Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza"

Transcript

1 Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/06/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema di servizio é composto da tre sportelli che, per comoditá, indichiamo con S 1, S 2 ed S 3. Ipotizziamo che ogni utente, rivolgendosi al sistema, venga dirottato verso uno dei tre sportelli in maniera casuale per essere servito. Ipotizziamo, inoltre, che ciascuno dei tre sportelli abbia tempi di risposta diversi e cioé che il tempo necessario per servire un generico utente presso uno dei tre sportelli sia descritto da una variabile casuale esponenziale di parametri λ 1, λ 2 e λ 3 diversi tra loro. a) Scrivere in funzione di λ 1, λ 2 e λ 3 la probabilitá che un utente impieghi piú di 60 sec per essere servito. b) Scrivere in funzione di λ 1, λ 2 e λ 3 la probabilitá che l utente sia stato servito dal primo sportello sapendo che lo stesso é stato servito in un tempo maggiore di 60 sec. N.B. tutti i passaggi devono essere opportunamente giustificati Soluzione: a) Indichiamo con T la variabile casuale tempo di servizio e con S i l evento l utente é servito dallo sportello i-esimo. Per ipotesi di lavoro abbiamo P (S i ) = 1/3, per ogni i = 1, 2, 3. Applicando la formula di disintegrazione avremo: P (T > 60) = P (T > 60 S 1 )P (S 1 ) + P (T > 60 S 2 )P (S 2 ) + P (T > 60 S 3 )P (S 3 ) = λ e λ 1t dt + λ = 1 3 (e λ e λ e λ 360 ) b) Applicando il teorema di Bayes avremo P (S 1 T > 60) = P (S 1)P (T > 60 S 1 ) P (T > 60) e λ 2t dt + λ 3 3 =... = + 60 e λ 3t dt e λ 160 e λ e λ e λ 360 1

2 2 CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/06/2015 Esercizio 2 Sia X una v.c. di Bernoulli con parametro 0.5 e sia Y una v.c. tale che P (Y = 1 X = 0) = 0.1, P (Y = 2 X = 0) = 0.4, P (Y = 3 X = 0) = 0.5 e P (Y = 1 X = 1) = 0.5, P (Y = 2 X = 1) = 0.4, P (Y = 3 X = 1) = 0.1. a) Si determinino le funzioni massa di probabilitá di (X,Y) e di Y. b) Si calcolino la media e la varianza di Y. c) Si stabilisca se X e Y sono indipendenti e/o identicamente distribuite, motivando le risposte. d) Si calcoli la covarianza e) Si dica come é distribuita la v.a. Z = X/Y N.B. tutti i passaggi devono essere opportunamente giustificati Soluzione: a) applicando la formula sulle probabilitá composte P (X = i, Y = j) = P (X = i)p (Y = j X = i), possiamo riempire la tabella che rappresenta la funzione massa di probabilitá della v.a. doppia richiesta P (x, y) Y = 1 Y = 2 Y = 3 X = X = Nel margine inferiore rimane la funzione massa di probabilitá della v.a. Y. b) E(Y ) = y yp (Y = y) = = 2 V ar(y ) = E(Y 2 ) E(Y ) 2 = = 0.6 c) Le due variabili non sono indipendenti per costruzione, né sono identicamente distribuite. d) Valutiamo prima il valor medio del prodotto E(XY ) = 0.8, pertanto avremo e) Cov(X, Y ) = E(XY ) E(X)E(Y ) = 0.8 2/2 = 0.2 La distribuzione della nuova variabile casuale, funzione della coppia (X, Y ), é la seguente P (Z = 0) = 0.5, P (Z = 1) = 0.25, P (Z = 1/2) = 0.2, P (Z = 1/3) = 0.05

3 CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/06/ Esercizio 3 Durante l ultimo anno un azienda ha introdotto l orario flessibile (ogni impiegato puó, entro certi limiti, scegliere l orario di lavoro piú adatto alle sue esigenze). Il numero medio di giorni di assenza per impiegato, nei tre anni precedenti, é stato di 6.3 giorni all anno. Per verificare se l introduzione dell orario flessibile ha ridotto l assenteismo, come alcuni dirigenti hanno sostenuto, viene estratto un campione casuale di 100 impiegati, e viene registrato il numero medio di giorni di assenza per ciascun impiegato nel corso dell ultimo anno. Indicato con X il numero dei giorni di assenza per ciscun impiegato si é osservato 100 x i = 550 i=1 100 x 2 i = 3866 a) Stimare, giustificando la scelta dello stimatore, la varianza dei giorni di assenza b) Si puó affermare, ad un livello di significativitá pari a 0.5% che l orario flessibile riduce l assenteismo? (si tenga conto che t 0.05,99=1.66 ) N.B. tutti i passaggi devono essere opportunamente giustificati i=1 Soluzione: a) Utilizziamo la varianza campionaria poiché esso é uno stimatore non distorto della varianza della popolazione S 2 = (X i n 1 X) 2 i=1 = X2 2 i 100 X = b) i=1 H 0 : µ = 6.3 H 1 : µ < 6.3 eseguiamo il test ad una coda per µ con σ incognito, per il quale (essendo il campione casuale molto numeroso) la statistica da usare é X µ 0 S/ n T 99 Dai dati si ricava t oss = /10 = 2.74, per cui il valore osservato cade nella regione di rifiuto {t : t < t 0.05,99 }, perció l ipotesi nulla é da rifiutare e possiamo concludere che c é un evidenza sperimentale a favore dell alternativa.

4 4 CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/06/2015 Domanda 1 Si enunci e si dimostri la legge debole dei grandi numeri

5 CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/06/ Domanda 2 Si descriva una variabile casuale gaussiana o normale.

6 6 CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/06/2015 Domanda 3 Si dia la definizine di intervallo di confidenza per la stima di un parametro incognito di una popolazione.

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 28/05/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Nel gico del

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/2/215 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema di

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

STATISTICA GIUSEPPE DE NICOLAO. Dipartimento di Informatica e Sistemistica Università di Pavia

STATISTICA GIUSEPPE DE NICOLAO. Dipartimento di Informatica e Sistemistica Università di Pavia STATISTICA GIUSEPPE DE NICOLAO Dipartimento di Informatica e Sistemistica Università di Pavia SOMMARIO V.C. vettoriali Media e varianza campionarie Proprietà degli stimatori Intervalli di confidenza Statistica

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi Idea di base Supponiamo di avere un idea del valore (incognito) di una media di un campione, magari attraverso

Dettagli

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Laurea in Ingegneria Meccatronica A.A. 2010 2011 n-dimensionali Riepilogo. Gli esiti di un esperimento aleatorio

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/03/2011

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/03/2011 FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/3/2 ESERCIZIO (2+2+2+2) La seguente tabella riporta la distribuzione della variabile "Stato Civile"

Dettagli

Esercizi: i rendimenti finanziari

Esercizi: i rendimenti finanziari Esercizi: i rendimenti finanziari Operazioni algebriche elementari Distribuzione e dipendenza Teoria di probabilità Selezione portafoglio p. 1/25 Esercizio I Nella tabella sottostante relativa all indice

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

Esercitazioni-aula-parte-III

Esercitazioni-aula-parte-III Esercitazioni-aula-parte-III Esempio par.7.2) Ross Sia (X 1,..., X n ) un campione aleatorio estratto da una popolazione esponenziale di parametro θ incognito. Determinare l espressione dello stimatore

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

Problema pratico: Test statistico = regola di decisione

Problema pratico: Test statistico = regola di decisione La verifica delle ipotesi statistiche Problema pratico: Quale, tra diverse situazioni possibili, riferite alla popolazione, è quella meglio sostenuta dalle evidenze empiriche? Coerenza del risultato campionario

Dettagli

DISTRIBUZIONI DI PROBABILITÀ

DISTRIBUZIONI DI PROBABILITÀ Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI

Dettagli

R - Esercitazione 5. Lorenzo Di Biagio dibiagio@mat.uniroma3.it. Lunedì 2 Dicembre 2013. Università Roma Tre

R - Esercitazione 5. Lorenzo Di Biagio dibiagio@mat.uniroma3.it. Lunedì 2 Dicembre 2013. Università Roma Tre R - Esercitazione 5 Lorenzo Di Biagio dibiagio@mat.uniroma3.it Università Roma Tre Lunedì 2 Dicembre 2013 Intervalli di confidenza (1) Sia X 1,..., X n un campione casuale estratto da un densità f (x,

Dettagli

Corso di Probabilità e Statistica

Corso di Probabilità e Statistica Università degli Studi di Verona Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Corso di Probabilità e Statistica (Prof.ssa L.Morato) Esercizi a cura di: S.Poffe sara.poffe@stat.unipd.it A.A.

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

Dall'analisi dei prospetti informativi diffusi dalla Borsa di Paperopoli Gastone ricava le seguenti informazioni sul rendimento dei tre titoli:

Dall'analisi dei prospetti informativi diffusi dalla Borsa di Paperopoli Gastone ricava le seguenti informazioni sul rendimento dei tre titoli: ESERCIZIO 1 Gastone investe i suoi risparmi in tre titoli (A: Paperone & Co; B: Rockerduck & Co; C: Bassotti & Co) quotati sul mercato di Paperopoli. La composizione percentuale del portafoglio di Gastone

Dettagli

Esercitazioni 2013/14

Esercitazioni 2013/14 Esercitazioni 2013/14 Esercizio 1 Due ditte V e W partecipano ad una gara di appalto per la costruzione di un tratto di autostrada che viene assegnato a seconda del prezzo. L offerta fatta dalla ditta

Dettagli

PROVE D'ESAME DI CPS A.A. 2009/2010. 0 altrimenti.

PROVE D'ESAME DI CPS A.A. 2009/2010. 0 altrimenti. PROVE D'ESAME DI CPS A.A. 009/00 0/06/00 () (4pt) Olimpiadi, nale dei 00m maschili, 8 nalisti. Si sa che i 4 atleti nelle corsie centrali hanno probabilità di correre in meno di 0 secondi. I 4 atleti delle

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI 1. L azienda Wood produce legno compensato per costruzioni

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

Politecnico di Milano - Anno Accademico 2010-2011 Statistica 086449 Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo

Politecnico di Milano - Anno Accademico 2010-2011 Statistica 086449 Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Politecnico di Milano - Anno Accademico 200-20 Statistica 086449 Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Esercitazione 9 2 Giugno 20 Esercizio. In un laboratorio per il test dei materiali,

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

L Analisi della Varianza ANOVA (ANalysis Of VAriance)

L Analisi della Varianza ANOVA (ANalysis Of VAriance) L Analisi della Varianza ANOVA (ANalysis Of VAriance) 1 CONCETTI GENERALI Finora abbiamo descritto test di ipotesi finalizzati alla verifica di ipotesi sulla differenza tra parametri di due popolazioni

Dettagli

Politecnico di Milano Temi d esame di STATISTICA dell AA 2004/2005 per allievi ING INF [2L]. Proff. A. Barchielli, I. Epifani

Politecnico di Milano Temi d esame di STATISTICA dell AA 2004/2005 per allievi ING INF [2L]. Proff. A. Barchielli, I. Epifani Politecnico di Milano Temi d esame di STATISTICA dell AA 004/005 per allievi ING INF [L]. Proff. A. Barchielli, I. Epifani 1 1 STATISTICA per ING INF [L] Proff. A. Barchielli, I. Epifani 0.06.05 I diritti

Dettagli

Esercizi del Corso di Statistica. Parte I - Variabili Aleatorie Continue

Esercizi del Corso di Statistica. Parte I - Variabili Aleatorie Continue Esercizi del Corso di Statistica Parte I - Variabili Aleatorie Continue 1. Costruire la variabile uniforme U sull intervallo [a, b], con a IR e b IR. 2. Sia X una variabile aleatoria tale che: 0 x < 1

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Nella verifica delle ipotesi è necessario fissare alcune fasi prima di iniziare ad analizzare i dati. a) Si deve stabilire quale deve essere l'ipotesi nulla (H0) e quale l'ipotesi

Dettagli

CORSO DI STATISTICA N.O. - II CANALE Esercizi

CORSO DI STATISTICA N.O. - II CANALE Esercizi CORSO DI STATISTICA N.O. - II CANALE Esercizi Dott.ssa CATERINA CONIGLIANI Facoltà di Economia Università Roma Tre 1 Esercizi su sintesi di distribuzioni semplici Esercizio 1.1 Data la seguente distribuzione

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 9 giugno 6 Spazi di probabilità finiti e uniformi Esercizio Un urna contiene 6 palline rosse, nere, 8 bianche. Si estrae una pallina; calcolare la

Dettagli

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Esercizio 1 Si consideri il seguente modello ad effetti fissi con variabili binarie: + 1 2 a) supponete che N=3. Si mostri che i regressori

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Il confronto fra proporzioni

Il confronto fra proporzioni L. Boni Il rapporto Un rapporto (ratio), attribuendo un ampio significato al termine, è il risultato della divisione di una certa quantità a per un altra quantità b Il rapporto Spesso, in maniera più specifica,

Dettagli

4. Confronto tra medie di tre o più campioni indipendenti

4. Confronto tra medie di tre o più campioni indipendenti BIOSTATISTICA 4. Confronto tra medie di tre o più campioni indipendenti Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

1. Richiami di Statistica. Stefano Di Colli

1. Richiami di Statistica. Stefano Di Colli 1. Richiami di Statistica Metodi Statistici per il Credito e la Finanza Stefano Di Colli Dati: Fonti e Tipi I dati sperimentali sono provenienti da un contesto delimitato, definito per rispettare le caratteristiche

Dettagli

Inferenza statistica

Inferenza statistica Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione in base ad informazioni ricavate da un campione. Inferenza statistica: indurre

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 L4, Corso Integrato di Psicometria - Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Rev. 18/04/2011 Inferenza statistica Formulazione

Dettagli

CORSO INTENSIVO DI STATISTICA I (V.O.) Esercizi

CORSO INTENSIVO DI STATISTICA I (V.O.) Esercizi 1 CORSO INTENSIVO DI STATISTICA I (V.O.) Esercizi Dott.ssa CATERINA CONIGLIANI Facoltà di Economia Università Roma Tre 1 Esercizi di statistica descrittiva Esercizio 1.1 (Prof. Pieraccini, 20 6-00) In

Dettagli

6. Modelli statistici: analisi della regressione lineare

6. Modelli statistici: analisi della regressione lineare BIOSTATISTICA 6. Modelli statistici: analisi della regressione lineare Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Quesito 1a. Quesito 2a. ce y 1+x. (x,y) R R + f(x,y) = 0 altrove

Quesito 1a. Quesito 2a. ce y 1+x. (x,y) R R + f(x,y) = 0 altrove Corso di laurea in Ing. Gestionale, a.a. 2001/2002 Prova scritta di Metodi Matematici e Statistici del 25 giugno 2002 Si effettuano n prove ciascuna delle quali consiste nello scegliere una moneta tra

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

Stefano Invernizzi Anno accademico 2010-2011

Stefano Invernizzi Anno accademico 2010-2011 POLITECNICO DI MILANO Statistica Appunti Stefano Invernizzi Anno accademico 2010-2011 Corso della prof. Ilenia Epifani Sommario Introduzione al corso... 5 La statistica... 5 Schema tipico di raccolta

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Calcolo delle probabilità Il Sig. Rossi abita nella città X e lavora nella città Y, poco distante.

Dettagli

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini)

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Esercizio 1 In uno studio sugli affitti mensili, condotto su un campione casuale di 14 monolocali nella città nella città

Dettagli

La regressione lineare multipla

La regressione lineare multipla 13 La regressione lineare multipla Introduzione 2 13.1 Il modello di regressione multipla 2 13.2 L analisi dei residui nel modello di regressione multipla 9 13.3 Il test per la verifica della significatività

Dettagli

L analisi statistica

L analisi statistica Statistica medica per IMS / 1 L analisi statistica Statistica medica per IMS / 2 Esempio (de Gans et al. NEJM 2002, 347: 1549-56) Esito Desametazone Trattamento Placebo Totale Sfavorevole Favorevole Totale

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 3 A. Sia una variabile casuale che si distribuisce secondo

Dettagli

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici Test non parametrici Test non parametrici Il test T di Student per uno o per due campioni, il test F di Fisher per l'analisi della varianza, la correlazione, la regressione, insieme ad altri test di statistica

Dettagli

Statistica Medica. Verranno presi in esame:

Statistica Medica. Verranno presi in esame: Statistica Medica Premessa: il seguente testo cerca di riassumere e rendere in forma comprensibile ai non esperti in matematica e statistica le nozioni e le procedure necessarie a svolgere gli esercizi

Dettagli

Programma del Corso per l AA 2008-09

Programma del Corso per l AA 2008-09 Matematiche Complementari Laurea Magistrale in Ecologia ed Evoluzione prof. L. Triolo (triolo@mat.uniroma2.it) Dipartimento di Matematica, Università di Roma Tor Vergata Programma del Corso per l AA 2008-09

Dettagli

Università del Piemonte Orientale. Corso di dottorato in medicina molecolare. a.a. 2002 2003. Corso di Statistica Medica. Inferenza sulle medie

Università del Piemonte Orientale. Corso di dottorato in medicina molecolare. a.a. 2002 2003. Corso di Statistica Medica. Inferenza sulle medie Università del Piemonte Orientale Corso di dottorato in medicina molecolare aa 2002 2003 Corso di Statistica Medica Inferenza sulle medie Statistica U Test z Test t campioni indipendenti con uguale varianza

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

Calcolo delle P robabilitá. Esercizi svolti e quesiti per il CdS in Economia e Finanza

Calcolo delle P robabilitá. Esercizi svolti e quesiti per il CdS in Economia e Finanza Calcolo delle P robabilitá Esercizi svolti e quesiti per il CdS in Economia e Finanza Giuseppe Sanfilippo Dipartimento di Scienze Statistiche e Matematiche S. Vianelli Università degli Studi di Palermo

Dettagli

Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco

Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco Alfonso Iodice D Enza April 26, 2007 1...prima di cominciare Contare, operazione solitamente semplice, può diventare complicata se lo scopo

Dettagli

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA DEFINIZIONE: Dato un numero reale a che sia a > 0 e a si definisce funzione esponenziale f(x) = a x la relazione che ad ogni valore di x associa uno e un solo

Dettagli

Introduzione alle variabili aleatorie discrete e continue notevoli Lezione 22.01.09 (ore 11.00-13.00, 14.00-16.00)

Introduzione alle variabili aleatorie discrete e continue notevoli Lezione 22.01.09 (ore 11.00-13.00, 14.00-16.00) Introduzione alle variabili aleatorie discrete e continue notevoli Lezione 22.01.09 (ore 11.00-13.00, 14.00-16.00) Richiami di matematica pag. 2 Definizione (moderatamente) formale di variabile aleatoria

Dettagli

A.1 Rappresentazione geometrica dei segnali

A.1 Rappresentazione geometrica dei segnali Appendice A Rappresentazione dei segnali A.1 Rappresentazione geometrica dei segnali Scomporre una generica forma d onda s(t) in somma di opportune funzioni base è operazione assai comune, particolarmente

Dettagli

Verifica di ipotesi e intervalli di confidenza nella regressione multipla

Verifica di ipotesi e intervalli di confidenza nella regressione multipla Verifica di ipotesi e intervalli di confidenza nella regressione multipla Eduardo Rossi 2 2 Università di Pavia (Italy) Maggio 2014 Rossi MRLM Econometria - 2014 1 / 23 Sommario Variabili di controllo

Dettagli

Esercizi di probabilità discreta

Esercizi di probabilità discreta Di seguito, potete trovare i testi (con risposta) degli esercizi svolti (o proposti) nel corso di esercitazioni dell insegnamento di Matematica applicata. 1 Esercizi di probabilità discreta Algebra degli

Dettagli

COORTI 2006/07 2010/11 Facoltà di Economia sede di Milano, corsi di laurea triennali diurni

COORTI 2006/07 2010/11 Facoltà di Economia sede di Milano, corsi di laurea triennali diurni COORTI 2006/07 2010/11 Facoltà di Economia sede di Milano, corsi di laurea triennali diurni immatricolati al primo anno (1), % iscritti al secondo anno (2), al terzo (3) % laureati Note entro di maggio

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Corso di Risk Management

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Corso di Risk Management UNIVERSITÀ DEGLI STUDI DI BERGAMO Corso di Prof. Filippo Stefanini A.A. Corso 60012 Corso di Laurea Specialistica in Ingegneria Edile Il casinò di Monte-Carlo Il casinò di Monte-Carlo, Principato di Monaco,

Dettagli

Metodi di previsione

Metodi di previsione Metodi di previsione Giovanni Righini Università degli Studi di Milano Corso di Logistica I metodi di previsione I metodi di previsione sono usati per ricavare informazioni a sostegno dei processi decisionali

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito 3.1 Introduzione all inferenza statistica Prima Parte Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 010-011 Corso di Psicometria - Modulo B Dott. Marco Vicentini marco.vicentini@unipd.it Rev. 10/01/011 La distribuzione F di Fisher - Snedecor

Dettagli

decidiamo, sulla base di un campione, se l ipotesi formulata è plausibile oppure no.

decidiamo, sulla base di un campione, se l ipotesi formulata è plausibile oppure no. LA VERIFICA D IPOTESI Alla base dell inferenza statistica vi è l assunzione che i fenomeni collettivi possano essere descritti efficacemente mediante delle distribuzioni di probabilità. Abbiamo già considerato

Dettagli

SIMULAZIONE I. 1. Abbiamo un campione di 400 aziende classificate secondo il capitale sociale e il fatturato. I dati sono: Fatturato

SIMULAZIONE I. 1. Abbiamo un campione di 400 aziende classificate secondo il capitale sociale e il fatturato. I dati sono: Fatturato SIMULAZIONE I Cognome e nome.. N. di matricola. 1. Abbiamo un campione di 400 aziende classificate secondo il capitale sociale e il fatturato. I dati sono: Capitale Fatturato sociale < 5000 5000 250 80

Dettagli

Metodi Statistici di Controllo della Qualità Prof. Paolo Cozzucoli

Metodi Statistici di Controllo della Qualità Prof. Paolo Cozzucoli Programma dell insegnamento di Metodi Statistici di Controllo della Qualità Prof. Paolo Cozzucoli Corso di Laurea in Metodi Quantitativi per l Economia e la Gestione delle Aziende A.A. 2007-08 Disciplina

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA) Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad

Dettagli

Cenni di statistica descrittiva

Cenni di statistica descrittiva Cenni di statistica descrittiva La statistica descrittiva è la disciplina nella quale si studiano le metodologie di cui si serve uno sperimentatore per raccogliere, rappresentare ed elaborare dei dati

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

Concetti introduttivi

Concetti introduttivi Indice 1 Concetti introduttivi 3 1.1 Studi sperimentali e studi osservazionali..................... 3 1.2 Concetti iniziali: indipendenza fra eventi..................... 6 1.3 Indipendenza fra variabili

Dettagli

Econometria. lezione 17. variabili dipendenti binarie. Econometria. lezione 17. AA 2014-2015 Paolo Brunori

Econometria. lezione 17. variabili dipendenti binarie. Econometria. lezione 17. AA 2014-2015 Paolo Brunori AA 2014-2015 Paolo Brunori domande di mutui rigettate - nei dati raccolti a Boston negli anni 90 il tasso di rifiuto è 28% per i neri e 9% per i bianchi - si può parlare di discriminazione? - è possibili

Dettagli

Analisi discriminante

Analisi discriminante Capitolo 6 Analisi discriminante L analisi statistica multivariata comprende un corpo di metodologie statistiche che permettono di analizzare simultaneamente misurazioni riguardanti diverse caratteristiche

Dettagli

Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità David Barbato Questa raccolta comprende sia gli esercizi dell esercitazione del 14 febbraio sia gli esercizi di ricapitolazione sulle

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr. Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame dell 11/1/2012 NOME COGNOME N. Matr. Rispondere alle domande nel modo più completo possibile, cercando di

Dettagli

Basi di dati 9 febbraio 2010 Compito A

Basi di dati 9 febbraio 2010 Compito A Basi di dati 9 febbraio 2010 Compito A Domanda 0 (5%) Leggere e rispettare le seguenti regole: Scrivere nome, cognome, matricola (se nota), corso di studio e lettera del compito (ad esempio, A) sui fogli

Dettagli

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1)

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) 151 Introduzione Un esperimento è una prova o una serie di prove. Gli esperimenti sono largamente utilizzati nel campo dell ingegneria. Tra le varie applicazioni;

Dettagli

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete Corso di Calcolo delle Probabilità e Statistica Esercizi su variabili aleatorie discrete Es.1 Da un urna con 10 pallina bianche e 15 palline nere, si eseguono estrazioni con reimbussolamento fino all estrazione

Dettagli

Capitolo 7 TEST DELLE IPOTESI

Capitolo 7 TEST DELLE IPOTESI B. Chiandotto F. Cipollini Versione 3 Cap. 7 Capitolo 7 TEST DELLE IPOTESI In questo capitolo si affronta il problema della verifica d ipotesi statistiche limitando la trattazione alla cosiddetta teoria

Dettagli

Statistica descrittiva

Statistica descrittiva Corso di Laurea in Ingegneria per l Ambiente ed il Territorio Corso di Costruzioni Idrauliche A.A. 2004-05 www.dica.unict.it/users/costruzioni Statistica descrittiva Ing. Antonino Cancelliere Dipartimento

Dettagli

Università degli Studi di Milano

Università degli Studi di Milano Università degli Studi di Milano Laurea in Scienza della Produzione e Trasformazione del Latte Note di Calcolo delle Probabilità e Statistica STEFANO FERRARI Analisi Statistica dei Dati Note di Calcolo

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

Statistica Applicata all edilizia Lezione 2: Analisi descrittiva dei dati

Statistica Applicata all edilizia Lezione 2: Analisi descrittiva dei dati Lezione 2: Analisi descrittiva dei dati E-mail: orietta.nicolis@unibg.it 1 marzo 2011 Prograa 1 Analisi grafica dei dati 2 Indici di posizione Indici di dispersione Il boxplot 3 4 Prograa Analisi grafica

Dettagli

Nell approccio varianze-covarianze, il VaR di un azione viene calcolato sulla base del CAPM come. VaR = z α β σ M,

Nell approccio varianze-covarianze, il VaR di un azione viene calcolato sulla base del CAPM come. VaR = z α β σ M, Il VaR di un azione Nell approccio varianze-covarianze, il VaR di un azione viene calcolato sulla base del CAPM come VaR = z α β σ M, dove σ M è la volatilità dell indice di mercato scelto per l azione.

Dettagli

Concetto di potenza statistica

Concetto di potenza statistica Calcolo della numerosità campionaria Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona Concetto di potenza statistica 1 Accetto H 0 Rifiuto H 0 Ipotesi Nulla (H

Dettagli

i=1 Y i, dove Y i, i = 1,, n sono indipendenti e somiglianti e con la stessa distribuzione di Y.

i=1 Y i, dove Y i, i = 1,, n sono indipendenti e somiglianti e con la stessa distribuzione di Y. Lezione n. 5 5.1 Grafici e distribuzioni Esempio 5.1 Legame tra Weibull ed esponenziale; TLC per v.a. esponenziali Supponiamo che X Weibull(α, β). (i) Si consideri la distribuzione di Y = X β. (ii) Fissato

Dettagli

PARTE PRIMA PROBABILITA

PARTE PRIMA PROBABILITA i PARTE PRIMA PROBABILITA CAPITOLO I - Gli assiomi della probabilità 1.1 Introduzione........................................................... pag. 1 1.2 Definizione assiomatica di probabilità.......................................

Dettagli

= E(X t+k X t+k t ) 2 + 2E [( X t+k X t+k t + E

= E(X t+k X t+k t ) 2 + 2E [( X t+k X t+k t + E 1. Previsione per modelli ARM A Questo capitolo è dedicato alla teoria della previsione lineare per processi stocastici puramente non deterministici, cioè per processi che ammettono una rappresentazione

Dettagli

Corso di Automazione Industriale 1. Capitolo 4

Corso di Automazione Industriale 1. Capitolo 4 Simona Sacone - DIST Corso di Automazione Corso Industriale di 1 Automazione Industriale 1 Capitolo 4 Analisi delle prestazioni tramite l approccio simulativo Aspetti statistici della simulazione: generazione

Dettagli