Prefazione all edizione originale. Prefazione all edizione italiana

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Prefazione all edizione originale. Prefazione all edizione italiana"

Transcript

1 Indice Prefazione all edizione originale Prefazione all edizione italiana xiii xv 1 Il miglioramento della qualità nel moderno ambiente produttivo Significato dei termini qualità e miglioramento della qualità Le componenti della qualità Terminologia tecnica nell ingegneria della qualità Breve storia dei metodi per il controllo della qualità Metodi statistici per il miglioramento della qualità Aspetti gestionali di miglioramento della qualità Filosofia della qualità e strategie gestionali Il legame tra qualità e produttività Costi legati alla qualità Realizzazione del miglioramento della qualità 33 I Metodi statistici utili nel miglioramento della qualità 37 2 Modelli della qualità del processo La descrizione della variabilità I grafici rami e foglie L istogramma Sintesi numerica dei dati Rappresentazione dei dati mediante box plot Distribuzioni di probabilità Le principali distribuzioni discrete La distribuzione ipergeometrica La distribuzione binomiale La distribuzione di Poisson La distribuzione di Pascal e altre a essa collegate Le principali distribuzioni continue La distribuzione normale Distribuzione lognormale 65

2 vi Indice La distribuzione esponenziale La distribuzione gamma La distribuzione di Weibull Grafici di probabilità (Probability plot) Grafici di probabilità normali (Normal propability plot) Altri grafici di probabilità Qualche utile approssimazione La distribuzione binomiale come approssimazione della ipergeometrica La distribuzione di Poisson come approssimazione della binomiale La distribuzione normale come approssimazione della binomiale Commenti sulle approssimazioni considerate 80 3 Inferenze riguardanti la qualità dei processi produttivi Statistiche e distribuzioni campionarie Il campionamento da distribuzione normale Il campionamento da distribuzione bernoulliana Il campionamento da distribuzione di Poisson Stima puntuale dei parametri del processo Inferenza statistica per un singolo campione Inferenza sulla media di una popolazione, varianza nota L impiego del P-value nelle verifiche d ipotesi Inferenza sulla media di una distribuzione normale, varianza incognita Inferenza sulla varianza di una distribuzione normale Inferenza su una proporzione della popolazione Probabilità di errore di II tipo e scelta della dimensione campionaria Inferenza statistica per due campioni Inferenza per la differenza tra medie, note le varianze Inferenza per la differenza tra le medie di due distribuzioni normali, varianze incognite Inferenza sulle varianze di due distribuzioni normali Inferenza sulle proporzioni di due popolazioni Cosa succede se ci sono più di due popolazioni? L analisi della varianza Un esempio L analisi della varianza Controllo delle assunzioni: analisi dei residui 133 II Il controllo statistico di processo Teoria e metodi del controllo statistico di un processo produttivo Introduzione Fonti di variabilità nella qualità 138

3 Indice vii 4.3 Fondamenti statistici delle carte di controllo Introduzione Scelta dei limiti di controllo Dimensione del campione e frequenza di campionamento Sottogruppi razionali Analisi degli andamenti tipici di una carta di controllo Commento alle regole di sensibilità per le carte di controllo Fase I e Fase II dell applicazione delle carte di controllo Altri strumenti dei magnifici sette Come applicare l SPC Esempio di applicazione dell SPC Applicazioni dell SPC a industrie non manifatturiere Carte di controllo per variabili Introduzione Carte di controllo x e R Fondamenti statistici delle carte di controllo Costruzione e uso delle carte x e R Carte basate su parametri noti Interpretazione delle carte x e R Effetto della non-normalità sulle carte x e R Funzione operativa caratteristica Lunghezza media delle sequenze per le carte x Carte di controllo per x e S Costruzione e uso delle carte di controllo x e S Carte di controllo x e S con dimensione campionaria variabile Carte di controllo S Carte di controllo per misure singole Sommario delle procedure per le carte x, R e S Applicazioni delle carte di controllo per variabili Carte di controllo per attributi Introduzione Carte di controllo per frazione di non conformi Costruzione della carta di controllo Dimensione campionaria variabile Applicazioni a produzioni di tipo non manifatturiero Aspetti computazionali per la curva operativa caratteristica e per la lunghezza media delle sequenze Carte di controllo per non conformità (numero di difetti) Procedure con dimensioni campionarie costanti Procedure per dimensioni campionarie variabili Sistemi basati su tipologie di non conformità Curva operativa caratteristica 266

4 viii Indice Bassa difettosità Applicazioni non manifatturiere Scelta tra carte di controllo per attributi e carte di controllo per variabili Linee guida per l applicazione delle carte di controllo Analisi di capacità del processo Introduzione Analisi di capacità del processo attraverso istogrammi e carte di probabilità Uso dell istogramma Grafici o carte di probabilità Indici di capacità del processo Uso e interpretazione degli indici di capacità Indici di capacità per un processo non centrato Normalità e indici di capacità Ulteriori considerazioni sulla centratura Intervalli di confidenza e test sugli indici di capacità Analisi della capacità del processo con le carte di controllo Analisi di capacità del processo con esperimenti programmati Studi di capacità di strumenti e di sistemi di misura Concetti di base della capacità degli strumenti Il metodo di analisi della varianza Intervalli di confidenza negli studi Gauge R&R Falsi Difettosi e Difettosi Passati Definizione dei limiti di specifica per componenti discrete Combinazioni lineari Combinazioni non lineari Stima dei limiti di tolleranza naturale di un processo Limiti di tolleranza basati sulla distribuzione normale Limiti di tolleranza non parametrici 325 III Altre tecniche statistiche di monitoraggio e controllo del processo Carte di controllo CUSUM ed EWMA Le carte CUSUM Principi base: le carte CUSUM per il controllo della media del processo Forma tabulare o algoritmica delle CUSUM per il controllo della media del processo Raccomandazioni per la progettazione della carta CUSUM La carta CUSUM standardizzata Sottogruppi razionali Ottimizzazione delle CUSUM nel caso di salti di livello elevati 341

5 Indice ix Procedura di avviamento a risposta accelerata Carte CUSUM unilaterali Carte CUSUM per monitorare la variabilità Somme cumulate ottenute con altre statistiche campionarie La procedura maschera a V Le carte di controllo a medie mobili pesate esponenzialmente (EWMA) Le carte EWMA per il controllo della media del processo Progettazione della carta di controllo EWMA Robustezza della EWMA alla normalità Sottogruppi razionali Estensioni della carta EWMA La carta di controllo a media mobile Altre tecniche statistiche di controllo del processo Il controllo statistico di processo per i processi di breve durata Carte per media e range nel caso di produzioni di breve durata Carta di controllo per attributi nel caso di produzioni di breve durata Altri metodi Carte di controllo modificate e di accettazione Carte per la media con limiti di controllo modificati Carte di controllo di accettazione Carte di controllo per gruppi nel caso di processi multipli Processi multipli Carte di controllo per gruppi Altri metodi SPC con dati correlati Cause ed effetti della autocorrelazione Metodi basati su modelli Un approccio Model-Free Schemi adattativi Progettazione delle carte di controllo secondo criteri di carattere economico Progetto di una carta di controllo Caratteristiche del processo Parametri di costo Lavoro preliminare e progetto semi-economico Modello economico della carta di controllo per la media Altri contributi Carte Cuscore Il modello sui punti di svolta (changepoint) per il controllo di processo Rassegna di altre procedure Usura degli impianti Carte di controllo basate su altre statistiche campionarie Scelta del valore di riferimento ottimale per il processo 417

6 x Indice Problemi di controllo di riempimento Precontrollo Controllo multivariato di processo Controllo multivariato Descrizione dei dati multivariati La distribuzione normale multivariata Il vettore media campionaria e la matrice di covarianza La carta di controllo T 2 di Hotelling Dati raggruppati Osservazioni singole Carte di controllo multivariate EWMA Correzione basata sulla regressione Carte di controllo per monitorare la variabilità Metodi basati sulla struttura latente Componenti principali Minimi quadrati parziali Controllo di profilo Controllo di processo ingegneristico e statistico Controllo di processo e regolazione Controllo di processo tramite adattamento retroattivo (feedback) Un semplice schema di adattamento: controllo integrale La carta per la correzione Varianti della carta di correzione Altri tipi di dispositivi di controllo retroattivo Combinazione di SPC e EPC 474 IV Progetto e miglioramento del processo produttivo tramite la programmazione statistica degli esperimenti I principi di base della programmazione degli esperimenti Che cos è la programmazione degli esperimenti? Esempi di esperimenti programmati nel miglioramento della qualità e del processo Criteri per la programmazione degli esperimenti Esperimenti fattoriali Un esempio Analisi statistica Analisi dei residui Piani fattoriali 2 k Il piano Il piano 2 k con k 3 508

7 Indice xi Il piano 2 k senza replicazioni Aggiunta di punti centrali in un piano 2 k Blocchi e confondimento nei piani 2 k Replicazioni frazionarie di piani 2 k La frazione 1/2 di un piano 2 k Frazioni minori: il piano fattoriale frazionario 2 k p L ottimizzazione del processo con esperimenti programmati Metodi e piani per la superficie di risposta Il metodo della massima pendenza Analisi delle superfici di risposta del secondo ordine Studi sulla robustezza del processo Premesse L approccio della superficie di risposta agli studi sulla robustezza del processo Conduzione evolutiva EVOP 567 V Controllo campionario Piani di campionamento per attributi lotto per lotto Il problema del campionamento in accettazione Vantaggi e svantaggi del campionamento Tipi di piani di campionamento La formazione del lotto Il campionamento casuale Linee guida per l uso del campionamento in accettazione Piani di campionamento semplice per attributi Definizione di un piano di campionamento semplice La curva operativa caratteristica Costruzione di un piano di campionamento semplice con una curva OC specificata Ispezione con rettifica Piani di campionamento doppio, multiplo e sequenziale Piani di campionamento doppio Piani di campionamento multiplo Piani di campionamento sequenziale La normativa MIL STD 105E (ANSI/ASQC Z1.4, ISO 2859) Descrizione della normativa Procedura Osservazioni I piani di campionamento Dodge-Romig I piani AOQL Piani LTPD 623

8 xii Indice Stima della qualità media del processo Altre tecniche di campionamento in accettazione Campionamento in accettazione per variabili Vantaggi e svantaggi del campionamento per variabili Tipi di piani di campionamento disponibili Cautele nell impiego del campionamento per variabili Costruzione di un piano di campionamento per variabili con curva OC specificata La normativa MIL ST 414 (ANSI/ASQC Z1.9) Descrizione generale della normativa Uso delle tabelle Esame delle normative MIL STD 414 e ANSI/ASQC Z Altre procedure di campionamento per variabili Campionamento per variabili per garantire la qualità media del lotto o del processo Campionamento sequenziale per variabili Campionamento a catena Campionamento continuo CSP Altri piani di campionamento continuo I piani di campionamento skip-lot 645 A Appendice 649 Bibliografia 665 Indice analitico 677

I Metodi statistici utili nel miglioramento della qualità 27

I Metodi statistici utili nel miglioramento della qualità 27 Prefazione xiii 1 Il miglioramento della qualità nel moderno ambiente produttivo 1 1.1 Significato dei termini qualità e miglioramento della qualità 1 1.1.1 Le componenti della qualità 2 1.1.2 Terminologia

Dettagli

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice cap 0 Romane - def_layout 1 12/06/12 07.51 Pagina V Prefazione xiii Capitolo 1 Nozioni introduttive 1 1.1 Introduzione 1 1.2 Cenni storici sullo sviluppo della Statistica 2 1.3 La Statistica nelle scienze

Dettagli

Indice Prefazione xiii 1 Probabilità

Indice Prefazione xiii 1 Probabilità Prefazione xiii 1 Probabilità 1 1.1 Origini del Calcolo delle Probabilità e della Statistica 1 1.2 Eventi, stato di conoscenza, probabilità 4 1.3 Calcolo Combinatorio 11 1.3.1 Disposizioni di n elementi

Dettagli

Metodi Statistici di Controllo della Qualità Prof. Paolo Cozzucoli

Metodi Statistici di Controllo della Qualità Prof. Paolo Cozzucoli Programma dell insegnamento di Metodi Statistici di Controllo della Qualità Prof. Paolo Cozzucoli Corso di Laurea in Metodi Quantitativi per l Economia e la Gestione delle Aziende A.A. 2007-08 Disciplina

Dettagli

Prelazione. Lista delle Figure. Lista delle Tabelle

Prelazione. Lista delle Figure. Lista delle Tabelle Indice Prelazione Indice Lista delle Figure Lista delle Tabelle VI IX XV XVI 1 Nozioni Introduttive 1 1.1 Inferenza Statistica 1 1.2 Campionamento 5 1.3 Statistica e Probabilità 7 1.4 Alcuni Problemi e

Dettagli

Presentazione. Risorse Web. Metodi Statistici 1

Presentazione. Risorse Web. Metodi Statistici 1 I-XVI Romane_ 27-10-2004 14:25 Pagina VII Prefazione Risorse Web XI XIII XVII Metodi Statistici 1 Capitolo 1 Tecniche Statistiche 3 1.1 Probabilità, Variabili Casuali e Statistica 3 1.1.1 Introduzione

Dettagli

Indice. pag. 15. Prefazione. Introduzione» 17

Indice. pag. 15. Prefazione. Introduzione» 17 Indice Prefazione 15 Introduzione 17 1. Pianificazione della qualità 1.1. Il concetto di 6 sigma 1.1.1. Le aree e le fasi del sei sigma 1.2. I processi produttivi e la variabilità 1.2.1. Cause comuni 1.2.2.

Dettagli

INDICE PREFAZIONE VII

INDICE PREFAZIONE VII INDICE PREFAZIONE VII CAPITOLO 1. LA STATISTICA E I CONCETTI FONDAMENTALI 1 1.1. Un po di storia 3 1.2. Fenomeno collettivo, popolazione, unità statistica 4 1.3. Caratteri e modalità 6 1.4. Classificazione

Dettagli

Il controllo delle prestazioni del provider. IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti)

Il controllo delle prestazioni del provider. IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti) del provider IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti) 1 del provider - premessa (1) in merito alla fase di gestione ordinaria dell outsourcing sono state richiamate le prassi di miglioramento

Dettagli

Sommario. Capitolo 1 Impiego della statistica per la gestione dell azienda 1. Capitolo 2 Disponibilità e produzione delle informazioni statistiche 19

Sommario. Capitolo 1 Impiego della statistica per la gestione dell azienda 1. Capitolo 2 Disponibilità e produzione delle informazioni statistiche 19 Prefazione XI Capitolo 1 Impiego della statistica per la gestione dell azienda 1 1.1 Premessa 1 1.2 Il ruolo della statistica a supporto del processo decisionale del manager 3 1.3 L impiego della statistica

Dettagli

Controllo di accettazione

Controllo di accettazione Controllo di accettazione Introduzione Piano di campionamento singolo Curva operativa caratteristica Piano di campionamento con rettifica Piano di campionamento doppio Piano di campionamento sequenziale

Dettagli

Metodologie statistiche in manutenzione

Metodologie statistiche in manutenzione M in in > Statistica di base per la > FMECA per la alla generali Sviluppare una sensibilità al valore aggiunto derivante da un applicazione di metodi e tecniche statistiche in Fornire conoscenze specifiche

Dettagli

DISTRIBUZIONI DI PROBABILITÀ

DISTRIBUZIONI DI PROBABILITÀ Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA A. A. 2008-2009 FACOLTÀ DI ECONOMIA. Programma del modulo di STATISTICA I (6 crediti)

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA A. A. 2008-2009 FACOLTÀ DI ECONOMIA. Programma del modulo di STATISTICA I (6 crediti) UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA A. A. 2008-2009 FACOLTÀ DI ECONOMIA Programma del modulo di STATISTICA I (6 crediti) ECOCOM (lettere A-Lh): ECOCOM (lettere Li-Z): ECOBAN: ECOAMM (Lettere A-Lh):

Dettagli

Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte

Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Anno scolastico 01-01 I Docenti della Disciplina Salerno, settembre 01 Anno scolastico

Dettagli

Metodologie statistiche in manutenzione

Metodologie statistiche in manutenzione M in in > Statistica di base per la > FMECA per la alla generali Sviluppare una sensibilità al valore aggiunto derivante da un applicazione di metodi e tecniche statistiche in Fornire conoscenze specifiche

Dettagli

Teoria e metodi del controllo statistico di un processo produttivo. Strumenti base Basi statistiche Problemi pratici

Teoria e metodi del controllo statistico di un processo produttivo. Strumenti base Basi statistiche Problemi pratici Teoria e metodi del controllo statistico di un processo produttivo Strumenti base Basi statistiche Problemi pratici Teoria e metodi del controllo statistico Introduzione Ogni processo produttivo, indipendentemente

Dettagli

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO Pasquale Iandolo Laboratorio analisi ASL 4 Chiavarese, Lavagna (GE) 42 Congresso Nazionale SIBioC Roma

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Politecnico di Milano

Politecnico di Milano Politecnico di Milano Statistica e Calcolo delle Probabilità prof. Cesare Svelto prof.sa Carla Cattaneo Corso integrato Corso 5+5 = 10 CFU in 2 moduli emisemestrali 1 modulo Statistica 2 modulo Calcolo

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo

Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo docente Giuseppe Sanfilippo http://www.unipa.it/sanfilippo giuseppe.sanfilippo@unipa.it

Dettagli

TECNICHE PER LA GESTIONE DELLA QUALITÀ

TECNICHE PER LA GESTIONE DELLA QUALITÀ N E T T U N O TECNICHE PER LA GESTIONE DELLA QUALITÀ G. BARBATO, F. FRANCESCHINI, M. GALETTO, R. LEVI N E T T U N O NETWORK PER L UNIVERSITÀ OVUNQUE Diplomi universitari a distanza in Ingegneria TECNICHE

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre. Corso di Statistica Medica 2004-2005 Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre. Sono previste 30 ore di lezione di statistica e 12 di

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Stima puntuale per la proporzione Da un lotto di arance se ne estraggono 400, e di queste 180

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI 1. L azienda Wood produce legno compensato per costruzioni

Dettagli

Il controllo statistico di processo

Il controllo statistico di processo Il controllo statistico di processo Torino, 02 ottobre 2012 Relatrice: Monica Lanzoni QUALITÀ DI DI UN UN PRODOTTO: l'adeguatezza del del medesimo all'uso per per il il quale quale è stato stato realizzato

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

Formazione Aziendale per la Qualità

Formazione Aziendale per la Qualità 4 Corsi e Formazione per la Qualità Formazione Aziendale per la Qualità Il nostro obiettivo L organizzazione, l analisi e l interpretazione dei dati aziendali all interno del proprio business, può rappresentare

Dettagli

Continua sul retro 42.1 39.7 38.0 38.7 41.4 37.5 38.6 40.5 39.8 38.0 36.9 40.3 42.0 41.3 40.4 39.1 38.4 42.0

Continua sul retro 42.1 39.7 38.0 38.7 41.4 37.5 38.6 40.5 39.8 38.0 36.9 40.3 42.0 41.3 40.4 39.1 38.4 42.0 Statistica per l azienda Esame del 19.06.12 COGNOME NOME Matr. Firma Modulo: singolo con Informatica con StatII & PDRM con Mat. & PDRM altro (specificare) Attenzione: Il presente foglio deve essere compilato

Dettagli

IL COLLAUDO DI ACCETTAZIONE

IL COLLAUDO DI ACCETTAZIONE IL COLLAUDO DI ACCETTAZIONE Il collaudo di accettazione 1 Popolazione Campione Dati MISURA Processo Lotto Campione DATI CAMPIONAMENTO INTERVENTO MISURA Lotto Campione DATI CAMPIONAMENTO INTERVENTO Il collaudo

Dettagli

Presentazione dell edizione italiana

Presentazione dell edizione italiana 1 Indice generale Presentazione dell edizione italiana Prefazione xi xiii Capitolo 1 Una introduzione alla statistica 1 1.1 Raccolta dei dati e statistica descrittiva... 1 1.2 Inferenza statistica e modelli

Dettagli

Metodologie statistiche per l analisi del rischio CONTROLLO STATISTICO DI PROCESSO PER IL MONITORAGGIO DEL RISCHIO NELL INDUSTRIA ALIMENTARE

Metodologie statistiche per l analisi del rischio CONTROLLO STATISTICO DI PROCESSO PER IL MONITORAGGIO DEL RISCHIO NELL INDUSTRIA ALIMENTARE Corso di Laurea in Sicurezza igienico-sanitaria degli alimenti Metodologie statistiche per l analisi del rischio CONTROLLO STATISTICO DI PROCESSO PER IL MONITORAGGIO DEL RISCHIO NELL INDUSTRIA ALIMENTARE

Dettagli

LEZIONI DI STATISTICA

LEZIONI DI STATISTICA ez10 l GIOVANNI GIRONE Ordinario nell'università di Bari TOMMASO SALVEMINI Ordinario nel!' Università di Roma LEZIONI DI STATISTICA Volume Secondo CACUCCI EDITORE - BARI - 1992 CENTRO " G. ASTENGO» INVENTARIO

Dettagli

6. Modelli statistici: analisi della regressione lineare

6. Modelli statistici: analisi della regressione lineare BIOSTATISTICA 6. Modelli statistici: analisi della regressione lineare Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Metodologie statistiche per l analisi del rischio CONTROLLO STATISTICO DI PROCESSO PER IL MONITORAGGIO DEL RISCHIO NELL INDUSTRIA ALIMENTARE

Metodologie statistiche per l analisi del rischio CONTROLLO STATISTICO DI PROCESSO PER IL MONITORAGGIO DEL RISCHIO NELL INDUSTRIA ALIMENTARE Corso di Laurea in Sicurezza igienico-sanitaria degli alimenti Metodologie statistiche per l analisi del rischio CONTROLLO STATISTICO DI PROCESSO PER IL MONITORAGGIO DEL RISCHIO NELL INDUSTRIA ALIMENTARE

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

Il campionamento statistico

Il campionamento statistico Lezione 13 Gli strumenti per il miglioramento della Qualità Il campionamento statistico Aggiornamento: 19 novembre 2003 Il materiale didattico potrebbe contenere errori: la segnalazione e di questi errori

Dettagli

Matlab per applicazioni statistiche

Matlab per applicazioni statistiche Matlab per applicazioni statistiche Marco J. Lombardi 19 aprile 2005 1 Introduzione Il sistema Matlab è ormai uno standard per quanto riguarda le applicazioni ingegneristiche e scientifiche, ma non ha

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Corso di Statistica Medica Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Sono previste 40 ore complessive, di cui almeno 16 di lezione frontale e le restanti

Dettagli

Obiettivi. Metodi statistici per il controllo della qualità. Indice. UNI - Ente Nazionale Italiano di Unificazione

Obiettivi. Metodi statistici per il controllo della qualità. Indice. UNI - Ente Nazionale Italiano di Unificazione Obiettivi Metodi statistici per il controllo della qualità Evidenziare come tipici problemi industriali richiedano un controllo statistico di qualità Segnalare l esistenza di specifiche norme UNI che definiscono

Dettagli

Piacenza, 10 marzo 2014 La preparazione della tesi di Laurea Magistrale

Piacenza, 10 marzo 2014 La preparazione della tesi di Laurea Magistrale Piacenza, 0 marzo 204 La preparazione della tesi di Laurea Magistrale ma questa statistica a che cosa serve? non vedo l ora di cominciare a lavorare per la tesi. e dimenticarmi la statistica!! il mio relatore

Dettagli

METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica

METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica EPIDEMIOLOGIA Ha come oggetto lo studio della distribuzione delle malattie in un popolazione e dei fattori che la influenzano

Dettagli

6.A.1 Logistica interna ed esterna

6.A.1 Logistica interna ed esterna 6.A.1 Logistica interna ed esterna Il corso si propone di fornire un quadro chiaro di inquadramento della logistica e delle sue principali funzioni in azienda. Si vogliono altresì fornire gli strumenti

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Un primo passo verso PAT. Un applicazione di controllo preventivo

Un primo passo verso PAT. Un applicazione di controllo preventivo Un primo passo verso PAT Un applicazione di controllo preventivo Sommario Situazione iniziale: linea di produzione con controllo peso off-line Cambiamento vs. una linea con controllo peso automatico on-line

Dettagli

RISK MANAGEMENT: MAPPATURA E VALUTAZIONE DEI RISCHI AZIENDALI. UN COSTO O UN OPPORTUNITA?

RISK MANAGEMENT: MAPPATURA E VALUTAZIONE DEI RISCHI AZIENDALI. UN COSTO O UN OPPORTUNITA? Crenca & Associati CORPORATE CONSULTING SERVICES RISK MANAGEMENT: MAPPATURA E VALUTAZIONE DEI RISCHI AZIENDALI. UN COSTO O UN OPPORTUNITA? Ufficio Studi Milano, 3 aprile 2008 Introduzione al Risk Management

Dettagli

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008 Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica 18 dicembre 008 Esame sull intero programma: esercizi da A a D Esame sulla seconda parte del programma: esercizi

Dettagli

Carte di controllo per attributi

Carte di controllo per attributi Carte di controllo per attributi Il controllo per variabili non sempre è effettuabile misurazioni troppo difficili o costose troppe variabili che definiscono qualità di un prodotto le caratteristiche dei

Dettagli

Metrologia e gestione dei laboratori di misura e prova

Metrologia e gestione dei laboratori di misura e prova M di conferma metrologica Obiettivi generali Accrescere la competenza e le abilità del personale operante all interno dei laboratori e del controllo qualità Fornire un quadro completo ed esaustivo di tutte

Dettagli

Statistica inferenziale

Statistica inferenziale Statistica inferenziale Popolazione e campione Molto spesso siamo interessati a trarre delle conclusioni su persone che hanno determinate caratteristiche (pazienti, atleti, bambini, gestanti, ) Osserveremo

Dettagli

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla Il metodo della regressione può essere esteso dal caso in cui si considera la variabilità della risposta della y in relazione ad una sola variabile indipendente X ad una situazione più generale in cui

Dettagli

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1)

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) 151 Introduzione Un esperimento è una prova o una serie di prove. Gli esperimenti sono largamente utilizzati nel campo dell ingegneria. Tra le varie applicazioni;

Dettagli

CENNI DI METODI STATISTICI

CENNI DI METODI STATISTICI Corso di Laurea in Ingegneria Aerospaziale CENNI DI METODI STATISTICI Docente: Page 1 Page 2 Page 3 Due eventi si dicono indipendenti quando il verificarsi di uno non influisce sulla probabilità di accadimento

Dettagli

Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD.

Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD. Advanced level Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD. Sommario Toolbox finance Analisi dei portafogli Analisi grafica Determinate Date Toolbox statistics Analisi

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk

Dettagli

Controllo Statistico della Qualità. Qualità come primo obiettivo dell azienda produttrice di beni

Controllo Statistico della Qualità. Qualità come primo obiettivo dell azienda produttrice di beni Controllo Statistico della Qualità Qualità come primo obiettivo dell azienda produttrice di beni Qualità come costante aderenza del prodotto alle specifiche tecniche Qualità come controllo e riduzione

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

1. Richiami di Statistica. Stefano Di Colli

1. Richiami di Statistica. Stefano Di Colli 1. Richiami di Statistica Metodi Statistici per il Credito e la Finanza Stefano Di Colli Dati: Fonti e Tipi I dati sperimentali sono provenienti da un contesto delimitato, definito per rispettare le caratteristiche

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

SPC e distribuzione normale con Access

SPC e distribuzione normale con Access SPC e distribuzione normale con Access In questo articolo esamineremo una applicazione Access per il calcolo e la rappresentazione grafica della distribuzione normale, collegata con tabelle di Clienti,

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA Dipartimento di Ingegneria Meccanica Chimica e dei Materiali PROGETTAZIONE E GESTIONE DEGLI IMPIANTI INDUSTRIALI Esercitazione 6 ORE ELEMENTI DI STATISTICA Prof. Ing. Maria Teresa Pilloni Anno Accademico

Dettagli

Statistica per l azienda 19.06.2014 (1)

Statistica per l azienda 19.06.2014 (1) Statistica per l azienda 19.06.2014 (1) COGNOME NOME Matr. Firma Modulo: singolo con Informatica con StatII & PDRM con Mat. & PDRM altro (specificare) Attenzione: Il presente foglio deve essere compilato

Dettagli

GESTIONE INDUSTRIALE DELLA QUALITÀ A

GESTIONE INDUSTRIALE DELLA QUALITÀ A GESTIONE INDUSTRIALE DELLA QUALITÀ A Lezione 10 CAMPIONAMENTO (pag. 62-64) L indagine campionaria all interno di una popolazione consiste nell estrazione di un numero limitato e definito di elementi che

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 7 marzo 20 Indice Indici di curtosi e simmetria Indici di curtosi e simmetria 2 3 Distribuzione Bernulliana

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

STATISTICA (I MODULO INFERENZA STATISTICA) Esercitazione I 27/4/2007

STATISTICA (I MODULO INFERENZA STATISTICA) Esercitazione I 27/4/2007 Esercitazione I 7/4/007 In una scatola contenente 0 pezzi di un articolo elettronico risultano essere difettosi. Si estraggono a caso due pezzi, uno alla volta senza reimmissione. Quale è la probabilità

Dettagli

Esplorazione dei dati

Esplorazione dei dati Esplorazione dei dati Introduzione L analisi esplorativa dei dati evidenzia, tramite grafici ed indicatori sintetici, le caratteristiche di ciascun attributo presente in un dataset. Il processo di esplorazione

Dettagli

Esercitazioni 2013/14

Esercitazioni 2013/14 Esercitazioni 2013/14 Esercizio 1 Due ditte V e W partecipano ad una gara di appalto per la costruzione di un tratto di autostrada che viene assegnato a seconda del prezzo. L offerta fatta dalla ditta

Dettagli

Sommario. Capitolo 1 I dati e la statistica 1. Capitolo 2 Statistica descrittiva: tabelle e rappresentazioni grafiche 25

Sommario. Capitolo 1 I dati e la statistica 1. Capitolo 2 Statistica descrittiva: tabelle e rappresentazioni grafiche 25 Sommario Presentazione dell edizione italiana Prefazione xv xiii Capitolo 1 I dati e la statistica 1 Statistica in pratica: BusinessWeek 1 1.1 Le applicazioni in ambito aziendale ed economico 3 Contabilità

Dettagli

CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA

CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA ANNO ACCADEMICO 2013-2014 UNIVERSITA DEGLI STUDI DI TERAMO FACOLTA DI MEDICINA VETERINARIA CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA CFU 5 DURATA DEL CORSO : ORE 35 DOCENTE PROF. DOMENICO DI DONATO

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 4 A. Si supponga che la durata in giorni delle lampadine prodotte

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it LA CLASSIFICAZIONE CAP IX, pp.367-457 Problema generale della scienza (Linneo, ) Analisi discriminante Cluster Analysis

Dettagli

UNIVERSITÀ DEGLI STUDI DI FERRARA

UNIVERSITÀ DEGLI STUDI DI FERRARA UNIVERSITÀ DEGLI STUDI DI FERRARA Anno Accademico 2012/2013 REGISTRO DELL ATTIVITÀ DIDATTICA Docente: ANDREOTTI MIRCO Titolo del corso: MATEMATICA ED ELEMENTI DI STATISTICA Corso: CORSO UFFICIALE Corso

Dettagli

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che Statistica Cognome: Laurea Triennale in Biologia Nome: 26 luglio 2012 Matricola: Tema A 1. Parte A 1.1. Sia x 1, x 2,..., x n un campione di n dati con media campionaria x e varianza campionaria s 2 x

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2.

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2. Analisi multivariata Statistica multivariata Quando il numero delle variabili rilevate sullo stesso soggetto aumentano, il problema diventa gestirle tutte e capirne le relazioni. Cercare di capire le relazioni

Dettagli

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini)

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Esercizio 1 In uno studio sugli affitti mensili, condotto su un campione casuale di 14 monolocali nella città nella città

Dettagli

Processo di verifica che stabilisce se un metodo è adatto per lo scopo previsto ( ). Foggia, 15 febbraio 2012 1

Processo di verifica che stabilisce se un metodo è adatto per lo scopo previsto ( ). Foggia, 15 febbraio 2012 1 Processo di verifica che stabilisce se un metodo è adatto per lo scopo previsto ( ). 1 : misura in cui i dati prodotti da un processo di misurazione consentono a un utente di prendere tecnicamente ed amministrativamente

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Nome N. Matricola Ancona, 14 luglio 2015 1. Tre macchine producono gli stessi pezzi

Dettagli

Elaborazione dei dati su PC Regressione Multipla

Elaborazione dei dati su PC Regressione Multipla 21 Elaborazione dei dati su PC Regressione Multipla Analizza Regressione Statistiche Grafici Metodo di selezione Analisi dei dati 21.1 Introduzione 21.2 Regressione lineare multipla con SPSS 21.3 Regressione

Dettagli

Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura

Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura INDICE GENERALE Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura XI XIV XV XVII XVIII 1 LA RILEVAZIONE DEI FENOMENI

Dettagli

5.A.1 Controllo statistico di processo (SPC)

5.A.1 Controllo statistico di processo (SPC) 5.A.1 Controllo statistico di processo (SPC) F [2.A.3] Gli obiettivi che si vogliono raggiungere sono relativi alla comprensione del metodo, all utilizzo sistematico delle, alla progettazione di un controllo

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

Lineamenti di econometria 2

Lineamenti di econometria 2 Lineamenti di econometria 2 Camilla Mastromarco Università di Lecce Master II Livello "Analisi dei Mercati e Sviluppo Locale" (PIT 9.4) Aspetti Statistici della Regressione Aspetti Statistici della Regressione

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. CLASSE quinta INDIRIZZO AFM-SIA-RIM-TUR UdA n. 1 Titolo: LE FUNZIONI DI DUE VARIABILI E L ECONOMIA Utilizzare le strategie del pensiero razionale negli aspetti dialettici e algoritmici per affrontare situazioni

Dettagli

Statistica. A.A. 2014/2015 CREDITI (CFU): 9 CORSO DI LAUREA IN ECONOMIA E COMMERCIO (Verona)

Statistica. A.A. 2014/2015 CREDITI (CFU): 9 CORSO DI LAUREA IN ECONOMIA E COMMERCIO (Verona) Statistica A.A. 2014/2015 CREDITI (CFU): 9 CORSO DI LAUREA IN ECONOMIA E COMMERCIO (Verona) DOCENTE: Marco Minozzo (marco.minozzo@univr.it) TELEFONO: 045-8028234 ORARIO DI RICEVIMENTO: martedì 12:00 13:00

Dettagli

Corso di Automazione Industriale 1. Capitolo 4

Corso di Automazione Industriale 1. Capitolo 4 Simona Sacone - DIST Corso di Automazione Corso Industriale di 1 Automazione Industriale 1 Capitolo 4 Analisi delle prestazioni tramite l approccio simulativo Aspetti statistici della simulazione: generazione

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Dai dati al modello teorico

Dai dati al modello teorico Dai dati al modello teorico Analisi descrittiva univariata in R 1 Un po di terminologia Popolazione: (insieme dei dispositivi che verranno messi in produzione) finito o infinito sul quale si desidera avere

Dettagli

Soluzioni Esercizi elementari

Soluzioni Esercizi elementari Soluzioni sercizi elementari Capitolo. carattere: itolo di Studio, carattere qualitativo ordinato modalità: Diploma, Licenza media, Laurea, Licenza elementare unità statistiche: Individui. carattere: Fatturato,

Dettagli

Gestione Industriale della Qualità

Gestione Industriale della Qualità Gestione Industriale della Qualità 8-II-6 esempio A) Si consideri un piano di campionamento doppio con rettifica caratterizzato dai seguenti parametri: n = c = n = c = 4 Si valuti la qualità media risultante

Dettagli

Contenuto del libro...2 Convenzioni utilizzate nel libro...2

Contenuto del libro...2 Convenzioni utilizzate nel libro...2 Indice Introduzione... 1 Contenuto del libro...2 Convenzioni utilizzate nel libro...2 I INTERVALLI E FORMULE DI EXCEL 1 Ricavare il massimo dagli intervalli.... 7 Tecniche avanzate di selezione degli intervalli...7

Dettagli

Statistical Process Control

Statistical Process Control Statistical Process Control ESERCIZI Esercizio 1. Per la caratteristica di un processo distribuita gaussianamente sono note media e deviazione standard: µ = 100, σ = 0.2. 1a. Calcolare la linea centrale

Dettagli

APPENDICE A: Tabella Process Sigma (I)

APPENDICE A: Tabella Process Sigma (I) APPENDICE A: Tabella Process Sigma (I) 203 APPENDICE A: Tabella Process Sigma (II) 204 APPENDICE B: Tipologie di variabili Lo schema sottostante è utile per la corretta scelta degli indicatori durante

Dettagli