite. In altre parole, l obiettivo è quello di sviluppare un modello accurato utilizzabile per prevedere le vendite sulla base dei budget per i tre media. Tre regressioni separate (linea blu) Vendite su pubblicità TV, Radio e Giornali Possiamo prevedere le vendite utilizzando questi tre? Forse possiamo fare meglio utilizzando un modello Simbologia Vendite f(tv, Radio, Giornali) Nell esempio, Vendite è la variabile risposta o dipendente o obbiettivo che desideriamo prevedere. Genericamente indicata con Y. TV è una variabile indipendente o input o predittore. Chiamiamola X 1. Analogamente definiamo Radio come X 2 e così via. Possiamo fare riferimento genericamente al vettore input X = ( X 1, X 2, X 3 ) T A questo punto possiamo riscrivere il nostro modello come Y = f(x) + ε file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 2/19

3 dove ε è un termine d errore casuale, che è indipendente da X e ha media zero. In questa formulazione f rappresenta l informazione sistematica che X fornisce su Y. Reddito Y = f(x) + ε Come altro esempio, si consideri la relazione tra reddito e anni di educazione per 30 persone nel set di dati sul reddito (income). Il grafico suggerisce che si potrebbe essere in grado di prevedere il reddito con gli anni di educazione. Tuttavia, la funzione f che collega la variabile input alla variabile output è sconosciuta in generale. In questa situazione si deve stimare f basandosi sui punti osservati. Statistical learning In sostanza, il termine Statistical learning si riferisce ad una serie di approcci per la stima di f. In questa prima lezione si delineano alcuni dei principali concetti teorici che si presentano nella stima di f, nonché gli strumenti per valutare la bontà delle stime ottenute. A cosa ci serve? Due ragioni principali 1 Previsione f file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 3/19

4 Con una buona f possiamo fare previsioni di Y in base a nuovi punti X = x 2 Inferenza Possiamo capire quali componenti di X 1 X 2 X p sono importanti per spiegare Y, e quali sono irrilevanti. Ad esempio Anzianità e Anni di Educazione hanno un grande impatto sul reddito, ma Stato civile di solito no. A seconda della complessità di f, potremmo essere in grado di capire come ogni componente di X agisce su Y. Previsione In molte situazioni, un insieme di input X è prontamente disponibile, ma l output Y non può essere facilmente ottenuto. In questa situazione, siamo in grado di prevedere Y con dove rappresenta la nostra stima per, e rappresenta la previsione risultante per. In questo approccio, è spesso trattato come una scatola nera, nel senso che, tipicamente, non ci interessa la forma esatta di, purché fornisca previsioni accurate per Y. Errore riducibile e errore irriducibile L accuratezza di come previsione per Y dipende da due quantità; l errore riducibile e l errore irriducibile. Errore riducibile generalmente X = (,,, ) Y^ = (X) f Y^ Y Y^ non è una stima perfetta per f, e questo introduce qualche errore. Questo errore è riducibile perché possiamo potenzialmente migliorare l accuratezza di utilizzando tecniche via via migliori di Statistical learning per stimare f. Errore irriducibile Y è anche una funzione di ε che, per definizione, non può essere previsto con X. la variabilità associato a ε influisce sull accuratezza delle nostre previsioni. ε può contenere variabili non misurate che sono utili nel predire Y : ε può contenere variazione intrinseca al fenomeno. X Y^ = (X) Si consideri una data stima e un insieme di predittori, che producono la previsione. Supponiamo per un momento che sia f che X siano fissi. Si ha E(Y Y^) 2 = E[f(X) + ε (X)] 2 = [f(x) (X)] 2 + errore riducibile V ar(ε) errore irriducibile E(Y ^ 2 file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 4/19

5 rappresenta la media, o valore atteso, del quadrato della differenza tra il valore previsto e effettivo di Y, V ar(ε) la varianza associata all errore ε.questo valore è quasi sempre sconosciuto in pratica. Inferenza In questo caso è importante capire la relazione tra X e Y, o più specificamente, comprendere come Y cambia in funzione di X 1,, Xp. Quali fattori predittivi sono associati con la risposta? È spesso il caso che solo una piccola frazione dei predittori disponibili siano sostanzialmente associati a Y. Identificare i pochi predittori importanti può essere estremamente utile. Qual è la relazione tra la risposta e ogni predittore? Alcuni predittori possono avere un rapporto positivo con Y, nel senso che aumentando il predittore aumenta anche Y. Altri predittori possono avere una relazione opposta. Il rapporto tra la risposta e un dato predittore può dipendere anche i valori degli altri predittori. Il rapporto tra Y e X è lineare? O è più complicato? Storicamente, la maggior parte dei metodi per stimare f hanno preso forma lineare. In alcune situazioni, tale ipotesi è ragionevole o auspicabile. Ma spesso il vero rapporto è più complicato. Esempi Si consideri una società che è interessata a condurre una campagna di direct marketing. L obiettivo è quello di identificare le persone che risponderanno positivamente a una mail, sulla base di osservazioni di variabili demografiche misurata su ogni singola unità. Si consideri il problema relativo al set di dati Advertising che consiste nelle vendite del prodotto in 200 diversi mercati, insieme con budget pubblicitari per il prodotto in ciascuno di quei mercati per tre diversi media: TV, radio, e giornali. In un contesto immobiliare, si può cercare di legare il valore delle case per input quali il tasso di criminalità, la zonizzazione, la distanza da un fiume, la qualità dell aria, presenza di scuole, livello di reddito della comunità, le dimensioni delle case, e così via. In alternativa, si può semplicemente essere interessati a predire il valore di una casa date le sue caratteristiche Come stimare Simbologia E(Y Y^) 2 f una panoramica Abbiamo a disposizione una serie di casi, i dati osservati, che useremo per stimare f. Indicheremo sempre con n il numero di unità osservate. I dati usati per stimare f vengono definiti training data. x ij rappresenta il valore del predittore j, o input, per l osservazione i, dove i = 1, 2,, n j = 1, 2,, p. e file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 5/19

6 Corrispondentemente, I cd training data sono dunque rappresenta la variabile di risposta per l osservazione i esima. Vogliamo trovare una funzione tale che per ogni osservazione. In linea di massima, la maggior parte dei metodi di statistical learning possono essere classificati in parametrici nonparametrici Metodi parametrici I metodi parametrici implicano un approccio in due fasi: y i {( x 1, y 1 ), ( x 2, y 2 ),, ( x n, y n )}, dove x i = ( x i1, x i2,, x ip ) T Y (X) (X, Y ) 1. In primo luogo, si fa una supposizione circa la forma funzionale, o la forma di f. 2. Dopo aver selezionato un modello ( f ), abbiamo bisogno di una procedura di stima di f che utilizza i training data. Per esempio, una semplice ipotesi è che f sia lineare in X: f(x) = β 0 β 1 X 1 β 2 X 2 β p X p in questo caso il problema della stima di f è notevolmente semplificato. Uno deve solo stimare p + 1 coefficienti β 0, β 1,, β p. Anche se non è quasi mai corretto, un modello lineare è spesso una buona, ed interpretabile, approssimazione a. f(x) Il potenziale svantaggio di un approccio parametrico è che il modello che scegliamo di solito non corrisponde alla vera f. Se il modello scelto è troppo lontano da f, allora la nostra stima sarà povera (o fuorviante). Possiamo cercare di risolvere questo problema scegliendo modelli flessibili che possono adattarsi a diverse forme funzionali possibili per f. In generale, adattando un modello più flessibile richiede la stima di un maggior numero di parametri. Modelli troppo complessi possono portare ad un fenomeno noto come overfitting dei dati. In sostanza il modello segue gli errori, o rumore, troppo da vicino. Metodi non parametrici I metodi non parametrici non fanno ipotesi esplicite circa la forma funzionale di f. Invece cercano una stima di f che sia il più vicino possibile ai punti dati Tali approcci possono avere un grande vantaggio rispetto agli approcci parametrici: evitando l assunzione di una forma funzionale particolare f, hanno il potenziale per adattarsi con precisione una gamma più ampia di possibili forme per f. file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 6/19

7 Ma gli approcci non parametrici soffrono di un inconveniente: poiché non riducono il problema della stima di f a quello di un piccolo numero di parametri ( p + 1) di solito un numero di osservazioni ( n) elevato è richiesto per ottenere una stima accurata di f. Esempio: Income data Nei grafici seguenti, proviamo a confrontare diverse soluzioni di stima di f per il problema I grafici seguenti mostrano: Income = f(years of education, Seniority) la vera f sottostante ai dati (generati al computer) il modello parametrico un modello thin plate spline (non parametrico) con basso grado di adattamento con elevato grado di adattamento 2.3 Vera f income + education + seniority. β 0 β 1 β 2 file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 7/19

8 2.4 Modello lineare 2.5 Thin plate spline basso adattamento file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 8/19

9 2.6 Thin plate spline alto adattamento file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 9/19

10 Trade off flessibilità interpretabilità Tra i molti metodi disponibili, alcuni sono meno flessibili, o più restrittivi, nel senso che possono produrre solo relativamente piccola gamma di forme per stimare f. Se siamo interessati all inferenza, modelli restrittivi sono più interpretabili Se siamo interessati alla previsione la precisione del modello diventa fondamentale Supervised e unsupervised Statistical Learning Molti problemi di Statistical learning rientrano in una delle due categorie: supervised e unsupervised. Nel Supervised learning abbiamo sia variabili input ( X) che output ( Y ). regressione lineare, regressione logistica, modelli additivi generalizzati, etc. Nell unsupervised learning, tipicamente, non è osservata la variabile risposta Y. cluster analysis: ad esempio raggruppare consumatori in base a caratteristiche demografiche osservate sperando che queste possano essere associate ad abitudini di consumo. Problemi di regressione e di classificazione Le variabili possono essere caratterizzate come file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 10/19

11 Quantitative (misurate su scala numerica) Qualitative (Classificano l unità in una di K classi differenti) Tipicamente se la Y è quantitativa si parla di regressione Se la Y è qualitativa si parla di classificazione In entrambi i casi possiamo avere variabili input, X, sia di tipo qualitativo che quantitativo. Valutazione della bontà del modello Una delle misure più usate per la valutazione dei modelli è l errore quadratico medio o MSE (mean squared error) nell acronimo inglese: n 1 MSE = ( y i ( x i )) 2 ( x i ) n i=1 L MSE sarà piccolo se i valori previsti, sono molto vicini ai valori osservati ; viceversa tenderà a crescere tanto più sono le differenze previsti osservati che differiscono sostanzialmente. y i L MSE definito sopra è calcolato utilizzando i training data Tuttavia, si è più interessati alla precisione delle predizioni che otteniamo quando applichiamo dati nuovi, i cd test data. a Test MSE e training MSE {(, ), (, ),, (, )} Dati i training data x 1 y 1 x 2 y 2 x n y n modello con training MSE molto basso. può essere relativamente semplice trovare un ( x 0 ) y 0 (, ) Invece, vogliamo sapere se è approssimativamente uguale a, dove x 0 y 0 è un osservazione nuova, non presente nei training data. Vogliamo scegliere il metodo che dà un test MSE molto basso. Se abbiamo un gran numero di osservazioni test, potremmo calcolare Ave( y 0 ( x 0 )) 2, dove Ave sta per media (average). Ossia l errore quadratico medio di previsione per le osservazioni test ( X 0, Y 0 ). In altre parole, vorremmo selezionare il modello per il quale, il test MSE sia il più piccolo possibile. Tipicamente test MSE e training MSE possono differire sostanzialmente. Se uno ha a disposizione due set di dati, training e test può provare ad adattare diversi modelli ai training data e scegliere quello che presenta test MSE più basso. Se questo non è il caso si può ricorrere ad altre tecniche, ad esempio la cross validazione, che discuteremo nelle prossime lezioni. Esempio 1: f non lineare file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 11/19

12 La figura sopra mostra: A sinistra: i dati simulati da f (in nero) e tre possibili stime: regressione lineare (arancio); smoothing splines (blu e verde) A destra: test MSE (rosso) e training MSE (grigio) La flessibilità è misurata in termini di parametri (più parametri più flessibilità) la regressione lineare in questo caso ha due parametri (intercetta e pendenza) L andamento a U del test MSE è molto tipico e mostra che un overfitting dei dati è spesso fuorviante Esempio 2: f lineare file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 12/19

13 Esempio 3: f non lineare Bias Variance trade off file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 13/19

14 La forma a U osservata nel Test MSE è il risultato di due caratteristiche, spesso in contrasto tra loro, delle tecniche di statistical learning: la varianza ed il bias ( o distorsione) Il valore atteso del test MSE può essere scritto V ar( )) E( y 0 ( x 0 )) 2 = V ar( ( x 0 )) + [Bias( ( x 0 ))] 2 + V ar(ε) misura il cambiamento atteso di data diverso. Diversi training data infatti ottengono diverse flessibilità del metodo di stima, maggiore è la variabilità di. Bias( ( x 0 )) = E( ( x 0 ) f( x 0 )) se la sua stima avviene attraverso un training. In generale, più elevata la si riferisce all errore introdotto approssimando un problema reale, che può essere estremamente complicato, con un modello semplice. Ad esempio, la regressione lineare presuppone che vi sia un rapporto lineare tra Y e X 1, X2,, X p. E improbabile che sia così in realtà e quindi l uso della regressione lineare indurrà distrosione nella stima di f Scomposizione Bias Var Esempi 1,2,3 Di regola, più è flessibile il metodo che si usa, più la varianza tenderà ad aumentare ed il bias a diminuire. Il tasso relativo di variazione di queste due quantità determina se il test MSE aumenta o diminuisce. Tuttavia, ad un certo punto, l aumento della flessibilità ha poco impatto sul bias, ma inizia ad aumentare significativamente la varianza. Quando questo accade il test MSE aumenta. Classificazione Molti dei concetti discussi finora, quale il bias variance trade off, valgono anche nel caso della classificazione con modifiche minime dovute al fatto che Y non è più numerica. f {( x 1, y 1 ),, ( x n, y n )},, Supponiamo di stimare sulla base dei training data, dove ora sono qualitative file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 14/19 ^ y 1 y n

15 L approccio più comune per quantificare la bontà della stima 1 n n i=1 I( ) y i y^i è il tasso di errore per i training data dove è la classe prevista per la esima unità da. y^i i I( ) y i y^i è un indicatore, ossia è uguale a 0 se y i = y^i, uguale a 1 se y i y^i La formula calcola la frazione di classificazioni scorrette. Tasso di errore training e test Analogamente a quanto discusso per il contesto della regressione, si è di solito più interessati alla performance di nel caso di unità non presenti nei training data Definiamo allora il tasso di errore test (test error rate) associato ad un set di osservazioni test del tipo ( x 0, y 0 ): Una buona è quella per cui il test error rate è il più basso possibile. Il classificatore di Bayes E possibile dimostrare che il test error rate definito sopra è minimo, in media, quando la procedura di classificazione è fatta usando una semplicissima regola che assegna l unità alla classe più probabile data l informazione dei predittori. Il classificatore di Bayes assegna l osservazione test, con predittore x 0, alla classe j, ( ), per la quale è massima. j = 1, 2, K P( = j X = ) Y 0 x 0 è una probabilità condizionata: la probabilità che Y = j data l informazione fornita da x 0. Il classificatore di Bayes produce il minor test error rate possibile, definito Bayes error rate. In pratica non riusciamo mai a calcolare il classificatore di Bayes poichè non c è informazione a sufficienza. Classificatore KNN Ave(I( )) y i y^i P(Y = j X = ) x 0 Dato un intero positivo K e un osservazione test x 0, il classificatore KNN ( K nearest neighbors) identifica i K punti più vicini a x 0, rappresentati da N 0. stima la probabilità condizionale per classe j come frazione di punti in N 0 la cui risposta è uguale a j: 1 P r(y = j X = ) = I( = j) file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 15/19 i 0

16 P r(y = j X = ) = I( = j) 1 x 0 K i N 0 y i Infine, KNN applica la regola di Bayes e classifica l osservazione test x 0 nella classe con il maggior probabilità. Esempio K=3 Esempio 1 file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 16/19

17 Esempio 1 file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 17/19

18 Error rates file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 18/19

19 Riferimenti bibliografici An Introduction to Statistical Learning, with applications in R" (Springer, 2013) Alcune delle figure in questa presentazione sono tratte dal testo con il permesso degli autori: G. James, D. Witten, T. Hastie e R. Tibshirani " file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 19/19

Regressione logistica. Strumenti quantitativi per la gestione

Regressione logistica. Strumenti quantitativi per la gestione Regressione logistica Strumenti quantitativi per la gestione Emanuele Taufer file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/4a_rlg.html#(1) 1/25 Metodi di classificazione I metodi usati per analizzare

Dettagli

Regressione logistica

Regressione logistica Regressione logistica Strumenti quantitativi per la gestione Emanuele Taufer Metodi di classificazione Tecniche principali Alcuni esempi Data set Default I dati La regressione logistica Esempio Il modello

Dettagli

Regressione lineare multipla Strumenti quantitativi per la gestione

Regressione lineare multipla Strumenti quantitativi per la gestione Regressione lineare multipla Strumenti quantitativi per la gestione Emanuele Taufer Regressione lineare multipla (RLM) Esempio: RLM con due predittori Stima dei coefficienti e previsione Advertising data

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

Analisi di scenario File Nr. 10

Analisi di scenario File Nr. 10 1 Analisi di scenario File Nr. 10 Giorgio Calcagnini Università di Urbino Dip. Economia, Società, Politica giorgio.calcagnini@uniurb.it http://www.econ.uniurb.it/calcagnini/ http://www.econ.uniurb.it/calcagnini/forecasting.html

Dettagli

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa Master della filiera cereagricola Giovanni Di Bartolomeo Stefano Papa Facoltà di Agraria Università di Teramo Impresa e mercati Parte prima L impresa L impresa e il suo problema economico L economia studia

Dettagli

Multicollinearità Strumenti quantitativi per la gestione

Multicollinearità Strumenti quantitativi per la gestione Strumenti quantitativi per la gestione Emanuele Taufer Quando non tutto va come dovrebbe I dati Scatter plot Correlazioni RLS e RLM Individuare la MC Variance Inflation Factor Cosa fare in caso di MC Alcune

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

RIASSUNTI ECONOMIA Finalità dei sistemi contabili: conveniente sistemi contabili

RIASSUNTI ECONOMIA Finalità dei sistemi contabili: conveniente sistemi contabili RIASSUNTI ECONOMIA Finalità dei sistemi contabili: per operare in modo efficiente le aziende hanno bisogno di conoscere se l utilizzo delle risorse che stanno impiegando nelle diverse attività è economicamente

Dettagli

Perché si fanno previsioni?

Perché si fanno previsioni? Perché si fanno previsioni? Si fanno previsioni per pianificare un azione quando c è un lag fra momento della decisione e momento in cui l evento che ci interessa si verifica. ESEMPI decisioni di investimento

Dettagli

Il concetto di elasticità della domanda rispetto al prezzo è di importanza cruciale per anticipare l esito di variazioni di prezzo (legate ad esempio

Il concetto di elasticità della domanda rispetto al prezzo è di importanza cruciale per anticipare l esito di variazioni di prezzo (legate ad esempio L elasticità Cap.4 L elasticità Fin ora abbiamo visto come domanda e offerta di un bene reagiscano a variazioni del prezzo del bene Sono state tutte considerazioni qualitative (direzione del cambiamento)

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

Verifica di ipotesi e intervalli di confidenza nella regressione multipla

Verifica di ipotesi e intervalli di confidenza nella regressione multipla Verifica di ipotesi e intervalli di confidenza nella regressione multipla Eduardo Rossi 2 2 Università di Pavia (Italy) Maggio 2014 Rossi MRLM Econometria - 2014 1 / 23 Sommario Variabili di controllo

Dettagli

Capitolo 26: Il mercato del lavoro

Capitolo 26: Il mercato del lavoro Capitolo 26: Il mercato del lavoro 26.1: Introduzione In questo capitolo applichiamo l analisi della domanda e dell offerta ad un mercato che riveste particolare importanza: il mercato del lavoro. Utilizziamo

Dettagli

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti Enrico Saltari Università di Roma La Sapienza 1 Dotazioni iniziali Il consumatore dispone ora non di un dato reddito monetario ma di un ammontare

Dettagli

Regressione non lineare con un modello neurale feedforward

Regressione non lineare con un modello neurale feedforward Reti Neurali Artificiali per lo studio del mercato Università degli studi di Brescia - Dipartimento di metodi quantitativi Marco Sandri (sandri.marco@gmail.com) Regressione non lineare con un modello neurale

Dettagli

Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5

Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5 Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5 Rimini, 26 aprile 2006 1 The Inter temporal Effects of International Trade Valore in $ del consumo di beni oggi G D F H 1/(1+r) G Valore

Dettagli

Equivalenza economica

Equivalenza economica Equivalenza economica Calcolo dell equivalenza economica [Thuesen, Economia per ingegneri, capitolo 4] Negli studi tecnico-economici molti calcoli richiedono che le entrate e le uscite previste per due

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Domande a scelta multipla 1

Domande a scelta multipla 1 Domande a scelta multipla Domande a scelta multipla 1 Rispondete alle domande seguenti, scegliendo tra le alternative proposte. Cercate di consultare i suggerimenti solo in caso di difficoltà. Dopo l elenco

Dettagli

lezione 18 AA 2015-2016 Paolo Brunori

lezione 18 AA 2015-2016 Paolo Brunori AA 2015-2016 Paolo Brunori Previsioni - spesso come economisti siamo interessati a prevedere quale sarà il valore di una certa variabile nel futuro - quando osserviamo una variabile nel tempo possiamo

Dettagli

La Minimizzazione dei costi

La Minimizzazione dei costi La Minimizzazione dei costi Il nostro obiettivo è lo studio del comportamento di un impresa che massimizza il profitto sia in mercati concorrenziali che non concorrenziali. Ora vedremo la fase della minimizzazione

Dettagli

Finanza Aziendale. Lezione 13. Introduzione al costo del capitale

Finanza Aziendale. Lezione 13. Introduzione al costo del capitale Finanza Aziendale Lezione 13 Introduzione al costo del capitale Scopo della lezione Applicare la teoria del CAPM alle scelte di finanza d azienda 2 Il rischio sistematico E originato dalle variabili macroeconomiche

Dettagli

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2.

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2. Analisi multivariata Statistica multivariata Quando il numero delle variabili rilevate sullo stesso soggetto aumentano, il problema diventa gestirle tutte e capirne le relazioni. Cercare di capire le relazioni

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

I mercati dei beni e i mercati finanziari: il modello IS-LM. Assunzione da rimuovere. Investimenti, I

I mercati dei beni e i mercati finanziari: il modello IS-LM. Assunzione da rimuovere. Investimenti, I I mercati dei beni e i mercati finanziari: il modello IS-LM Assunzione da rimuovere Rimuoviamo l ipotesi che gli Investimenti sono una variabile esogena. Investimenti, I Gli investimenti delle imprese

Dettagli

Aspettative, Produzione e Politica Economica

Aspettative, Produzione e Politica Economica Aspettative, Produzione e Politica Economica In questa lezione: Studiamo gli effetti delle aspettative sui livelli di spesa e produzione. Riformuliamo il modello IS-LM in un contesto con aspettative. Determiniamo

Dettagli

Metodi di previsione

Metodi di previsione Metodi di previsione Giovanni Righini Università degli Studi di Milano Corso di Logistica I metodi di previsione I metodi di previsione sono usati per ricavare informazioni a sostegno dei processi decisionali

Dettagli

Introduzione alle relazioni multivariate. Introduzione alle relazioni multivariate

Introduzione alle relazioni multivariate. Introduzione alle relazioni multivariate Introduzione alle relazioni multivariate Associazione e causalità Associazione e causalità Nell analisi dei dati notevole importanza è rivestita dalle relazioni causali tra variabili Date due variabili

Dettagli

Principi di analisi causale Lezione 2

Principi di analisi causale Lezione 2 Anno accademico 2007/08 Principi di analisi causale Lezione 2 Docente: prof. Maurizio Pisati Logica della regressione Nella sua semplicità, l espressione precedente racchiude interamente la logica della

Dettagli

Lineamenti di econometria 2

Lineamenti di econometria 2 Lineamenti di econometria 2 Camilla Mastromarco Università di Lecce Master II Livello "Analisi dei Mercati e Sviluppo Locale" (PIT 9.4) Aspetti Statistici della Regressione Aspetti Statistici della Regressione

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

b) Tale studio dà luogo ad una riduzione della domanda di caffè e quindi ad una diminuzione del prezzo e della quantità di equilibrio.

b) Tale studio dà luogo ad una riduzione della domanda di caffè e quindi ad una diminuzione del prezzo e della quantità di equilibrio. Capitolo 2 omanda e offerta oluzioni delle omande di ripasso 1. L eccesso di domanda si verifica quando il prezzo è inferiore a quello di equilibrio. In questo caso, i consumatori domandano una quantità

Dettagli

MODULO 2 www.sapienzafinanziaria.com. la formazione finanziaria è il miglior investimento per il tuo domani

MODULO 2 www.sapienzafinanziaria.com. la formazione finanziaria è il miglior investimento per il tuo domani MODULO 2 www.sapienzafinanziaria.com la formazione finanziaria è il miglior investimento per il tuo domani Lezione n. 1 Edizione marzo / giugno 2015 La simulazione del trading su dati storici www.sapienzafinanziaria.com

Dettagli

Moneta e Tasso di cambio

Moneta e Tasso di cambio Moneta e Tasso di cambio Come si forma il tasso di cambio? Determinanti del tasso di cambio nel breve periodo Determinanti del tasso di cambio nel lungo periodo Che cos è la moneta? Il controllo dell offerta

Dettagli

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE STATISTICA DESCRITTIVA SCHEDA N. : REGRESSIONE LINEARE Nella Scheda precedente abbiamo visto che il coefficiente di correlazione fra due variabili quantitative X e Y fornisce informazioni sull esistenza

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1)

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) 151 Introduzione Un esperimento è una prova o una serie di prove. Gli esperimenti sono largamente utilizzati nel campo dell ingegneria. Tra le varie applicazioni;

Dettagli

Capitolo 10 Z Elasticità della domanda

Capitolo 10 Z Elasticità della domanda Capitolo 10 Z Elasticità della domanda Sommario Z 1. L elasticità della domanda rispetto al prezzo. - 2. La misura dell elasticità. - 3. I fattori determinanti l elasticità. - 4. L elasticità rispetto

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Sistemi di Numerazione Sistema decimale La

Dettagli

STRATEGIA DI TRADING. Turning Points

STRATEGIA DI TRADING. Turning Points STRATEGIA DI TRADING Turning Points ANALISI E OBIETTIVI DA RAGGIUNGERE Studiare l andamento dei prezzi dei mercati finanziari con una certa previsione su tendenze future Analisi Tecnica: studio dell andamento

Dettagli

Capitolo 8 Moneta, prezzi e inflazione

Capitolo 8 Moneta, prezzi e inflazione Capitolo 8 Moneta, prezzi e inflazione Francesco Prota Piano della lezione Le funzioni della moneta La teoria quantitativa della moneta Inflazione La domanda di moneta Moneta, prezzi e inflazione I costi

Dettagli

Risparmio, investimenti e sistema finanziario

Risparmio, investimenti e sistema finanziario Risparmio, investimenti e sistema finanziario Una relazione fondamentale per la crescita economica è quella tra risparmio e investimenti. In un economia di mercato occorre individuare meccanismi capaci

Dettagli

Lezione 8. (BAG cap. 7) IL MEDIO PERIODO Il mercato del lavoro. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia IL MEDIO PERIODO

Lezione 8. (BAG cap. 7) IL MEDIO PERIODO Il mercato del lavoro. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia IL MEDIO PERIODO Lezione 8 (BAG cap. 7) IL MEDIO PERIODO Il mercato del lavoro Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia IL MEDIO PERIODO 2 1 Nel breve periodo la domanda determina la produzione =>

Dettagli

Livello dei prezzi e tasso di cambio nel lungo periodo

Livello dei prezzi e tasso di cambio nel lungo periodo Livello dei prezzi e tasso di cambio nel lungo periodo La legge del prezzo unico La parità del potere d acquisto (PPP) Un modello sui tassi di cambio di lungo periodo basato sulla PPP Problemi relativi

Dettagli

Domande a scelta multipla 1

Domande a scelta multipla 1 Domande a scelta multipla Domande a scelta multipla 1 Rispondete alle domande seguenti, scegliendo tra le alternative proposte. Cercate di consultare i suggerimenti solo in caso di difficoltà. Dopo l elenco

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 29-Analisi della potenza statistica vers. 1.0 (12 dicembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

SIMULAZIONE PROVA DI ECONOMIA POLITICA (PRIMA PARTE DEL PROGRAMMA: CAPP. 2,4,5,7,21) ANNO ACCADEMICO 2011/2012

SIMULAZIONE PROVA DI ECONOMIA POLITICA (PRIMA PARTE DEL PROGRAMMA: CAPP. 2,4,5,7,21) ANNO ACCADEMICO 2011/2012 SIMULAZIONE PROVA DI ECONOMIA POLITICA (PRIMA PARTE DEL PROGRAMMA: CAPP. 2,4,5,7,21) ANNO ACCADEMICO 2011/2012 La prova d esame completa comprende 6 domande a risposta multipla più 4 esercizi articolati

Dettagli

La regressione lineare multipla

La regressione lineare multipla 13 La regressione lineare multipla Introduzione 2 13.1 Il modello di regressione multipla 2 13.2 L analisi dei residui nel modello di regressione multipla 9 13.3 Il test per la verifica della significatività

Dettagli

Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM

Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM 2 OBIETTIVO: Il modello IS-LM Fornire uno schema concettuale per analizzare la determinazione congiunta della produzione e del tasso

Dettagli

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Introduzione : analisi delle relazioni tra due caratteristiche osservate sulle stesse unità statistiche studio del comportamento di due caratteri

Dettagli

Esercizi su domanda e offerta. 24 novembre 2010

Esercizi su domanda e offerta. 24 novembre 2010 Esercizi su domanda e offerta 24 novembre 2010 Domande Domanda 1* Cosa si intende per spesa totale di un consumatore per un dato bene? Descrivete come essa varia quando il prezzo del bene considerato aumenta

Dettagli

INTRODUZIONE ALLA MICROECONOMIA [F O] / Prova finale 14 Gennaio 2005. Nome.. Cognome. Matricola. Corso di laurea: CLEMI CLEA CLSES

INTRODUZIONE ALLA MICROECONOMIA [F O] / Prova finale 14 Gennaio 2005. Nome.. Cognome. Matricola. Corso di laurea: CLEMI CLEA CLSES INTRODUZIONE ALLA MICROECONOMIA [F O] / Prova finale 14 Gennaio 2005 A Nome.. Cognome. Matricola. Corso di laurea: CLEMI CLEA CLSES Istruzioni: rispondete alle domande segnando con una crocetta la lettera

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

1. L analisi statistica

1. L analisi statistica 1. L analisi statistica Di cosa parleremo La statistica è una scienza, strumentale ad altre, concernente la determinazione dei metodi scientifici da seguire per raccogliere, elaborare e valutare i dati

Dettagli

Economia Internazionale e Politiche Commerciali (a.a. 12/13)

Economia Internazionale e Politiche Commerciali (a.a. 12/13) Economia Internazionale e Politiche Commerciali (a.a. 12/13) Soluzione Esame (11 gennaio 2013) Prima Parte 1. (9 p.) (a) Ipotizzate che in un mondo a due paesi, Brasile e Germania, e due prodotti, farina

Dettagli

CAPITOLO 18 L investimento

CAPITOLO 18 L investimento CAPITOLO 18 L investimento Domande di ripasso 1. Nel modello neoclassico dell investimento, le imprese traggono vantaggio dall aumentare la propria dotazione di capitale se la rendita reale del capitale

Dettagli

Lezione 8 (Capitolo 12 De Long)

Lezione 8 (Capitolo 12 De Long) Lezione 8 (Capitolo 12 De Long) Curva di Phillips e aspettative R. Capolupo- Macro 2 1 Legame tra modello a prezzi vischiosi e quello a prezzi flessibili Il passaggio dal modello a prezzi vischiosi al

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA

I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA Indice Introduzione Il sistema decimale Il sistema binario Conversione di un numero da base 10 a base 2 e viceversa Conversione in altri sistemi di numerazione

Dettagli

Capitolo 4. Elasticità. Principi di economia (seconda edizione) Robert H. Frank, Ben S. Bernanke. Copyright 2007 - The McGraw-Hill Companies, srl

Capitolo 4. Elasticità. Principi di economia (seconda edizione) Robert H. Frank, Ben S. Bernanke. Copyright 2007 - The McGraw-Hill Companies, srl Capitolo 4 Elasticità In questa lezione introdurremo il concetto di elasticità: un indicatore dell entità con cui domanda e offerta reagiscono a variazioni di prezzo, reddito ed altri elementi. Nella lezione

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

Regressione Logistica: un Modello per Variabili Risposta Categoriali

Regressione Logistica: un Modello per Variabili Risposta Categoriali : un Modello per Variabili Risposta Categoriali Nicola Tedesco (Statistica Sociale) Regressione Logistica: un Modello per Variabili Risposta Categoriali 1 / 54 Introduzione Premessa I modelli di regressione

Dettagli

Politica economica: Lezione 16

Politica economica: Lezione 16 Politica economica: Lezione 16 II canale: M - Z Crediti: 9 Corsi di laurea: Nuovo Ordinamento (DM. 270) Vecchio ordinamento (DM. 590) Politica Economica - Luca Salvatici 1 Tipi di beni Beni di ricerca

Dettagli

Gli input sono detti anche fattori di produzione: terra, capitale, lavoro, materie prime.

Gli input sono detti anche fattori di produzione: terra, capitale, lavoro, materie prime. LA TECNOLOGIA Studio del comportamento dell impresa, soggetto a vincoli quando si compiono scelte. La tecnologia rientra tra vincoli naturali e si traduce nel fatto che solo alcuni modi di trasformare

Dettagli

Computazione per l interazione naturale: macchine che apprendono

Computazione per l interazione naturale: macchine che apprendono Computazione per l interazione naturale: macchine che apprendono Corso di Interazione Naturale! Prof. Giuseppe Boccignone! Dipartimento di Informatica Università di Milano! boccignone@di.unimi.it boccignone.di.unimi.it/in_2015.html

Dettagli

Tecniche di riconoscimento statistico

Tecniche di riconoscimento statistico Tecniche di riconoscimento statistico Applicazioni alla lettura automatica di testi (OCR) Parte 8 Support Vector Machines Ennio Ottaviani On AIR srl ennio.ottaviani@onairweb.com http://www.onairweb.com/corsopr

Dettagli

General Linear Model. Esercizio

General Linear Model. Esercizio Esercizio General Linear Model Una delle molteplici applicazioni del General Linear Model è la Trend Surface Analysis. Questa tecnica cerca di individuare, in un modello di superficie, quale tendenza segue

Dettagli

Assunzione da rimuovere. I mercati dei beni e i mercati finanziari: il modello IS-LM. Investimenti, I

Assunzione da rimuovere. I mercati dei beni e i mercati finanziari: il modello IS-LM. Investimenti, I Assunzione da rimuovere I mercati dei beni e i mercati finanziari: il modello IS-LM Rimuoviamo l ipotesi che gli Investimenti sono una variabile esogena. Investimenti, I Gli investimenti delle imprese

Dettagli

Nell esempio riportato qui sopra è visibile la sfocatura intenzionale di una sola parte della foto

Nell esempio riportato qui sopra è visibile la sfocatura intenzionale di una sola parte della foto LE MASCHERE DI LIVELLO Provo a buttare giù un piccolo tutorial sulle maschere di livello, in quanto molti di voi mi hanno chiesto di poter avere qualche appunto scritto su di esse. Innanzitutto, cosa sono

Dettagli

Lezione 7 (BAG cap. 5)

Lezione 7 (BAG cap. 5) Lezione 7 (BAG cap. 5) I mercati dei beni e i mercati finanziari: il modello IS-LM Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia 1. Il mercato dei beni e la curva IS L equilibrio sul mercato

Dettagli

Domanda e Offerta. G. Pignataro Microeconomia SPOSI

Domanda e Offerta. G. Pignataro Microeconomia SPOSI Domanda e Offerta Domanda e Offerta Il meccanismo di mercato Variazioni dell equilibrio di mercato Elasticità della domanda e dell offerta Elasticità di breve e di lungo periodo Gli effetti dell intervento

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

VALORE DELLE MERCI SEQUESTRATE

VALORE DELLE MERCI SEQUESTRATE La contraffazione in cifre: NUOVA METODOLOGIA PER LA STIMA DEL VALORE DELLE MERCI SEQUESTRATE Roma, Giugno 2013 Giugno 2013-1 Il valore economico dei sequestri In questo Focus si approfondiscono alcune

Dettagli

Metodi per la riduzione della dimensionalità. Strumenti quantitativi per la gestione

Metodi per la riduzione della dimensionalità. Strumenti quantitativi per la gestione Metodi per la riduzione della dimensionalità Strumenti quantitativi per la gestione Emanuele Taufer file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/6c_pca.html#(1) 1/25 Introduzione Gli approcci

Dettagli

Aspettative, consumo e investimento

Aspettative, consumo e investimento Aspettative, consumo e investimento In questa lezione: Studiamo come le aspettative di reddito e ricchezza futuro determinano le decisioni di consumo e investimento degli individui. Studiamo cosa determina

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

Microeconomia A-K, Prof Giorgio Rampa a.a. 2011-2012. Svolgimento della prova scritta di Microeconomia AK del 19 settembre 2012

Microeconomia A-K, Prof Giorgio Rampa a.a. 2011-2012. Svolgimento della prova scritta di Microeconomia AK del 19 settembre 2012 Svolgimento della prova scritta di Microeconomia AK del 19 settembre 2012 A DEFINIZIONI - Si definiscano sinteticamente i termini anche con l ausilio, qualora necessario, di formule e grafici. 1. Beni

Dettagli

Capitolo IV. I mercati finanziari

Capitolo IV. I mercati finanziari Capitolo IV. I mercati finanziari 2 I MERCATI FINANZIARI OBIETTIVO: SPIEGARE COME SI DETERMINANO I TASSI DI INTERESSE E COME LA BANCA CENTRALE PUO INFLUENZARLI LA DOMANDA DI MONETA DETERMINAZIONE DEL TASSO

Dettagli

Finanza Aziendale. Rischio e Valutazione degli

Finanza Aziendale. Rischio e Valutazione degli Teoria della Finanza Aziendale Rischio e Valutazione degli investimenti 9 1-2 Argomenti trattati Costo del capitale aziendale e di progetto Misura del beta Costo del capitale e imprese diversificate Costo

Dettagli

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA SOMMARIO: 2.1 La domanda. - 2.2 Costi, economie di scala ed economie di varietà. - 2.2.1 I costi. - 2.2.2 Le economie di scala. - 2.2.3 Le economie di varietà.

Dettagli

Domanda e offerta di lavoro

Domanda e offerta di lavoro Domanda e offerta di lavoro 1. Assumere (e licenziare) lavoratori Anche la decisione di assumere o licenziare lavoratori dipende dai costi che si devono sostenere e dai ricavi che si possono ottenere.

Dettagli

I COSTI PROF. MATTIA LETTIERI

I COSTI PROF. MATTIA LETTIERI I COSTI ROF. MATTIA LETTIERI Indice 1. LE FUNZIONI DI COSTO --------------------------------------------------------------------------------------------------- 3 2. I COSTI DELL IMRESA NEL BREVE ERIODO

Dettagli

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale. Lezione 27 Il modello IS LM

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale. Lezione 27 Il modello IS LM UNIVERSITÀ DEGLI STUDI DI BERGAMO Laurea Triennale in Ingegneria Gestionale Lezione 27 Il modello IS LM Prof. Gianmaria Martini La funzione di investimento In via preliminare abbiamo ipotizzato che gli

Dettagli

PIANO CARTESIANO: un problema di programmazione lineare

PIANO CARTESIANO: un problema di programmazione lineare PIANO CARTESIANO: un problema di programmazione lineare In un laboratorio sono disponibili due contatori A, B di batteri. Il contatore A può essere azionato da un laureato che guadagna 20 euro per ora.

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 14 marzo 2013 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2013.html IL PARI O DISPARI I II S T S (-1, 1) (1, -1)

Dettagli

L analisi dei rischi: l aspetto statistico Ing. Pier Giorgio DELLA ROLE Six Sigma Master Black Belt

L analisi dei rischi: l aspetto statistico Ing. Pier Giorgio DELLA ROLE Six Sigma Master Black Belt L analisi dei rischi: l aspetto statistico Ing. Pier Giorgio DELL ROLE Six Sigma Master lack elt Dicembre, 009 Introduzione Nell esecuzione dei progetti Six Sigma è di fondamentale importanza sapere se

Dettagli

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI CAPITOLO III CONFRONTI TRA DISTRIBUZIONI 3.1 CONFRONTI TRA DISTRIBUZIONI OSSERVATE E DISTRIBUZIONI TEORICHE OD ATTESE. Nella teoria statistica e nella pratica sperimentale, è frequente la necessità di

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

PRIMA LEGGE DI OHM OBIETTIVO: NOTE TEORICHE: Differenza di potenziale Generatore di tensione Corrente elettrica

PRIMA LEGGE DI OHM OBIETTIVO: NOTE TEORICHE: Differenza di potenziale Generatore di tensione Corrente elettrica Liceo Scientifico G. TARANTINO ALUNNO: Pellicciari Girolamo VG PRIMA LEGGE DI OHM OBIETTIVO: Verificare la Prima leggi di Ohm in un circuito ohmico (o resistore) cioè verificare che l intensità di corrente

Dettagli

Modelli per variabili dipendenti qualitative

Modelli per variabili dipendenti qualitative SEMINARIO GRUPPO TEMATICO METODI e TECNICHE La valutazione degli incentivi industriali: aspetti metodologici Università di Brescia, 17 gennaio 2012 Modelli per variabili dipendenti qualitative Paola Zuccolotto

Dettagli

Teoria del Prospetto: avversione alle perdita, framing e status quo

Teoria del Prospetto: avversione alle perdita, framing e status quo - DPSS - Università degli Studi di Padova http://decision.psy.unipd.it/ Teoria del Prospetto: avversione alle perdita, framing e status quo Corso di Psicologia del Rischio e della Decisione Facoltà di

Dettagli

PIL : produzione e reddito

PIL : produzione e reddito PIL : produzione e reddito La misura della produzione aggregata nella contabilità nazionale è il prodotto interno lordo o PIL. Dal lato della produzione : oppure 1) Il PIL è il valore dei beni e dei servizi

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

Analisi dei costi di produzione

Analisi dei costi di produzione Analisi dei costi di produzione industriale Analisi dei costi 1 Comportamento dei costi La produzione è resa possibile dall impiego di diversi fattori. L attività di produzione consuma l utilità dei beni

Dettagli

Crescita della produttività e delle economie

Crescita della produttività e delle economie Lezione 21 1 Crescita della produttività e delle economie Il più spettacolare effetto della sviluppo economico è stata la crescita della produttività, ossia la quantità di prodotto per unità di lavoro.

Dettagli

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Microeconomia venerdì 29 febbraio 2008 La struttura della lezione

Dettagli

MACHINE LEARNING e DATA MINING Introduzione. a.a.2015/16 Jessica Rosati jessica.rosati@poliba.it

MACHINE LEARNING e DATA MINING Introduzione. a.a.2015/16 Jessica Rosati jessica.rosati@poliba.it MACHINE LEARNING e DATA MINING Introduzione a.a.2015/16 Jessica Rosati jessica.rosati@poliba.it Apprendimento Automatico(i) Branca dell AI che si occupa di realizzare dispositivi artificiali capaci di

Dettagli

Capitolo 11. Estensione del modello a prezzi vischiosi: altri strumenti analitici. Francesco Prota

Capitolo 11. Estensione del modello a prezzi vischiosi: altri strumenti analitici. Francesco Prota Capitolo 11 Estensione del modello a prezzi vischiosi: altri strumenti analitici Francesco Prota Piano della lezione Lo stock di moneta e l equilibrio nel mercato monetario: la curva LM Il modello IS-LM

Dettagli