Analisi Matematica (complementi)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Analisi Matematica (complementi)"

Transcript

1 Docenti: Leonede De Michele Luigi Fontana Analisi Matematica (complementi) Successioni e serie numeriche. Serie a termini positivi: criterio del confronto, del rapporto e della radice. Serie a termini alterni: criterio di Leibniz, serie assolutamente convergenti. Serie di potenze. Raggio di convergenza. Derivazione e integrazione delle serie di potenze. Serie di Taylor. Serie di Taylor per la funzione esponenziale e le funzioni trigonometriche. Vettori, rette e piani nello spazio. Condizioni di perpendicolarità e di parallelismo. Prodotto scalare e prodotto vettoriale. Calcolo differenziale per funzioni di più variabili: derivate parziali, gradiente, derivate direzionali. Funzioni differenziabili. Legami tra il gradiente e le derivate direzionali nel caso di funzioni differenziabili. Una condizione sufficiente per la differenziabilità. Equazione del piano tangente ad una superficie regolare del tipo z=f(x,y). Derivate di ordine superiore al primo. Teorema di Schwartz (*). Formula di Taylor per funzioni reali di due variabili. Punti stazionari: definizione e condizioni necessarie per l esistenza di estremi relativi su insiemi aperti. Matrice Hessiana. Studio dei massimi e minimi liberi per funzioni di due variabili. Integrale di Riemann per funzioni di due variabili definite su plurirettangoli: definizione. Proprietà di additività rispetto al dominio e rispetto alla funzione (*). Esistenza dell integrale per funzioni continue su plurirettangoli (*). Domini x-semplici, y-semplici e domini regolari. Integrazione di funzioni continue su domini regolari: calcolo mediante integrazioni successive. Teorema della media per funzioni continue su domini regolari connessi per archi. Coordinate polari nel piano. Teorema di cambiamento di variabili negli integrali doppi (*). Cenni a integrali tripli: volume della sfera. Coordinate sferiche nello spazio. (*)=senza dimostrazione

2 Docenti: Gabriella Pasi e Carla Simone Crediti : 6 Linguaggi di Programmazione (elementi) Conoscenze: Linguaggio di Programmazione Java Programma Modulo 1: Paradigmi di programmazione: imperativa, funzionale, logica Grammatiche regolari e libere da contesto Sintassi, semantica: traduttori ed interpreti Modulo 2: Elementi di base della programmazione in C e loro differenze rispetto a Java Modulo 3: Elementi di base della programmazione concorrente: definizione delle specifiche di un programma. Modulo 4: Elementi di base della programmazione in Lisp Modulo 5: Elementi di base della programmazione in Prolog Link al sito web:

3 Docenti: Leonede De Michele Andrea Previtali Matematica Discreta (Complementi) 1 Numeri Complessi Numeri complessi, parte reale e parte immaginaria, forma cartesiana, forma polare, modulo, argomento, l'esponenziale complesso, elevamento a potenza, formula di De Moivre, estrazione di radice. 2 Matrici Definizione di matrici, somma, prodotto per scalari, prodotto righe per colonne, traccia, sottomatrici, matrici triangolari, diagonali, trasposizione, matrici simmetriche, permutazioni e segno, determinante, minori complementari, complemento algebrico, Teorema di Laplace, Teorema di Binet, condizioni di non singolarita' per una matrice, matrice inversa e suo calcolo, determinante e volumi, proprietà del determinante, matrici ortogonali, vettori ortonormali, 3 Spazi vettoriali Definizione, struttura algebrica, esempi: polinomi e prodotti cartesiani di campi, matrici rettangolari, lo spazio canonico, sottospazi, intersezione e somma, somma diretta, Formula di Grassmann, combinazioni lineari, caratterizzazione dei sottospazi, chiusura lineare, sistemi di generatori, matrici elementari, vettori standard, spazio dele righe e/o delle colonne, indipendenza lineare, criteri per la dipendenza lineare, basi, caratterizzazione delle basi, esempi, dimensione, rango di una matrice: varie definizioni, calcolo del rango, Teorema di Kronecker, matrici orlate. 4 Sistemi lineari Definizione ed esempi, sistemi omogenei, traduzione matriciale, Teorema di Rouché-Capelli, metodi risolutivi, regola di Cramer, spazio delle soluzioni di un sistema e del sistema omogeneo associato. 5 Applicazioni lineari Definizione, nucleo, immagine e loro proprietà, Teorema nullità + rango, esistenza ed unicità di applicazioni lineari, estensione lineare, iniettività, matrici associate, cambiamenti di base. 6 Simlitudine e diagonalizzabilità Definizione, relazioni di equivalenza, diagonalizzabilità, invarianti di classi di similitudine, polinomio caratteristico,interpretazione di alcuni dei suoi coefficienti, autovalori e autovettori, estensione del campo, autospazi, indipendenza tra autovettori, molteplicità algebrica e geometrica, spettro, regolarità di autovalori, criteri di diagonalizzabilità, Teorema di Cayley-Hamilton.

4 Sistemi Operativi e Reti Docenti: Luca Bernardinello, Flavio De Paoli, Huu Le Van, Claudio Ferretti Crediti: 12 Conoscenze: Architettura di base dei sistemi operativi, le problematiche e gli algoritmi per la loro costruzione; Principi di modellazione di sistemi concorrenti con automi a stati e realizzazione in Java Principi di programmazione ad eventi e aspetti fondamentali di applicazioni di rete. Elementi di base dei protocolli e dei dispositivi delle reti di calcolatori. Abilità: Analizzare la struttura dei sistemi operativi e affrontare con sufficiente conoscenza la loro progettazione, insieme all'uso di comandi di Unix. Analizzare, modellare e realizzare semplici sistemi concorrenti usando automi a stati e Java Progettare e realizzare semplici applicazioni ad eventi in Java. Progettare semplici protocolli di comunicazione e realizzarli utilizzando socket in Java 1) Modelli di programmazione ad eventi e algoritmici 2) Concetti e strumenti per la programmazione ad eventi in Java (GUI e eccezioni) 3) Processi - Scheduling dei processi 4) Comunicazione fra i processi - Problemi classici di IPC 5) Shell di Unix 6) Gestione della memoria e del file system 7) Modellazione di sistemi concorrenti con automi a stati finiti 8) Multithreading e gestione della sincronizzazione 9) Realizzazione di programmi concorrenti in Java 10) Reti: Strato applicativo: definizione dei protocolli, HTTP e DNS 11) Reti: Strato di trasporto: TCP e UDP, controllo del flusso e della congestione 12) Reti: Strato di rete: protocollo Internet e problematiche di instradamento 13) Reti: Strato fisico e data link 14) Concetti di progettazione di applicazioni in Internet: architettura Web, CGI/Servlet, ASP/JSP La valutazione finale riguarda anche la partecipazione alle esercitazioni in laboratorio. Link al sito web:

5 Docenti: Paola Bonizzoni, Giancarlo Mauri Algoritmi e strutture di dati (complementi) Conoscenze: Tecniche algoritmiche avanzate Abilità: Progetto e analisi di algoritmi con tecniche di programmazioen dinamica o greedy, in particolare algoritmi su grafi 1. Programmazione dinamica Esempi introduttivi Caratteristiche principali Implementazione con matrici 2. Algoritmi greedy Esempi introduttivi Matroidi Il teorema di Rado 3. Algoritmi su grafi Rappresentazione in memoria di un grafo. Visita in ampiezza e in profondità di un grafo. Ricerca delle componenti connesse di un grafo non orientato. Ricerca delle componenti (fortemente) connesse in un grafo orientato Ricerca di alberi di copertura minimi di un grafo. Ricerca di cammini minimi Link al sito web:

6 Algoritmi e strutture dati (laboratorio) Docente : Luca Bernardinello Il corso, a partire dalle conoscenze acquisite nei moduli Elementi e Complementi di algoritmi e strutture dati, si concentra sugli aspetti e sui problemi specifici della realizzazione di algoritmi e di strutture dati nella pratica, servendosi del C come linguaggio di programmazione. Un attenzione particolare è dedicata allo sviluppo di componenti software generiche e riutilizzabili. Il corso si articola in 24 ore di lezione in aula, 12 ore di esercitazione in aula e 24 ore di esercitazione in laboratorio. Non si richiede nessuna conoscenza del C, ma si assume che lo studente abbia seguito o stia seguendo i corsi di programmazione e di algoritmi e strutture dati del primo e secondo anno. Conoscenze : Progettazione e realizzazione di algoritmi e strutture dati, in generale e nel caso particolare del C. Abilità: Progettare un algoritmo e realizzarlo in C; usare una libreria di funzioni; progettare e realizzare una libreria di funzioni. 1. Fondamenti del linguaggio C 2. Tipi di dati astratti e realizzazione di strutture dati in C 3. Uso di librerie di funzioni 4. Disegno e realizzazione di una libreria di funzioni in C 5. Realizzazione di algoritmi classici per problemi di ordinamento, di trattamento di stringhe e su grafi. Link al sito web:

7 Docenti: Mirella Enriotti - Simonetta Pensotti Fisica Generale 1 ( Elementi ) Conoscenze: Principi fondamentali della meccanica newtoniana,conoscenze di base sui sistemi fluidi, elementi di termologia, primo e secondo principio della termodinamica, equazioni di Maxwell nel vuoto. Abilità: Nella prova di esame si richiede allo studente la soluzione di semplici problemi concettuali e/o numerici sugli argomenti trattati nel corso. 1. Elementi di meccanica newtoniana del punto materiale 2. Nozioni elementari di statica e dinamica dei fluidi ideali 3. Elementi di termologia (termometria,calorimetria,gas ideali) 4. Primo e secondo principio della termodinamica di equilibrio per sistemi chiusi 5 Proprieta` del campo elettrostatico nel vuoto. La corrente elettrica stazionaria. Principi della magnetostatica nel vuoto. 6. L'induzione e.m. e la corrente di spostamento. Le equazioni di Maxwell nel vuoto. Link al sito web:

8 Ricerca Operativa e Probabilità e Statistica (Complementi) Docenti: Fagiuoli Conoscenze: Approfondimenti di Statistica e Calcolo delle Probabilità. Lo studente approfondirà le proprie conoscenze sui metodi di statistica descrittiva e sui principali modelli di computazione probabilistica, sulle metodologie di stima dei parametri, sui principali test di ipotesi (parametrici) ed infine sulla modellazione mediante regressione lineare uni e multivariata. Abilità: Lo studente acquisirà competenze specifiche che lo porranno in grado di affrontare e risolvere, in termini operativi, problemi quali l analisi descrittiva dei dati. Inoltre, lo studente acquisirà abilità per condurre analisi inferenziali atte a prevedere quantità di interesse e per la progettazione di sistemi di analisi statistica. 1. Statistica Descrittiva - Rappresentazioni numeriche di dati statistici - Rappresentazioni grafiche - Indici di tendenza centrale - Indici di variabilità - Rappresentazioni per caratteri bidimensionali alla regressione Regressione singola Regressione multivariata 2. Calcolo delle Probabilità - Definizioni - Probabilità condizionata - Indipendenza stocastica - Variabili aleatorie unidimensionali - Variabili aleatorie multidimensionali - Indici di tendenza centrale - Indici di variabilità 3. Distribuzioni Notevoli - Distribuzioni discrete: Bernoulli, Binomiale,Geometrica, Poisson, Esponenziale - Distribuzioni continue: Normale, Beta, Gamma, t, Chi Squared, F. 4. Teoremi di Convergenza - Convergenza in distribuzione - Legge dei grandi numeri - Teorema del limite centrale 5. Stima di Parametri - Campionamento e campioni - Principali distribuzioni campionarie - Stimatori e stime puntuali - Stime intervallari: intervalli di confidenza per la media e sulla varianza 6. Verifica di Ipotesi: Test Parametrici - Errori del I e del II tipo - Test sulla media di una popolazione - Test sulla varianza di una popolazione

9 - Test sulla differenza delle medie - Test sulla differenza delle varianza - Test di incorrelazione 7. Regressione Lineare: Complementi - Definizioni. - Stima dei parametri della regressione mediante minimi quadrati. - Intervalli di confidenza sui parametri della regressione - Intervalli di confidenza per i valori dei singoli individui - Attendibilità di un modello lineare - Analisi dei residui - Regressione lineare multipla: stima dei parametri, attendibilità, importanza delle variabili e multicollinearità Link al sito web:

10 Docente: Enza Messina Ricerca Operativa, Probabilità e Statistica (elementi) Obiettivi dell insegnamento: Il corso intende introdurre gli strumenti di base della ricerca operativa e la loro applicazione nei problemi di pianificazione e gestione delle risorse. Programmazione Lineare Programmazione Lineare Intera Programmazione Non Lineare Modelli basati sui grafi Problemi di ottimizzazione del flusso su reti Tecniche per la gestione di progetti Tecniche di decisione in condizioni di Incertezza

11 Laboratorio di Ricerca Operativa, Probabilità e Statistica (Finanza e Gestione) Docente: Fabio Stella Conoscenze: Conoscenze specialistiche per la trattazione (misurazione, controllo e gestione) del rischio finanziario nelle sue diverse forme con particolare riferimento al Market Risk. Inoltre, lo studente dovrebbe acquisire conoscenze approfondite circa le principali metodologie computazionali e tecnologie informatiche per la progettazione e l implementazione di sistemi software di: Risk Management, Trading On-Line e di Financial Data Mining. Abilità: Lo studente acquisirà competenze specifiche e professionalizzanti nell ambito delle tecnologie e delle metodologie della Finanza Computazionale. In particolare, lo studente sarà in grado di svolgere un ruolo guida nell ambito di un gruppo di lavoro che operi in realtà finanziarie quali; Banche, SIM e società software che servano istituti di credito o investitori privati. Lo studente sarà in grado di utilizzre, in modo integrato e a livello sofisticato strumenti informatici quali Microsoft Excel e Matlab ed inoltre sarà in grado di progettare e implementare modelli computazionali secondo il paradigma di programmazione orientato agli oggetti. 1. Rischio Finanziario - Tipologie di rischio 2. Architetture per il Rischio Finanziario - Mark to Future (Algorithmics) - ForWard 3. Anagrafica - Modello dei dati 4. Processi Casuali - Random Walk - Modelli compositi 5. Strumenti Derivati e definizioni - Opzioni europee - Opzioni americane 6. Pricing di Strumenti Derivati - Metodi analitici: Black & Scholes - Metodi numerici - Metodi simulativi 7. Fattori di Rischio - Struttura a termine dei tassi - Struttura a termine delle volatilità 8. Analisi di Portafoglio - Misure di rischio

12 - Rischio e ritorno 9. Simulazione e Stress Testing - Scenario generation - Calcolo del rischio 10. Serie Finanziarie - Indicatori analitici - Tecniche di stima e previsione 11. Finance Data Mining - Classificatori e Alberi di decisione - Reti Neurali 12. Trading On-Line - Algoritmi di acquisto - vendita - Progettazione e implementazione Link al sito web:

13 Sistemi Operativi e Reti (Laboratorio) Docenti: Huu Le Van, Roberto Polillo Conoscenze: Architettura e system call dei sistemi operativi Unix e Linux. Programmazione per la gestione e la comunicazione fra i processi. Principali comandi di configurazione e di manutenzione di sistemi Linux. Principi di programmazione di software di rete con le socket. Abilità: Costruire programmi di sistema in ambiente Linux (con uso delle principali system call, in C) Costruire applicazioni di rete con uso di socket. Usare principali comandi per manutenere un sistema Linux. 1. Architettura interna di Unix e Linux 2. Primitive per la gestione dei file e diretories 3. Primitive per la gestione dei processi 4. Primitive per la comunicazione fra i processi (pipe, segnali) 5. Software di rete e socket 6. Comandi di amministrazione del sistema Linux Nota: il corso comprende le esercitazioni di Laboratorio assistite. La frequenza del Laboratorio e obbligatoria. Link al sito web:

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014)

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) Le grandezze fisiche. Metodo sperimentale di Galilei. Concetto di grandezza fisica e della sua misura. Il Sistema internazionale di Unità

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

Che cosa e come valutano le prove di matematica e con quali risultati. nell A.S. 2008 2009

Che cosa e come valutano le prove di matematica e con quali risultati. nell A.S. 2008 2009 Che cosa e come valutano le prove di matematica e con quali risultati nell A.S. 2008 2009 Presentazione a cura di Roberta Michelini Casalpusterlengo, 8 gennaio 2010 http://www.invalsi.it/esamidistato0809/

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Programmazione Generale. Matematica e Complementi. Classi: 2 Biennio Quarta. Istituto Tecnico Tecnologico Basilio Focaccia Salerno

Programmazione Generale. Matematica e Complementi. Classi: 2 Biennio Quarta. Istituto Tecnico Tecnologico Basilio Focaccia Salerno Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Generale Matematica e Complementi Classi: 2 Biennio Quarta I Docenti della Disciplina Salerno, lì 12 settembre 2014 Finalità della Disciplina

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

UNIVERSITA DI PISA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA ANNO ACCADEMICO 2004-2005 TESI DI LAUREA

UNIVERSITA DI PISA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA ANNO ACCADEMICO 2004-2005 TESI DI LAUREA UNIVERSITA DI PISA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA ANNO ACCADEMICO 2004-2005 TESI DI LAUREA SVILUPPO DI METODI DECONVOLUTIVI PER L INDIVIDUAZIONE DI SORGENTI INDIPENDENTI

Dettagli

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Come evidenziare l informazione contenuta nei dati S. Marsili-Libelli: Calibrazione di Modelli Dinamici pag. Perche PCA? E un semplice metodo non-parametrico per estrarre

Dettagli

Rapida Introduzione all uso del Matlab Ottobre 2002

Rapida Introduzione all uso del Matlab Ottobre 2002 Rapida Introduzione all uso del Matlab Ottobre 2002 Tutti i tipi di dato utilizzati dal Matlab sono in forma di array. I vettori sono array monodimensionali, e così possono essere viste le serie temporali,

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b : Forme bilineari e prodotti scalari Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione b : { V V K ( v, w) b( v, w), si dice forma bilineare su V se per ogni u, v, w V e per ogni k K:

Dettagli

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione.

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione. IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI Lezione 40: Filtro di Kalman - introduzione Cenni storici Filtro di Kalman e filtro di Wiener Formulazione del problema Struttura ricorsiva della soluzione

Dettagli

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz: FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA PROGRAMMA DI MATEMATICA E FISICA Classe VA scientifico MATEMATICA MODULO 1 ESPONENZIALI E LOGARITMI 1. Potenze con esponente reale; 2. La funzione esponenziale: proprietà e grafico; 3. Definizione di logaritmo;

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA

QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA Michele Impedovo Bollettino dei Docenti di Matematica del Canton Ticino (CH) n 36, maggio 98. Il problema Il lavoro che

Dettagli

POLITECNICO DI BARI REGOLAMENTO TEST DI AMMISSIONE

POLITECNICO DI BARI REGOLAMENTO TEST DI AMMISSIONE POLITECNICO DI BARI REGOLAMENTO TEST DI AMMISSIONE IMMATRICOLAZIONI AL PRIMO ANNO DEI CORSI DI LAUREA TRIENNA- LI IN INGEGNERIA DEL POLITECNICO DI BARI - A.A. 2015/2016 Sommario REGOLAMENTO TEST DI AMMISSIONE...

Dettagli

POLITECNICO di BARI - A.A. 2012/2013 Corso di Laurea in INGEGNERIA Informatica e dell Automazione

POLITECNICO di BARI - A.A. 2012/2013 Corso di Laurea in INGEGNERIA Informatica e dell Automazione POLITECNICO di BARI - A.A. 0/03 Corso di Laurea in INGEGNERIA Informatica e dell Automazione Problema Sia f :[0, +[! R una funzione continua. La funzione composta g() =f(kk) è c o n t i n u a? Problema

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0) Numeri Complessi Un numero complesso z può essere definito come una coppia ordinata (x,y) di numeri reali x e y. L insieme dei numeri complessi è denotato con C e può essere identificato con il piano cartesiano

Dettagli

SciPy. Programmazione Orientata agli Oggetti e Scripting in Python

SciPy. Programmazione Orientata agli Oggetti e Scripting in Python SciPy Programmazione Orientata agli Oggetti e Scripting in Python SciPy: Informazioni di Base Libreria di algoritmi e strumenti matematici Fornisce: moduli per l'ottimizzazione, per l'algebra lineare,

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

LA MATEMATICA PER LE ALTRE DISCIPLINE. Prerequisiti e sviluppi universitari G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R.

LA MATEMATICA PER LE ALTRE DISCIPLINE. Prerequisiti e sviluppi universitari G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R. LA MATEMATICA PER LE ALTRE DISCIPLINE Prerequisiti e sviluppi universitari a cura di G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R. ZAN Unione Matematica Italiana 2006 Ho continuato

Dettagli

Note integrative ed Esercizi consigliati

Note integrative ed Esercizi consigliati - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Note integrative ed consigliati Laura Poggiolini e Gianna Stefani Indice 0 1 Convergenza uniforme 1 2 Convergenza totale 5 1 Numeri

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t.

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t. Il programma MATLAB In queste pagine si introduce in maniera molto breve il programma di simulazione MAT- LAB (una abbreviazione di MATrix LABoratory). Introduzione MATLAB è un programma interattivo di

Dettagli

Informatica Applicata

Informatica Applicata Ing. Irina Trubitsyna Concetti Introduttivi Programma del corso Obiettivi: Il corso di illustra i principi fondamentali della programmazione con riferimento al linguaggio C. In particolare privilegia gli

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

Lab. 1 - Introduzione a Matlab

Lab. 1 - Introduzione a Matlab Lab. 1 - Introduzione a Matlab Alcune informazioni su Matlab Matlab è uno strumento per il calcolo scientifico utilizzabile a più livelli, dalla calcolatrice tascabile, alla simulazione ed analisi di sistemi

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio.

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio. Appunti di Analisi Matematica Docente:Fabio Camilli SAPIENZA, Università di Roma A.A. 4/5 http://www.dmmm.uniroma.it/~fabio.camilli/ (Versione del 9 luglio 5) Note scritte in collaborazione con il prof.

Dettagli

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ;

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; 1. Un triangolo ha area 3 e due lati che misurano 2 e 3. Qual è la misura del terzo lato? : L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; nel nostro

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015 NUMERI. SPAZIO E FIGURE. RELAZIONI, FUNZIONI, MISURE, DATI E PREVISIONI Le sociali e ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA procedure

Dettagli

Cosa sono gli esoneri?

Cosa sono gli esoneri? Cosa sono gli esoneri? Per superare l esame di Istituzioni di Matematiche è obbligatorio superare una prova scritta. Sono previsti due tipi di prova scritta: gli esoneri e gli appelli. Gli esoneri sono

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione.

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. COMPETENZE MINIME- INDIRIZZO : ELETTROTECNICA ED AUTOMAZIONE 1) CORSO ORDINARIO Disciplina: ELETTROTECNICA

Dettagli

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado I quesiti sono distribuiti negli ambiti secondo la tabella seguente Ambito

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

Esercizi su Autovalori e Autovettori

Esercizi su Autovalori e Autovettori Esercizi su Autovalori e Autovettori Esercizio n.1 5 A = 5, 5 5 5 Esercizio n.6 A =, Esercizio n.2 4 2 9 A = 2 1 8, 4 2 9 Esercizio n.7 6 3 3 A = 6 3 6, 3 3 6 Esercizio n.3 A = 4 6 6 2 2, 6 6 2 Esercizio

Dettagli

ISTITUTI TECNICI SETTORE TECNOLOGICO. Indirizzo Meccanica, Meccatronica ed Energia

ISTITUTI TECNICI SETTORE TECNOLOGICO. Indirizzo Meccanica, Meccatronica ed Energia ISTITUTI TECNICI SETTORE TECNOLOGICO Indirizzo Meccanica, Meccatronica ed Energia L indirizzo Meccanica, meccatronica ed energia ha lo scopo di far acquisire allo studente, a conclusione del percorso quinquennale,

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

INCERTEZZA DI MISURA

INCERTEZZA DI MISURA L ERRORE DI MISURA Errore di misura = risultato valore vero Definizione inesatta o incompleta Errori casuali Errori sistematici L ERRORE DI MISURA Errori casuali on ne si conosce l origine poiche, appunto,

Dettagli

CORSO DI LAUREA (270/2004) - STATISTICA MATEMATICA E TRATTAMENTO INFORMATICO DEI DATI - IL CORSO DI STUDIO IN CIFRE: IMMATRICOLATI

CORSO DI LAUREA (270/2004) - STATISTICA MATEMATICA E TRATTAMENTO INFORMATICO DEI DATI - IL CORSO DI STUDIO IN CIFRE: IMMATRICOLATI CORSO DI LAUREA (270/2004) - STATISTICA MATEMATICA E TRATTAMENTO INFORMATICO DEI DATI - IL CORSO DI STUDIO IN CIFRE: IMMATRICOLATI 2011/2012 2012/2013 2013/2014 Iscritti I anno I volta Iscritti totali

Dettagli

L. Pandolfi. Lezioni di Analisi Matematica 2

L. Pandolfi. Lezioni di Analisi Matematica 2 L. Pandolfi Lezioni di Analisi Matematica 2 i Il testo presenta tre blocchi principali di argomenti: A Successioni e serie numeriche e di funzioni: Cap., e 2. B Questa parte consta di due, da studiarsi

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

ANNO SCOLASTICO 2014/2015 I.I.S. ITCG L. EINAUDI SEZ.ASSOCIATA LICEO SCIENTIFICO G. BRUNO PROGRAMMA DI FISICA. CLASSE: V A Corso Ordinario

ANNO SCOLASTICO 2014/2015 I.I.S. ITCG L. EINAUDI SEZ.ASSOCIATA LICEO SCIENTIFICO G. BRUNO PROGRAMMA DI FISICA. CLASSE: V A Corso Ordinario ANNO SCOLASTICO 2014/2015 I.I.S. ITCG L. EINAUDI SEZ.ASSOCIATA LICEO SCIENTIFICO G. BRUNO PROGRAMMA DI FISICA CLASSE: V A Corso Ordinario DOCENTE: STEFANO GARIAZZO ( Paola Frau dal 6/02/2015) La corrente

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i NA. Operatore nabla Consideriamo una funzione scalare: f : A R, A R 3 differenziabile, di classe C (2) almeno. Il valore di questa funzione dipende dalle tre variabili: Il suo differenziale si scrive allora:

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati. Rappresentazione concreta di insiemi e Hash table

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati. Rappresentazione concreta di insiemi e Hash table Universita' di Ferrara Dipartimento di Matematica e Informatica Algoritmi e Strutture Dati Rappresentazione concreta di insiemi e Hash table Copyright 2006-2015 by Claudio Salati. Lez. 9a 1 Rappresentazione

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t),

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t), SINTESI. Una classe importante di problemi probabilistici e statistici é quella della stima di caratteristiche relative ad un certo processo aleatorio. Esistono svariate tecniche di stima dei parametri

Dettagli

Teoria quantistica della conduzione nei solidi e modello a bande

Teoria quantistica della conduzione nei solidi e modello a bande Teoria quantistica della conduzione nei solidi e modello a bande Obiettivi - Descrivere il comportamento quantistico di un elettrone in un cristallo unidimensionale - Spiegare l origine delle bande di

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

General Linear Model. Esercizio

General Linear Model. Esercizio Esercizio General Linear Model Una delle molteplici applicazioni del General Linear Model è la Trend Surface Analysis. Questa tecnica cerca di individuare, in un modello di superficie, quale tendenza segue

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli