Statistical learning Strumenti quantitativi per la gestione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Statistical learning Strumenti quantitativi per la gestione"

Transcript

1 Statistical learning Strumenti quantitativi per la gestione Emanuele Taufer Vendite Simbologia Reddito Statistical learning A cosa ci serve f? 1 Previsione 2 Inferenza Previsione Errore riducibile e errore irriducibile Inferenza Esempi Come stimare f una panoramica Metodi parametrici Metodi non parametrici Esempio: Income data 2.3 Vera f 2.4 Modello lineare 2.5 Thin plate spline basso adattamento 2.6 Thin plate spline alto adattamento Trade off flessibilità interpretabilità Supervised e unsupervised Statistical Learning Problemi di regressione e di classificazione Valutazione della bontà del modello Test MSE e training MSE Esempio 1: f non lineare Esempio 2: f lineare Esempio 3: f non lineare Bias Variance trade off Scomposizione Bias Var Esempi 1,2,3 Classificazione Tasso di errore training e test Il classificatore di Bayes Classificatore KNN Esempio K=3 Esempio 1 Esempio 1 Error rates Riferimenti bibliografici Vendite file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 1/19

2 Supponiamo di voler capire come migliorare le vendite di un determinato prodotto. Il Set di dati Advertising consiste nelle vendite del prodotto in 200 diversi mercati, insieme ai budget pubblicitari per il prodotto in ciascuno di quei mercati per tre diversi media: TV, radio, e giornali. Non è possibile aumentare direttamente le vendite del prodotto. D altra parte, si può controllare la pubblicità in ciascuno dei tre media. Pertanto, se stabiliamo che vi è un associazione tra pubblicità e vendite, allora possiamo agire sul budget pubblicitario, e quindi, indirettamente sulle vendite. In altre parole, l obiettivo è quello di sviluppare un modello accurato utilizzabile per prevedere le vendite sulla base dei budget per i tre media. Tre regressioni separate (linea blu) Vendite su pubblicità TV, Radio e Giornali Possiamo prevedere le vendite utilizzando questi tre? Forse possiamo fare meglio utilizzando un modello Simbologia Vendite f(tv, Radio, Giornali) Nell esempio, Vendite è la variabile risposta o dipendente o obbiettivo che desideriamo prevedere. Genericamente indicata con Y. TV è una variabile indipendente o input o predittore. Chiamiamola X 1. Analogamente definiamo Radio come X 2 e così via. Possiamo fare riferimento genericamente al vettore input X = ( X 1, X 2, X 3 ) T A questo punto possiamo riscrivere il nostro modello come Y = f(x) + ε file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 2/19

3 dove ε è un termine d errore casuale, che è indipendente da X e ha media zero. In questa formulazione f rappresenta l informazione sistematica che X fornisce su Y. Reddito Y = f(x) + ε Come altro esempio, si consideri la relazione tra reddito e anni di educazione per 30 persone nel set di dati sul reddito (income). Il grafico suggerisce che si potrebbe essere in grado di prevedere il reddito con gli anni di educazione. Tuttavia, la funzione f che collega la variabile input alla variabile output è sconosciuta in generale. In questa situazione si deve stimare f basandosi sui punti osservati. Statistical learning In sostanza, il termine Statistical learning si riferisce ad una serie di approcci per la stima di f. In questa prima lezione si delineano alcuni dei principali concetti teorici che si presentano nella stima di f, nonché gli strumenti per valutare la bontà delle stime ottenute. A cosa ci serve? Due ragioni principali 1 Previsione f file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 3/19

4 Con una buona f possiamo fare previsioni di Y in base a nuovi punti X = x 2 Inferenza Possiamo capire quali componenti di X 1 X 2 X p sono importanti per spiegare Y, e quali sono irrilevanti. Ad esempio Anzianità e Anni di Educazione hanno un grande impatto sul reddito, ma Stato civile di solito no. A seconda della complessità di f, potremmo essere in grado di capire come ogni componente di X agisce su Y. Previsione In molte situazioni, un insieme di input X è prontamente disponibile, ma l output Y non può essere facilmente ottenuto. In questa situazione, siamo in grado di prevedere Y con dove rappresenta la nostra stima per, e rappresenta la previsione risultante per. In questo approccio, è spesso trattato come una scatola nera, nel senso che, tipicamente, non ci interessa la forma esatta di, purché fornisca previsioni accurate per Y. Errore riducibile e errore irriducibile L accuratezza di come previsione per Y dipende da due quantità; l errore riducibile e l errore irriducibile. Errore riducibile generalmente X = (,,, ) Y^ = (X) f Y^ Y Y^ non è una stima perfetta per f, e questo introduce qualche errore. Questo errore è riducibile perché possiamo potenzialmente migliorare l accuratezza di utilizzando tecniche via via migliori di Statistical learning per stimare f. Errore irriducibile Y è anche una funzione di ε che, per definizione, non può essere previsto con X. la variabilità associato a ε influisce sull accuratezza delle nostre previsioni. ε può contenere variabili non misurate che sono utili nel predire Y : ε può contenere variazione intrinseca al fenomeno. X Y^ = (X) Si consideri una data stima e un insieme di predittori, che producono la previsione. Supponiamo per un momento che sia f che X siano fissi. Si ha E(Y Y^) 2 = E[f(X) + ε (X)] 2 = [f(x) (X)] 2 + errore riducibile V ar(ε) errore irriducibile E(Y ^ 2 file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 4/19

5 rappresenta la media, o valore atteso, del quadrato della differenza tra il valore previsto e effettivo di Y, V ar(ε) la varianza associata all errore ε.questo valore è quasi sempre sconosciuto in pratica. Inferenza In questo caso è importante capire la relazione tra X e Y, o più specificamente, comprendere come Y cambia in funzione di X 1,, Xp. Quali fattori predittivi sono associati con la risposta? È spesso il caso che solo una piccola frazione dei predittori disponibili siano sostanzialmente associati a Y. Identificare i pochi predittori importanti può essere estremamente utile. Qual è la relazione tra la risposta e ogni predittore? Alcuni predittori possono avere un rapporto positivo con Y, nel senso che aumentando il predittore aumenta anche Y. Altri predittori possono avere una relazione opposta. Il rapporto tra la risposta e un dato predittore può dipendere anche i valori degli altri predittori. Il rapporto tra Y e X è lineare? O è più complicato? Storicamente, la maggior parte dei metodi per stimare f hanno preso forma lineare. In alcune situazioni, tale ipotesi è ragionevole o auspicabile. Ma spesso il vero rapporto è più complicato. Esempi Si consideri una società che è interessata a condurre una campagna di direct marketing. L obiettivo è quello di identificare le persone che risponderanno positivamente a una mail, sulla base di osservazioni di variabili demografiche misurata su ogni singola unità. Si consideri il problema relativo al set di dati Advertising che consiste nelle vendite del prodotto in 200 diversi mercati, insieme con budget pubblicitari per il prodotto in ciascuno di quei mercati per tre diversi media: TV, radio, e giornali. In un contesto immobiliare, si può cercare di legare il valore delle case per input quali il tasso di criminalità, la zonizzazione, la distanza da un fiume, la qualità dell aria, presenza di scuole, livello di reddito della comunità, le dimensioni delle case, e così via. In alternativa, si può semplicemente essere interessati a predire il valore di una casa date le sue caratteristiche Come stimare Simbologia E(Y Y^) 2 f una panoramica Abbiamo a disposizione una serie di casi, i dati osservati, che useremo per stimare f. Indicheremo sempre con n il numero di unità osservate. I dati usati per stimare f vengono definiti training data. x ij rappresenta il valore del predittore j, o input, per l osservazione i, dove i = 1, 2,, n j = 1, 2,, p. e file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 5/19

6 Corrispondentemente, I cd training data sono dunque rappresenta la variabile di risposta per l osservazione i esima. Vogliamo trovare una funzione tale che per ogni osservazione. In linea di massima, la maggior parte dei metodi di statistical learning possono essere classificati in parametrici nonparametrici Metodi parametrici I metodi parametrici implicano un approccio in due fasi: y i {( x 1, y 1 ), ( x 2, y 2 ),, ( x n, y n )}, dove x i = ( x i1, x i2,, x ip ) T Y (X) (X, Y ) 1. In primo luogo, si fa una supposizione circa la forma funzionale, o la forma di f. 2. Dopo aver selezionato un modello ( f ), abbiamo bisogno di una procedura di stima di f che utilizza i training data. Per esempio, una semplice ipotesi è che f sia lineare in X: f(x) = β 0 β 1 X 1 β 2 X 2 β p X p in questo caso il problema della stima di f è notevolmente semplificato. Uno deve solo stimare p + 1 coefficienti β 0, β 1,, β p. Anche se non è quasi mai corretto, un modello lineare è spesso una buona, ed interpretabile, approssimazione a. f(x) Il potenziale svantaggio di un approccio parametrico è che il modello che scegliamo di solito non corrisponde alla vera f. Se il modello scelto è troppo lontano da f, allora la nostra stima sarà povera (o fuorviante). Possiamo cercare di risolvere questo problema scegliendo modelli flessibili che possono adattarsi a diverse forme funzionali possibili per f. In generale, adattando un modello più flessibile richiede la stima di un maggior numero di parametri. Modelli troppo complessi possono portare ad un fenomeno noto come overfitting dei dati. In sostanza il modello segue gli errori, o rumore, troppo da vicino. Metodi non parametrici I metodi non parametrici non fanno ipotesi esplicite circa la forma funzionale di f. Invece cercano una stima di f che sia il più vicino possibile ai punti dati Tali approcci possono avere un grande vantaggio rispetto agli approcci parametrici: evitando l assunzione di una forma funzionale particolare f, hanno il potenziale per adattarsi con precisione una gamma più ampia di possibili forme per f. file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 6/19

7 Ma gli approcci non parametrici soffrono di un inconveniente: poiché non riducono il problema della stima di f a quello di un piccolo numero di parametri ( p + 1) di solito un numero di osservazioni ( n) elevato è richiesto per ottenere una stima accurata di f. Esempio: Income data Nei grafici seguenti, proviamo a confrontare diverse soluzioni di stima di f per il problema I grafici seguenti mostrano: Income = f(years of education, Seniority) la vera f sottostante ai dati (generati al computer) il modello parametrico un modello thin plate spline (non parametrico) con basso grado di adattamento con elevato grado di adattamento 2.3 Vera f income + education + seniority. β 0 β 1 β 2 file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 7/19

8 2.4 Modello lineare 2.5 Thin plate spline basso adattamento file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 8/19

9 2.6 Thin plate spline alto adattamento file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 9/19

10 Trade off flessibilità interpretabilità Tra i molti metodi disponibili, alcuni sono meno flessibili, o più restrittivi, nel senso che possono produrre solo relativamente piccola gamma di forme per stimare f. Se siamo interessati all inferenza, modelli restrittivi sono più interpretabili Se siamo interessati alla previsione la precisione del modello diventa fondamentale Supervised e unsupervised Statistical Learning Molti problemi di Statistical learning rientrano in una delle due categorie: supervised e unsupervised. Nel Supervised learning abbiamo sia variabili input ( X) che output ( Y ). regressione lineare, regressione logistica, modelli additivi generalizzati, etc. Nell unsupervised learning, tipicamente, non è osservata la variabile risposta Y. cluster analysis: ad esempio raggruppare consumatori in base a caratteristiche demografiche osservate sperando che queste possano essere associate ad abitudini di consumo. Problemi di regressione e di classificazione Le variabili possono essere caratterizzate come file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 10/19

11 Quantitative (misurate su scala numerica) Qualitative (Classificano l unità in una di K classi differenti) Tipicamente se la Y è quantitativa si parla di regressione Se la Y è qualitativa si parla di classificazione In entrambi i casi possiamo avere variabili input, X, sia di tipo qualitativo che quantitativo. Valutazione della bontà del modello Una delle misure più usate per la valutazione dei modelli è l errore quadratico medio o MSE (mean squared error) nell acronimo inglese: n 1 MSE = ( y i ( x i )) 2 ( x i ) n i=1 L MSE sarà piccolo se i valori previsti, sono molto vicini ai valori osservati ; viceversa tenderà a crescere tanto più sono le differenze previsti osservati che differiscono sostanzialmente. y i L MSE definito sopra è calcolato utilizzando i training data Tuttavia, si è più interessati alla precisione delle predizioni che otteniamo quando applichiamo dati nuovi, i cd test data. a Test MSE e training MSE {(, ), (, ),, (, )} Dati i training data x 1 y 1 x 2 y 2 x n y n modello con training MSE molto basso. può essere relativamente semplice trovare un ( x 0 ) y 0 (, ) Invece, vogliamo sapere se è approssimativamente uguale a, dove x 0 y 0 è un osservazione nuova, non presente nei training data. Vogliamo scegliere il metodo che dà un test MSE molto basso. Se abbiamo un gran numero di osservazioni test, potremmo calcolare Ave( y 0 ( x 0 )) 2, dove Ave sta per media (average). Ossia l errore quadratico medio di previsione per le osservazioni test ( X 0, Y 0 ). In altre parole, vorremmo selezionare il modello per il quale, il test MSE sia il più piccolo possibile. Tipicamente test MSE e training MSE possono differire sostanzialmente. Se uno ha a disposizione due set di dati, training e test può provare ad adattare diversi modelli ai training data e scegliere quello che presenta test MSE più basso. Se questo non è il caso si può ricorrere ad altre tecniche, ad esempio la cross validazione, che discuteremo nelle prossime lezioni. Esempio 1: f non lineare file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 11/19

12 La figura sopra mostra: A sinistra: i dati simulati da f (in nero) e tre possibili stime: regressione lineare (arancio); smoothing splines (blu e verde) A destra: test MSE (rosso) e training MSE (grigio) La flessibilità è misurata in termini di parametri (più parametri più flessibilità) la regressione lineare in questo caso ha due parametri (intercetta e pendenza) L andamento a U del test MSE è molto tipico e mostra che un overfitting dei dati è spesso fuorviante Esempio 2: f lineare file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 12/19

13 Esempio 3: f non lineare Bias Variance trade off file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 13/19

14 La forma a U osservata nel Test MSE è il risultato di due caratteristiche, spesso in contrasto tra loro, delle tecniche di statistical learning: la varianza ed il bias ( o distorsione) Il valore atteso del test MSE può essere scritto V ar( )) E( y 0 ( x 0 )) 2 = V ar( ( x 0 )) + [Bias( ( x 0 ))] 2 + V ar(ε) misura il cambiamento atteso di data diverso. Diversi training data infatti ottengono diverse flessibilità del metodo di stima, maggiore è la variabilità di. Bias( ( x 0 )) = E( ( x 0 ) f( x 0 )) se la sua stima avviene attraverso un training. In generale, più elevata la si riferisce all errore introdotto approssimando un problema reale, che può essere estremamente complicato, con un modello semplice. Ad esempio, la regressione lineare presuppone che vi sia un rapporto lineare tra Y e X 1, X2,, X p. E improbabile che sia così in realtà e quindi l uso della regressione lineare indurrà distrosione nella stima di f Scomposizione Bias Var Esempi 1,2,3 Di regola, più è flessibile il metodo che si usa, più la varianza tenderà ad aumentare ed il bias a diminuire. Il tasso relativo di variazione di queste due quantità determina se il test MSE aumenta o diminuisce. Tuttavia, ad un certo punto, l aumento della flessibilità ha poco impatto sul bias, ma inizia ad aumentare significativamente la varianza. Quando questo accade il test MSE aumenta. Classificazione Molti dei concetti discussi finora, quale il bias variance trade off, valgono anche nel caso della classificazione con modifiche minime dovute al fatto che Y non è più numerica. f {( x 1, y 1 ),, ( x n, y n )},, Supponiamo di stimare sulla base dei training data, dove ora sono qualitative file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 14/19 ^ y 1 y n

15 L approccio più comune per quantificare la bontà della stima 1 n n i=1 I( ) y i y^i è il tasso di errore per i training data dove è la classe prevista per la esima unità da. y^i i I( ) y i y^i è un indicatore, ossia è uguale a 0 se y i = y^i, uguale a 1 se y i y^i La formula calcola la frazione di classificazioni scorrette. Tasso di errore training e test Analogamente a quanto discusso per il contesto della regressione, si è di solito più interessati alla performance di nel caso di unità non presenti nei training data Definiamo allora il tasso di errore test (test error rate) associato ad un set di osservazioni test del tipo ( x 0, y 0 ): Una buona è quella per cui il test error rate è il più basso possibile. Il classificatore di Bayes E possibile dimostrare che il test error rate definito sopra è minimo, in media, quando la procedura di classificazione è fatta usando una semplicissima regola che assegna l unità alla classe più probabile data l informazione dei predittori. Il classificatore di Bayes assegna l osservazione test, con predittore x 0, alla classe j, ( ), per la quale è massima. j = 1, 2, K P( = j X = ) Y 0 x 0 è una probabilità condizionata: la probabilità che Y = j data l informazione fornita da x 0. Il classificatore di Bayes produce il minor test error rate possibile, definito Bayes error rate. In pratica non riusciamo mai a calcolare il classificatore di Bayes poichè non c è informazione a sufficienza. Classificatore KNN Ave(I( )) y i y^i P(Y = j X = ) x 0 Dato un intero positivo K e un osservazione test x 0, il classificatore KNN ( K nearest neighbors) identifica i K punti più vicini a x 0, rappresentati da N 0. stima la probabilità condizionale per classe j come frazione di punti in N 0 la cui risposta è uguale a j: 1 P r(y = j X = ) = I( = j) file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 15/19 i 0

16 P r(y = j X = ) = I( = j) 1 x 0 K i N 0 y i Infine, KNN applica la regola di Bayes e classifica l osservazione test x 0 nella classe con il maggior probabilità. Esempio K=3 Esempio 1 file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 16/19

17 Esempio 1 file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 17/19

18 Error rates file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 18/19

19 Riferimenti bibliografici An Introduction to Statistical Learning, with applications in R" (Springer, 2013) Alcune delle figure in questa presentazione sono tratte dal testo con il permesso degli autori: G. James, D. Witten, T. Hastie e R. Tibshirani " file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/2_statistical_learning.html 19/19

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA)

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) 4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) L analisi della varianza è un metodo sviluppato da Fisher, che è fondamentale per l interpretazione statistica di molti dati biologici ed è alla

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5

Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5 Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5 Rimini, 26 aprile 2006 1 The Inter temporal Effects of International Trade Valore in $ del consumo di beni oggi G D F H 1/(1+r) G Valore

Dettagli

General Linear Model. Esercizio

General Linear Model. Esercizio Esercizio General Linear Model Una delle molteplici applicazioni del General Linear Model è la Trend Surface Analysis. Questa tecnica cerca di individuare, in un modello di superficie, quale tendenza segue

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

L analisi economico finanziaria dei progetti

L analisi economico finanziaria dei progetti PROVINCIA di FROSINONE CIOCIARIA SVILUPPO S.c.p.a. LABORATORI PER LO SVILUPPO LOCALE L analisi economico finanziaria dei progetti Azione n. 2 Progetti per lo sviluppo locale LA FINANZA DI PROGETTO Frosinone,

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Curve di risonanza di un circuito

Curve di risonanza di un circuito Zuccarello Francesco Laboratorio di Fisica II Curve di risonanza di un circuito I [ma] 9 8 7 6 5 4 3 0 C = 00 nf 0 5 0 5 w [KHz] RLC - Serie A.A.003-004 Indice Introduzione pag. 3 Presupposti Teorici 5

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Misure di base su una carta. Calcoli di distanze

Misure di base su una carta. Calcoli di distanze Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle

Dettagli

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Alessandro Rezzani Abstract L articolo descrive una delle tecniche di riduzione della dimensionalità del data set: il metodo dell analisi delle componenti principali (Principal

Dettagli

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello.

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. CURVE DI LIVELLO Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. Definizione. Si chiama insieme di livello k della funzione f

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 4. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 4. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 4 Materiale di supporto per le lezioni. Non sostituisce il libro di testo Dipendenza di un carattere QUANTITATIVO da un carattere QUALITATIVO

Dettagli

Release Management. Obiettivi. Definizioni. Responsabilità. Attività. Input

Release Management. Obiettivi. Definizioni. Responsabilità. Attività. Input Release Management Obiettivi Obiettivo del Release Management è di raggiungere una visione d insieme del cambiamento nei servizi IT e accertarsi che tutti gli aspetti di una release (tecnici e non) siano

Dettagli

Rischio impresa. Rischio di revisione

Rischio impresa. Rischio di revisione Guida alla revisione legale PIANIFICAZIONE del LAVORO di REVISIONE LEGALE dei CONTI Formalizzazione delle attività da svolgere nelle carte di lavoro: determinazione del rischio di revisione, calcolo della

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

MODULO MONITORAGGIO E VALUTAZIONE. Gli indicatori. G. VECCHI esperto del team scientifico di supporto del Centro Risorse Nazionale CAF 1

MODULO MONITORAGGIO E VALUTAZIONE. Gli indicatori. G. VECCHI esperto del team scientifico di supporto del Centro Risorse Nazionale CAF 1 MODULO MONITORAGGIO E VALUTAZIONE 4. Gli indicatori G. VECCHI esperto del team scientifico di supporto del Centro Risorse Nazionale CAF 1 Cosa sono gli indicatori Gli indicatori sono strumenti in grado

Dettagli

Dall italiano alla logica proposizionale

Dall italiano alla logica proposizionale Rappresentare l italiano in LP Dall italiano alla logica proposizionale Sandro Zucchi 2009-10 In questa lezione, vediamo come fare uso del linguaggio LP per rappresentare frasi dell italiano. Questo ci

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

Integrazione numerica

Integrazione numerica Integrazione numerica Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 6-20-26 ottobre 2009 Indice 1 Formule di quadratura semplici e composite Formule di quadratura

Dettagli

Configuration Management

Configuration Management Configuration Management Obiettivi Obiettivo del Configuration Management è di fornire un modello logico dell infrastruttura informatica identificando, controllando, mantenendo e verificando le versioni

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1 Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 Capitolo 3. L'analisi della varianza. Il problema dei confronti multipli. La soluzione drastica di Bonferroni ed il test

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Confronto tra gruppi (campioni indipendenti)

Confronto tra gruppi (campioni indipendenti) Confronto tra gruppi (campioni indipendenti) Campioni provenienti da una popolazione Normale con medie che possono essere diverse ma varianze uguali campioni: Test z or t sulla differenza tra medie 3,

Dettagli

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia?

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Danilo Pelusi 1 Gianpiero Centorame 2 Sunto: Il seguente articolo illustra le possibili analogie e differenze tra il calcolo delle

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

R I S K M A N A G E M E N T & F I N A N C E

R I S K M A N A G E M E N T & F I N A N C E R I S K M A N A G E M E N T & F I N A N C E 2010 Redexe S.u.r.l., Tutti i diritti sono riservati REDEXE S.r.l., Società a Socio Unico Sede Legale: 36100 Vicenza, Viale Riviera Berica 31 ISCRITTA ALLA CCIAA

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento Analisi della varianza a una via a misure ripetute (Anova con 1 fattore within) modello strutturale dell'analisi della varianza a misure ripetute con 1 fattore: y = μ ik 0 +π i +α k + ik ε ik interazione

Dettagli

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Microeconomia venerdì 29 febbraio 2008 La struttura della lezione

Dettagli

Appendice III. Criteri per l utilizzo dei metodi di valutazione diversi dalle misurazioni in siti fissi

Appendice III. Criteri per l utilizzo dei metodi di valutazione diversi dalle misurazioni in siti fissi Appendice III (articolo 5, comma 1 e art. 22 commi 5 e 7) Criteri per l utilizzo dei metodi di valutazione diversi dalle misurazioni in siti fissi 1. Tecniche di modellizzazione 1.1 Introduzione. In generale,

Dettagli

EuroColori YOUR BEST PARTNER IN COLOR STRATEGY

EuroColori YOUR BEST PARTNER IN COLOR STRATEGY EuroColori YOUR BEST PARTNER IN COLOR STRATEGY EuroColori YOUR BEST PARTNER IN COLOR STRATEGY THE FUTURE IS CLOSER Il primo motore di tutte le nostre attività è la piena consapevolezza che il colore è

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Conduzione di uno studio epidemiologico (osservazionale)

Conduzione di uno studio epidemiologico (osservazionale) Conduzione di uno studio epidemiologico (osservazionale) 1. Definisco l obiettivo e la relazione epidemiologica che voglio studiare 2. Definisco la base dello studio in modo che vi sia massimo contrasto

Dettagli

Stefano Bonetti Framework per la valutazione progressiva di interrogazioni di localizzazione

Stefano Bonetti Framework per la valutazione progressiva di interrogazioni di localizzazione Analisi del dominio: i sistemi per la localizzazione Definizione e implementazione del framework e risultati sperimentali e sviluppi futuri Tecniche di localizzazione Triangolazione Analisi della scena

Dettagli

Applicazioni dell'analisi in più variabili a problemi di economia

Applicazioni dell'analisi in più variabili a problemi di economia Applicazioni dell'analisi in più variabili a problemi di economia La diversità tra gli agenti economici è alla base della nascita dell attività economica e, in generale, lo scambio di beni e servizi ha

Dettagli

VALORE DELLE MERCI SEQUESTRATE

VALORE DELLE MERCI SEQUESTRATE La contraffazione in cifre: NUOVA METODOLOGIA PER LA STIMA DEL VALORE DELLE MERCI SEQUESTRATE Roma, Giugno 2013 Giugno 2013-1 Il valore economico dei sequestri In questo Focus si approfondiscono alcune

Dettagli

Relazione sul data warehouse e sul data mining

Relazione sul data warehouse e sul data mining Relazione sul data warehouse e sul data mining INTRODUZIONE Inquadrando il sistema informativo aziendale automatizzato come costituito dall insieme delle risorse messe a disposizione della tecnologia,

Dettagli

PRINCIPIO DI REVISIONE INTERNAZIONALE (ISA) N. 210 ACCORDI RELATIVI AI TERMINI DEGLI INCARICHI DI REVISIONE

PRINCIPIO DI REVISIONE INTERNAZIONALE (ISA) N. 210 ACCORDI RELATIVI AI TERMINI DEGLI INCARICHI DI REVISIONE PRINCIPIO DI REVISIONE INTERNAZIONALE (ISA) N. 210 ACCORDI RELATIVI AI TERMINI DEGLI INCARICHI DI REVISIONE (In vigore per le revisioni contabili dei bilanci relativi ai periodi amministrativi che iniziano

Dettagli

STUDIO DI SETTORE SM43U

STUDIO DI SETTORE SM43U ALLEGATO 3 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE SM43U NOTA TECNICA E METODOLOGICA CRITERI PER LA COSTRUZIONE DELLO STUDIO DI SETTORE Di seguito vengono esposti i criteri seguiti per la costruzione

Dettagli

Una nuova riforma?...no, meglio applicare quella già approvata Elsa Fornero (Università di Torino e CeRP)

Una nuova riforma?...no, meglio applicare quella già approvata Elsa Fornero (Università di Torino e CeRP) Una nuova riforma?...no, meglio applicare quella già approvata Elsa Fornero (Università di Torino e CeRP) Che il sistema previdenziale italiano sia un cantiere sempre aperto testimonia la profonda discrasia

Dettagli

Teoria quantistica della conduzione nei solidi e modello a bande

Teoria quantistica della conduzione nei solidi e modello a bande Teoria quantistica della conduzione nei solidi e modello a bande Obiettivi - Descrivere il comportamento quantistico di un elettrone in un cristallo unidimensionale - Spiegare l origine delle bande di

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

CONSIGLIO NAZIONALE DEI DOTTORI COMMERCIALISTI E CONSIGLIO NAZIONALE DEI RAGIONIERI

CONSIGLIO NAZIONALE DEI DOTTORI COMMERCIALISTI E CONSIGLIO NAZIONALE DEI RAGIONIERI CONSIGLIO NAZIONALE DEI DOTTORI COMMERCIALISTI E CONSIGLIO NAZIONALE DEI RAGIONIERI COMMISSIONE PARITETICA PER I PRINCIPI DI REVISIONE LA COMPRENSIONE DELL IMPRESA E DEL SUO CONTESTO E LA VALUTAZIONE DEI

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

LEZIONE 17. B : kn k m.

LEZIONE 17. B : kn k m. LEZIONE 17 17.1. Isomorfismi tra spazi vettoriali finitamente generati. Applichiamo quanto visto nella lezione precedente ad isomorfismi fra spazi vettoriali di dimensione finita. Proposizione 17.1.1.

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

NUOVA DIRETTIVA ECODESIGN. Costruire il futuro. Per climatizzatori per uso domestico fino a 12kW (Lotto 10)

NUOVA DIRETTIVA ECODESIGN. Costruire il futuro. Per climatizzatori per uso domestico fino a 12kW (Lotto 10) NUOVA DIRETTIVA ECODESIGN Costruire il futuro Per climatizzatori per uso domestico fino a 12kW (Lotto 10) 1 indice Obiettivi dell Unione Europea 04 La direttiva nel contesto della certificazione CE 05

Dettagli

La MKT (Mean Kinetic Temperature) come criterio di accettabilità sui controlli della temperatura

La MKT (Mean Kinetic Temperature) come criterio di accettabilità sui controlli della temperatura La (Mean Kinetic Temperature) come criterio di accettabilità sui controlli della temperatura Come funzionano i criteri di valutazione sulla temperatura Vi sono 5 parametri usati per la valutazione del

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

ANALISI DEI DATI CON SPSS

ANALISI DEI DATI CON SPSS STRUMENTI E METODI PER LE SCIENZE SOCIALI Claudio Barbaranelli ANALISI DEI DATI CON SPSS II. LE ANALISI MULTIVARIATE ISBN 978-88-7916-315-9 Copyright 2006 Via Cervignano 4-20137 Milano Catalogo: www.lededizioni.com

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza Titolo della lezione Analisi dell associazione tra due caratteri: indipendenza e dipendenza Introduzione Analisi univariata, bivariata, multivariata Analizzare le relazioni tra i caratteri, per cercare

Dettagli

La dissomiglianza tra due distribuzioni normali

La dissomiglianza tra due distribuzioni normali Annali del Dipartimento di Scienze Statistiche Carlo Cecchi Università degli Studi di Bari Aldo Moro - Vol. X (2011): 43-50 Editore CLEUP, Padova - ISBN: 978-88-6129-833-0 La dissomiglianza tra due distribuzioni

Dettagli

Lo Schema BIAS FREE. Uno strumento pratico per identificare ed eliminare il pregiudizio sociale nella ricerca sulla salute.

Lo Schema BIAS FREE. Uno strumento pratico per identificare ed eliminare il pregiudizio sociale nella ricerca sulla salute. Lo Schema BIAS FREE Uno strumento pratico per identificare ed eliminare il pregiudizio sociale nella ricerca sulla salute di Mary Anne Burke Global Forum for Health Research Ginevra, Svizzera e Margrit

Dettagli

INCERTEZZA DI MISURA

INCERTEZZA DI MISURA L ERRORE DI MISURA Errore di misura = risultato valore vero Definizione inesatta o incompleta Errori casuali Errori sistematici L ERRORE DI MISURA Errori casuali on ne si conosce l origine poiche, appunto,

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1 UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA Filippo Romano 1 1. Introduzione 2. Analisi Multicriteri o Multiobiettivi 2.1 Formule per l attribuzione del

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

TERMODINAMICA DI UNA REAZIONE DI CELLA

TERMODINAMICA DI UNA REAZIONE DI CELLA TERMODINAMICA DI UNA REAZIONE DI CELLA INTRODUZIONE Lo scopo dell esperienza è ricavare le grandezze termodinamiche per la reazione che avviene in una cella galvanica, attraverso misure di f.e.m. effettuate

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina Cosa è il DSS L elevato sviluppo dei personal computer, delle reti di calcolatori, dei sistemi database di grandi dimensioni, e la forte espansione di modelli basati sui calcolatori rappresentano gli sviluppi

Dettagli

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Lezione 1 Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Definizione di utente e di programmatore L utente è qualsiasi persona che usa il computer anche se non è in grado di programmarlo

Dettagli

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009 ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali v.scudero www.vincenzoscudero.it novembre 009 1 1 Funzioni algebriche fratte 1.1 Esercizio svolto y = x 1 x 11x + 10 (generalizzazione)

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Come evidenziare l informazione contenuta nei dati S. Marsili-Libelli: Calibrazione di Modelli Dinamici pag. Perche PCA? E un semplice metodo non-parametrico per estrarre

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Cap.1 - L impresa come sistema

Cap.1 - L impresa come sistema Cap.1 - L impresa come sistema Indice: L impresa come sistema dinamico L impresa come sistema complesso e gerarchico La progettazione del sistema impresa Modelli organizzativi per la gestione Proprietà

Dettagli

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE TELECOMUNICAZIONI (TLC) Tele (lontano) Comunicare (inviare informazioni) Comunicare a distanza Generico sistema di telecomunicazione (TLC) Segnale non elettrico Segnale elettrico TRASMESSO s x (t) Sorgente

Dettagli

CRITERI PER L ASSEGNAZIONE DI CREDITI ALLE ATTIVITA ECM

CRITERI PER L ASSEGNAZIONE DI CREDITI ALLE ATTIVITA ECM CRITERI PER L ASSEGNAZIONE DI CREDITI ALLE ATTIVITA ECM 1. Introduzione 2. Pianificazione dell attività formativa ECM 3. Criteri per l assegnazione dei crediti nelle diverse tipologie di formazione ECM

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

1 Medie. la loro media aritmetica è il numero x dato dalla formula: x = x 1 + x 2 +... + x n

1 Medie. la loro media aritmetica è il numero x dato dalla formula: x = x 1 + x 2 +... + x n 1 Medie La statistica consta di un insieme di metodi atti a elaborare e a sintetizzare i dati relativi alle caratteristiche di una fissata popolazione, rilevati mediante osservazioni o esperimenti. Col

Dettagli

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE La presentazione dei dati per molte ricerche mediche fa comunemente riferimento a frequenze, assolute o percentuali. Osservazioni cliniche conducono sovente

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO Così come avviene per i numeri ( 180 = 5 ), la scomposizione in fattori di un polinomio è la trasformazione di un polinomio in un prodotto di più polinomi irriducibili

Dettagli

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t),

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t), SINTESI. Una classe importante di problemi probabilistici e statistici é quella della stima di caratteristiche relative ad un certo processo aleatorio. Esistono svariate tecniche di stima dei parametri

Dettagli